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N -acylethanolamines (NAEs) are bioactive lipids derived from the hydrolysis of the mem-
brane phospholipid N -acylphosphatidylethanolamine (NAPE). In animal systems this reac-
tion is part of the “endocannabinoid” signaling pathway, which regulates a variety of
physiological processes. The signaling function of NAE is terminated by fatty acid amide
hydrolase (FAAH), which hydrolyzes NAE to ethanolamine and free fatty acid. Our previous
work in Arabidopsis thaliana showed that overexpression of AtFAAH (At5g64440) lowered
endogenous levels of NAEs in seeds, consistent with its role in NAE signal termination.
Reduced NAE levels were accompanied by an accelerated growth phenotype, increased
sensitivity to abscisic acid (ABA), enhanced susceptibility to bacterial pathogens, and early
flowering. Here we investigated the nature of the early flowering phenotype of AtFAAH
overexpression. AtFAAH overexpressors flowered several days earlier than wild type and
AtFAAH knockouts under both non-inductive short day (SD) and inductive long day (LD)
conditions. Microarray analysis revealed that the FLOWERING LOCUST (FT ) gene, which
plays a major role in regulating flowering time, and one target MADS box transcription fac-
tor, SEPATALLA3 (SEP3), were elevated in AtFAAH overexpressors. Furthermore, AtFAAH
overexpressors, with the early flowering phenotype had lower endogenous NAE levels in
leaves compared to wild type prior to flowering. Exogenous application of NAE 12:0, which
was reduced by up to 30% in AtFAAH overexpressors, delayed the onset of flowering in
wild type plants. We conclude that the early flowering phenotype of AtFAAH overexpres-
sors is, in part, explained by elevated FT gene expression resulting from the enhanced
NAE hydrolase activity of AtFAAH, suggesting that NAE metabolism may participate in
floral signaling pathways.

Keywords: Arabidopsis, fatty acid amide hydrolase, flowering, FLOWERING LOCUS T, lipid signaling, N -

acylethanalomanine

INTRODUCTION
N -acylethanolamines (NAEs) are bioactive lipids that function
in the regulation of various physiological processes in animal
systems. This includes the endocannabinoid signaling pathway
that regulates several neurobehavioral and neurophysiological
activities. Fatty acid derivatives that are amide-linked to an
ethanolamine moiety make up the basic molecular structure of
NAE, which differ in their acyl chain length and number of double
bonds (Kim et al., 2010). NAE bioactivity has been shown to be
terminated by the hydrolytic activity of fatty acid amide hydro-
lase (FAAH) where NAE is hydrolyzed into ethanolamine and
its corresponding free fatty acid (McKinney and Cravatt, 2005;
Fowler, 2006). In mammals, the importance of FAAH in regulat-
ing in vivo NAE levels was demonstrated using genetic approaches.
For example, it was shown that FAAH knockout mice possess ele-
vated levels of anandamide (NAE 20:4) compared with wild type
mice. The higher levels of anandamide in FAAH knockout mice
were accompanied by a variety of physiological changes, including
hypomotility, increased analgesia, and significant catalepsy

(Cravatt et al., 2001; Clement et al., 2003; Lichtman et al., 2004;
Kilaru et al., 2010).

Like animals, recent research in plant systems showed that NAEs
impact numerous physiological processes (Kim et al., 2010). In
Arabidopsis thaliana, a homolog of the mammalian FAAH was
identified and characterized (AtFAAH, locus At5g64440), and also
was shown to possess NAE hydrolytic activity in vitro (Shrestha
et al., 2003, 2006). The Arabidopsis FAAH encodes a protein of 607
amino acids with 37% identity to rat FAAH within the amidase sig-
nature (AS) domain (Shrestha et al., 2003). The AS family, consist-
ing of more than 80 amidases, contain a highly conserved region of
approximately 130 amino acids rich in serine, glycine, and alanine
(Chebrou et al., 1996; Patricelli et al., 1999; Labahn et al., 2002;
Gopalakrishna et al., 2004; Neu et al., 2007). Homologs of FAAH
have been identified in multiple plant species and modeling of the
AS region revealed a highly conserved active site (Shrestha et al.,
2006). These studies suggest that similar to mammalian systems,
the molecular machinery for terminating NAE signaling by FAAH
also operates in plants (Blancaflor and Chapman, 2006).
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Several lines of evidence support a role for FAAH in the catab-
olism of NAEs in plants. For instance, exogenous NAE at low
micromolar concentrations produced a dose-dependent reduction
in seedling growth (Blancaflor et al., 2003). Along with the arrested
growth, seedlings displayed altered root cell, and cytoskeletal orga-
nization when treated with NAE (Blancaflor et al., 2003; Motes
et al., 2005). When AtFAAH was over expressed in Arabidop-
sis seedlings, the growth inhibitory effects of exogenous NAE
treatment were much reduced compared to wild type, whereas
SALK T-DNA insertion AtFAAH knockout lines displayed an
increased sensitivity to NAE-induced growth inhibition (Wang
et al., 2006; Teaster et al., 2007; Cotter et al., 2011). The AtFAAH
overexpressors generally displayed enhanced seedling growth and
a tendency to flower earlier than wild type. On the other hand,
AtFAAH knockouts did not show any other strong phenotype
besides their greatly increased sensitivity to exogenous NAE (Wang
et al., 2006). In addition to enhanced growth, AtFAAH overex-
pressors showed an increased sensitivity to the plant hormone,
abscisic acid (ABA), indicating cross talk between NAE and ABA
signaling pathways (Teaster et al., 2007; Cotter et al., 2011). As a
trade-off for enhanced growth, AtFAAH overexpressors exhibited
compromised resistance to a number of plant pathogens, includ-
ing non-host pathogens that do not normally cause disease in
Arabidopsis (Kang et al., 2008).

In this paper, we investigated the early flowering phenotype of
AtFAAH overexpressors. We found that AtFAAH overexpressors
flowered earlier than wild type and AtFAAH knockouts under
both inductive long day (LD) and non-inductive short day (SD)
conditions. Global gene expression profiling of 14-day-old Ara-
bidopsis seedlings and verification by quantitative RT-PCR showed
that FLOWERING LOCUS T (FT ), which regulates flowering by
activating other floral genes (Kardailsky et al., 1999; Corbesier
et al., 2007; Turck et al., 2008; Seo et al., 2011), was elevated in
AtFAAH overexpressors. We also found that the AtFAAH over-
expressors grown under SD conditions for 14 days contained on
average, about 9% less total NAE than wild type, and the levels
of two specific types, NAE 12:0 and NAE 18:2, were reduced by
up to 30% in AtFAAH overexpressors. Treatment of wild type
Arabidopsis plants with exogenous NAE 12:0, delayed flowering.
Taken together, our data suggest that the early flowering phe-
notype of AtFAAH overexpressors is attributed to altered NAE
signaling.

MATERIALS AND METHODS
PLANT MATERIAL AND MEASUREMENT OF FLOWERING TIME
Three independent lines overexpressing AtFAAH (OE2, OE7, and
OE11) and two AtFAAH T-DNA knockouts (SALK_118043 and
SALK_095108) used in this study were described previously (Wang
et al., 2006). For evaluating flowering, seeds were surface-sterilized
with 95% ethanol, 30% bleach containing 0.1% Tween 20 and
deionized water and planted on agar plates and stratified overnight
at 4˚C. Seeds were then moved to 22˚C growth chambers set to
SD (8/16 light/dark) or LD (16/8 light/dark) photoperiod, and
grown for an additional 10 days. Individual seedlings were then
transplanted to pots containing Metro mix and returned to their
respective growth chamber. Plants were monitored daily after
transfer to the growth chamber and the number of plants that

flowered was recorded. The number of rosette leaves was recorded
on particular days as indicated.

GENE CHIP MICROARRAY EXPERIMENTS AND DATA ANALYSIS
For microarrays, total RNA was extracted from rosette leaves
of 14-day-old AtFAAH overexpressors and the AtFAAH T-DNA
insertional mutant SALK_095108, and processed as described pre-
viously (Teaster et al., 2007). Seeds of all three genotypes were
planted on MS media and seedlings grown for 14 days in 14/10 h
light/dark cycle prior to RNA isolation. The microarray experi-
ments were conducted with RNA isolated from three biological
replicates using ATH1 Genome Arrays (Affymetrix).

For data analysis, the CEL file for each sample was exported
from the Expression Console (Affymetrix) and normalized using
robust multi-array average (RMA) as described by Irizarry et al.
(2003). The presence/absence call for each probe set was obtained
from dCHIP (Li and Wong, 2001). Differentially expressed genes
in the AtFAAH overexpressor and SALK_095108 knockout in
comparison with wild type control were selected using associa-
tive analysis (Dozmorov and Centola, 2003). Type I family wise
error rate was reduced using a Bonferroni-corrected P-value of
2.19202E-06 representing a threshold of 0.05/N, where N repre-
sents number of probe sets present on the chip, which is 22810
for the Arabidopsis chip (Abdi, 2007). Microarray data was sub-
mitted to the European Molecular Biology Laboratory’s Euro-
pean Bioinformatics Institute (EMBL–EBI) ArrayExpress database
under accession E-MEXP-3486.

REAL TIME QUANTITATIVE RT-PCR
Total RNA was isolated using an RNeasy Mini Kit (Qia-
gen) and reverse transcribed to first-strand cDNA with the
Qiagen cDNA Synthesis Kit (Qiagen). First-strand cDNA was
used as a template for quantitative PCR using gene-specific
primers. Arabidopsis 18s rRNA, which served as a con-
trol for constitutive gene expression in plants, was ampli-
fied with primers (F) 5′-TCCTAGTAAGCGCGAGTCATCA-3′
(R) 5′-CGAACACTTCACCGGATCAT-3′ (Dean Rider et al.,
2003). Gene-specific primers used were FT (At1g65480) (F)
5′-GGAGACGTTCTTGATCCGTTTAATAGATCAAT-3′ (R) 5′-
ATAAACACGACACGATGAATTCCTGCAGT-3′; SEP3
(At1g24260) (F) 5′-GTGCCTTCAAGAGAGGCCTTAGCAGTT-
3′ (R) 5′-TCTGAAGATCGTTGAGCTGGTCAAGCAT-3′. Relative
expression levels using the formula for threshold cycle were cal-
culated by the (2−ΔΔCt) method (Livak and Schmittgen, 2001).
Means of four biological replicates with three technical replicates
and SE were reported.

NAE QUANTIFICATION
N -acylethanolamines were extracted from 100 to 250 mg of plant
tissue and ground by bead beater in warm 2-propanol. The
extract was combined with deuterated NAE standards (D4-NAE
16:0, Cayman Chemical Co.; 1 ppm each) and total lipids were
extracted into chloroform. The organic phase was collected for
further purification by solid phase extraction (SPE). Silica SPE
cartridges (100 mg, 1.5 mL; Grace Davison Discovery Sciences)
were conditioned with 2 mL methanol followed by 4 mL chloro-
form. Samples were applied to the column, washed with 2 mL
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chloroform, and NAEs were eluted with 2 mL of 1:1 (v/v) ethyl
acetate:acetone. The eluate was collected, evaporated under nitro-
gen, and derivatized with 50 μL BSTFA (Fisher Scientific, Houston,
TX, USA) for 30 min at 55˚C. After derivatization, the samples
were again evaporated under nitrogen and reconstituted in 50 μL
hexane. NAEs were identified via selective ion monitoring and
quantified against the internal deuterated standards (deuterated
NAE 16:0) as TMS-ether derivatives by gas chromatography/mass
spectrometry (Agilent model 6890 GC coupled with a 5973 mass
selective detector) as described previously (Venables et al., 2005).
NAE concentration was calculated based on fresh weight.

EVALUATING EXOGENOUS NAE 12:0 EFFECTS ON FLOWERING
Arabidopsis wild type seeds were germinated in soil and were main-
tained in a growth chamber at 22˚C with 16/8 h light/dark cycle
(60 μE m−2 s−1). Seven day-old seedlings (n = 15) were watered
with 50 mL of 35 μM NAE 12:0 or 0.05% DMSO solution alone
(solvent control) every 3 days until the plants were ready for dry-
ing. Time of flowering was recorded and inflorescence height was
measured every 4 days. The number of rosette leaves was counted
every 4 days from the time of germination until 24 days. The data
presented are an average of three experiments with significance
tested by Student’s t -test.

RESULTS
OVEREXPRESSION OF ATFAAH INDUCES EARLY FLOWERING UNDER
NON-INDUCTIVE SHORT DAYS AND INDUCTIVE LONG DAYS
We evaluated the flowering time of three independent AtFAAH
overexpressing lines described in Wang et al. (2006). We found that
when grown under non-inductive SD conditions, AtFAAH over-
expressors flowered earlier than wild type (Col-0) and AtFAAH
knockouts (Figure 1A). Quantification of the timing of flowering
revealed that more than 50% of all AtFAAH overexpressing
lines flowered 28 days after planting with one line (AtFAA-
HOE11) showing more than 70% flowering. In contrast, less

than 20% of wild type and AtFAAH knockouts flowered at day
28 (Figure 1B). These results were typical of three independent
experiments with individual AtFAAH overexpressors flowering
on average up to 10 days earlier than wild type and AtFAAH
knockouts. Even under inductive LD conditions AtFAAH over-
expressor flowered earlier than wild type or AtFAAH knockouts.
At 16 days, more than 60% of all three AtFAAH overexpressors
had already flowered whereas wild type and AtFAAH knockouts
did not. At day 18, only 10% of wild type and AtFAAH knock-
outs flowered while 70–100% of AtFAAH overexpressors flowered
(Figure 1B).

We measured the number of rosette leaves and rosette diameter
of SD-grown plants, on day 21 and day 28 after planting, to deter-
mine if a more rapid growth was responsible for the early flowering
phenotype of the AtFAAH overexpressors. The total number of
rosette leaves and rosette diameter did not differ significantly
for wild type and AtFAAH overexpressors (Figures 2A,B). After
28 days of SD growth, >50% of AtFAAH overexpressors had flow-
ered and had 9–10 rosette leaves. Under LD-growth conditions, all
plants, regardless of genotype, had flowered, and had seven to nine
rosette leaves. Accelerated growth under LDs is expected because
of greater photosynthesis, but the similar number of leaves on
AtFAAH overexpressors and LD-grown plants indicates that the
plants flowered at nearly the same plastochron age (i.e., morpho-
logical age rather than chronological age) (Erickson and Michelini,
1957).

TRANSCRIPTIONAL PROFILING LINKS ELEVATED FLOWERING LOCUS
(FT) EXPRESSION TO EARLY FLOWERING OF ATFAAH
OVEREXPRESSORS
To better understand the molecular basis for the early flowering
phenotype of AtFAAH overexpressors, microarray analysis was
conducted to compare transcript profiles of wild type with
that of the AtFAAH overexpressors and AtFAAH knockouts

FIGURE 1 | Overexpression of AtFAAH induces early flowering of

Arabidopsis under short and long days. (A) Representative images
of 30-day-old wild type, SALK_095108 AtFAAH knockout and two
AtFAAH overexpressors (OE2 and OE7) grown during short day
conditions, 8/16 h (light/dark). Note that the two AtFAAH

overexpressors have already flowered (arrows). The percent of wild
type, AtFAAH knockout and AtFAAH overexpressors that had flowered
by day 28 under non-inductive SDs (B) and by day 16 and day 18 under
inductive LDs (C). The graph is representative of three experiments
with n > 10.
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FIGURE 2 |The number of rosette leaves and rosette diameter is not

affected by altered AtFAAH expression. Number of rosette leaves (A) and
rosette diameter (B) of wild type and three AtFAAH overexpressors under
SDs after 21 days, when no plants were flowering, and after 28 days, when

some wild type and most AtFAAH overexpressors were flowering. (C)

Number of rosette leaves under longs days 28 days after planting in wild type,
two AtFAAH knockouts (SALK_118043 and SALK_095108) and three AtFAAH
overexpressors (OE2, 7, and 11); all plants were flowering.

(SALK_095108). Consistent with the fact that AtFAAH knockouts
did not have any obvious phenotype (Wang et al., 2006; Figures 1
and 2), a less dramatic difference in the overall gene expression
profiles were observed between wild type and AtFAAH knockouts
as indicated by a heat map generated from ratios of transcript
levels from AtFAAH knockouts (SALK_095108) and wild type
(Figure 3A). In contrast, there were more distinct differences
in the overall transcript profiles when wild type was compared
to AtFAAH overexpressors (AtFAAHOE11; Figure 3A). With a
Bonferroni-corrected P-value threshold of 2.19202E-06, we found
157 genes to be differentially regulated by twofold or more in
AtFAAH overexpressors compared with wild type. Out of 157
genes, 50 were upregulated and 107 were downregulated in the
AtFAAH overexpressor line (Table S1 in Supplementary Mate-
rial). Only 28 genes were differentially expressed by twofold or
more between AtFAAH knockouts and wild type, of which 7
were upregulated and 21 were downregulated (Table S1 in Sup-
plementary Material). As expected, the AtFAAH gene itself was
downregulated in AtFAAH knockouts and upregulated in AtFAAH
overexpressors, which helped to validate our microarray results.
Seven genes were downregulated and one gene was upregulated
by twofold or more in both AtFAAH overexpressors and knock-
outs (Figure 3B). The seven genes downregulated by twofold or
more in both AtFAAH overexpressors and knockouts are presented
in Table S2 in Supplementary Material. Among the seven genes
downregulated in both AtFAAH overexpressors and knockouts,
only circadian clock associated (CCA1) has been clearly implicated
in flowering. CCA1 is a transcription factor involved in plant circa-
dian rhythms and overexpressing CCA1 causes delayed flowering
in Arabidopsis (Wang and Tobin, 1998). The downregulation of
CCA1 in AtFAAH overexpressors could disrupt circadian rhythms
important for flowering; however, its downregulation in AtFAAH

knockouts where no flowering phenotype was apparent is not
clear.

Transcriptional profiling did not show an overwhelming rep-
resentation of flowering-related genes that were different between
wild type and AtFAAH overexpressors. However, it was notewor-
thy that FLOWERING LOCUS T (FT ), which is a pivotal gene
in the transition from vegetative growth to flowering (Corbe-
sier et al., 2007; Giakountis and Coupland, 2008), was ele-
vated in AtFAAH overexpressors. Furthermore, the expression of
SEPTELLA3 (SEP3) gene, which encodes a MADs box transcrip-
tion factor that is regulated by FT in the photoperiodic flowering
pathway (Teper-Bamnolker and Samach, 2005), also was elevated
in AtFAAH overexpressors (Table 1; Table S1 in Supplementary
Material). To verify results from microarray experiments, we con-
ducted quantitative, real time RT-PCR of FT and SEP3 transcripts
using three independent AtFAAH overexpressing lines grown for
14 days in LD and SD conditions. Consistent with the microarray
results, both LD- and SD-grown AtFAAH overexpressing seedlings
showed elevated transcript levels of FT and SEP3. Under SD
conditions, FT and SEP3 in three AtFAAH overexpressors were
threefold higher relative to wild type (Figure 4A). A similar trend
was observed under LD conditions except for one AtFAAH over-
expressor (line OE7), which was only twofold elevated relative to
wild type (Figure 4B).

FT and SEP3 were the only upregulated genes in AtFAAH over-
expressors that had a known association with flowering (Table 1).
To determine whether other genes differentially regulated by
AtFAAH overexpression are related to flowering, we compared
AtFAAH overexpression transcript data (Table S1 in Supplemen-
tary Material) with data from global expression analysis of the
shoot apical meristem upon photoperiodic induction (i.e., trans-
fer to LDs; Schmid et al., 2003). This study uncovered a large
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FIGURE 3 | AtFAAH overexpression triggers a more dramatic change in

gene expression than AtFAAH knockouts. (A) Heat map of gene
expression in wild type, AtFAAH knockout (SALK_095108) and AtFAAH

overexpressor (OE11). (B) Venn diagrams showing the number of genes
differentially regulated in AtFAAH knockouts and AtFAAH overexpressors
relative to wild type.

number of floral repressors that were downregulated upon flo-
ral photoperiodic induction. Interestingly, four genes namely
At3g16460, At3g27200, At5g43270, and At3g20370, which were
downregulated in AtFAAH overexpressors (Table S1 in Supple-
mentary Material), were downregulated upon floral induction by
photoperiod and therefore suggested to be potential flowering
repressors (Schmid et al., 2003). One gene, namely At3g28500,
was upregulated in AtFAAH overexpressors (Table 1) and by

photoperiodic flower induction (Schmid et al., 2003). Inter-
estingly in silico analysis using the Genevestigator database1,2

(Zimmermann et al., 2004) and the Arabidopsis eFP Browser3

(Winter et al., 2007), indicated that At3g28500, which encodes

1http://www.plantphysiol.org/content/155/3/1237.full – ref-44
2https://www.genevestigator.ethz.ch/
3http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
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Table 1 | Genes induced twofold or more in AtFAAH overexpressors compared to wild type.

Locus ID Predicted function Ratio AtFAAH OE/WT

At3g28320 Protein of unknown function 17.18

At3g28310 Protein of unknown function 7.46

At1g20490 AMP-dependent synthetase and ligase family protein 6.12

At5g44420 Encodes an ethylene- and jasmonate-responsive plant defensin 4.50

At5g66970 P-loop containing nucleoside triphosphate hydrolases superfamily protein 4.14

At1g02300 Cysteine proteinases superfamily protein 4.03

At1g26380 FAD-binding Berberine family protein 3.74

At2g45220 Plant invertase/pectin methylesterase inhibitor superfamily 3.58

At1g13470 Protein of unknown function 3.53

At4g37990 Encodes an aromatic alcohol: NADP+ oxidoreductase 3.51

At5g64510 Unknown protein 3.49

At1g61800 Glucose-6-phosphate/phosphate transporter 2 3.49

At3g47090 Leucine-rich repeat protein kinase family protein 3.47

At1g15520 ABC transporter family involved in ABA transport and resistance to lead 3.30

At1g73260 Encodes a trypsin inhibitor involved in modulating programmed cell death in plant–pathogen interactions 3.20

At3g22600 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein 3.17

At1g26530 PIN domain-like family protein 3.11

At1g23850 Unknown protein 3.03

At1g09420 Encodes a protein similar to glucose-6-phosphate dehydrogenase 3.03

At5g64050 Glutamate-tRNA ligase. Targeted to mitochondria and chloroplast 3.02

At5g55570 Unknown protein 2.82

At5g45840 Leucine-rich repeat protein kinase family protein 2.82

At1g12080 Vacuolar calcium-binding protein-related 2.79

At1g23120 Polyketide cyclase/dehydrase and lipid transport superfamily protein 2.77

At1g08430 Encodes a Al-activated malate efflux transporter 2.76

At5g45040 Cytochrome c; functions in: electron carrier activity, iron ion binding, heme binding 2.75

At5g58575 Sgf11, transcriptional regulation 2.71

At5g45280 Pectin acetylesterase family protein; functions in: carboxylesterase activity 2.65

At4g11650 Osmotin-like protein 2.48

At1g10920 Encodes LOV1, a disease susceptibility gene 2.44

At1g71990 Lewis-type alpha 1,4-fucosyltransferase 2.42

At1g22550 Major facilitator superfamily protein 2.41

At1g17860 Kunitz family trypsin and protease inhibitor protein 2.40

At5g64440 AtFAAH (fatty acid amide hydrolase) modulates endogenous NAEs (N -acylethanolamines) levels in plants 2.40

At1g22440 Zinc-binding alcohol dehydrogenase family protein 2.38

At1g24260 Member of the MADs box transcription factor family. SEP3 is redundant with SEP1 and 2 2.33

At1g11080 Serine carboxypeptidase-like 31 (scpl31) 2.31

At3g60980 Tetratricopeptide repeat (TPR)-like superfamily protein 2.30

At3g46900 encodes a member of copper transporter family 2.29

At5g58120 Disease resistance protein (TIR–NBS–LRR class) family 2.28

At4g15210 cytosolic beta-amylase expressed in rosette leaves and inducible by sugar 2.26

At5g43580 Predicted to encode a PR (pathogenesis-related) peptide that belongs to the PR-6 proteinase inhibitor family 2.25

At1g01670 RING/U-box superfamily protein; functions in: ubiquitin-protein ligase activity 2.25

At5g01180 Encodes a dipeptide transporter expressed in pollen and ovules during early seed development 2.22

At2g24960 Unknown protein 2.19

At5g58310 Encodes a protein shown to have methyl IAA esterase activity in vitro 2.18

At5g45310 Unknown protein 2.18

At3g48920 Member of the R2R3 factor gene family 2.12

At3g28500 60S acidic ribosomal protein family 2.11

At3g43430 RING/U-box superfamily protein 2.09

At1g72030 Acyl-CoA N -acyltransferases (NAT) superfamily protein 2.08

At5g64640 Plant invertase/pectin methylesterase inhibitor superfamily 2.06

At1g65480 FT, together with LFY, promotes flowering 2.02
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FIGURE 4 | Relative expression profiles of FT, SEP3, and AtFAAH in

three AtFAAH overexpressors and two AtFAAH knockouts

(SALK_118043 and SALK_095108) determined by quantitative RT-PCR.

Fourteen day-old plants grown under short days (A) and long days (B).
Values plotted were normalized to 18S rRNA and are the mean of four
biological replicates ± SE.

a 60S acidic ribosomal protein, was preferentially expressed in
all stages of flower development as well as the inflorescence
shoot apex (Figure A1 in Appendix). Hence there may be
additional clues yet to mine related to the molecular regula-
tion of floral transition in the microarray data from AtFAAH
overexpressors.

FIGURE 5 | Comparison of endogenous NAE profiles in 14-day-old wild

type and AtFAAH overexpressors. NAEs were quantified by
isotope-dilution mass spectrometry and summed for total NAE content (A)

and total NAE 12:0 and NAE 18:2 (B). Values represent the mean ± SE of
three individual extractions from 14-day-old seedlings grown under short
days. Mean ± SE with different letters are significantly different (p < 0.005;
Tukey’s test).

ENDOGENOUS NAE LEVELS ARE LOWER IN AtFAAH OVEREXPRESSORS
To determine if increased NAE hydrolytic activity could explain the
early flowering phenotype in AtFAAH overexpressors, we quan-
tified endogenous NAE levels of 14-day-old wild type and three
AtFAAH overexpressor lines grown under SDs. Consistent with
the overexpression of FAAH, total endogenous NAE content in
the three AtFAAH overexpressors was less than that of wild type
(Figure 5A). We then examined the levels of the different NAE
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Table 2 | N -acylethanolamines profiles of 14-day-old Arabidopsis seedlings grown under short days.

Background (ng/g fr. weight) Wild type AtFAAHOE2 AtFAAHOE7 AtFAAHOE11

NAE 12:0 56.1 ± 6.6 35.4 ± 3.7 38.7 ± 6.6 42.8 ± 6.7

NAE 14:0 18.6 ± 4.6 22.5 ± 3.9 22.8 ± 4.0 18.3 ± 3.8

NAE 16:0 20.3 ± 6.7 18.6 ± 4.0 21.6 ± 4.8 19.1 ± 4.0

NAE 18:0 20.2 ± 3.7 25.0 ± 5.5 23.1 ± 4.9 24.1 ± 5.5

NAE 18:1 19.0 ± 1.8 26.3 ± 3.6 24.2 ± 3.7 23.8 ± 5.8

NAE 18:2 32.5 ± 4.0 25.3 ± 6.9 22.0 ± 5.1 22.8 ± 5.2

NAE 18:3 15.8 ± 2.3 13.8 ± 2.3 13.3 ± 2.6 12.6 ± 1.8

Values are means ± SE of three biological replicates.

species to determine which NAE type contributed most to the
decline in total NAE levels in AtFAAH overexpressors. We found
that the levels of NAE 14:0, NAE 16:0, NAE 18:0, NAE 18:1, and
NAE 18:3 were similar between wild type and the three AtFAAH
overexpressors (Table 2). On the other hand, endogenous NAE
12:0 and NAE 18:2 were significantly less (up to a 30% reduc-
tion) in AtFAAH overexpressors compared to wild type (Table 2;
Figure 5B), suggesting that these two NAE types may play a role
as lipid mediators in the regulation of flowering time.

EXOGENOUS NAE 12:0 DELAYS THE ONSET OF FLOWERING IN WILD
TYPE ARABIDOPSIS PLANTS
Given that NAE 12:0 is about 30% reduced in AtFAAH overexpres-
sors, we asked if exogenous application of NAE 12:0 delays flower-
ing time in wild type Arabidopsis plants. Seven days after planting
directly onto soil, 50 mL of 35 μM NAE 12:0 was applied directly
to the base of the plants every 3 days until senescence. We found
that at 24 days, rosette leaf number in NAE 12:0-treated wild type
plants were slightly less than solvent controls (Figure 6A). NAE-
treated plants showed a delay in flowering by at least 6 days and this
occurred whether the treatment began at day 7 or on day 20 (few
days prior to flowering under these conditions). We also quantified
inflorescence stem height when NAE 12:0 was applied beginning
at 7 days or beginning at 20 days. We found that plants treated
with exogenous NAE 12:0 regardless of the age of the plant, had
shorter inflorescence stems compared to plants treated with the
solvent control solution (Figures 6B,C). Hence, it appeared that
application of NAE to plants, either early or late, had two general
effects – one, a reduction in growth and two, a delay in flowering.
The similar impact on both flowering and inflorescence elongation
between early (7 day) and late (20 day) treatments suggests that
these impacts perhaps result from a signal transduction-mediated
transition event and not simply a delay in development.

We also treated 7-day-old seedlings with 50 μM NAE 12:0 and
examined the expression of FT and SEP3 by quantitative, real
time RT-PCR. Consistent with the delayed flowering time of NAE
12:0-treated plants and elevated expression of FT in AtFAAH
overexpressors, we found that exogenous NAE 12:0 reduced FT
expression by about threefold. SEP3 expression on the other hand
was reduced by only 1.3-fold (Figure A2 in Appendix).

DISCUSSION
Although early flowering in AtFAAH overexpressors was noted
previously (Wang et al., 2006), it was unclear how the development

of this phenotype is triggered. In this paper, we showed that early
flowering of AtFAAH overexpressors was associated with increased
expression of the key flowering integrator gene FT, under both
inductive LD and non-inductive SDs. These results are not entirely
surprising, given that FT is well established to be a potent promoter
of the transition to flowering by coordinating the expression of
a complex network of genes within the shoot apex (for review
see Giakountis and Coupland, 2008). Some of the genes in the
FT pathway act as repressors of FT transcription during non-
inductive SDs (Gómez-Mena et al., 2001; Piñeiro et al., 2003;
Takada and Goto, 2003) or are transcriptionally activated by FT
during inductive LDs (Ruiz-Garcia et al., 1997; Teper-Bamnolker
and Samach, 2005). However, despite the elevated expression of
FT, many of the genes that have been associated with FT function
did not change dramatically in AtFAAH overexpressors (Table S1
in Supplementary Material). Only the floral organ identity gene,
SEP3, was elevated in AtFAAH overexpressors by twofold or more,
which is consistent with a previous report showing that FT reg-
ulates SEP3 accumulation (Teper-Bamnolker and Samach, 2005).
These observations suggest that FT might have other downstream
target genes that promote flowering or unknown repressors that
regulate FT transcription in the AtFAAH overexpression back-
ground. One possible target of FT is the 60S acidic ribosomal
protein encoded by the At3g28500 gene, which was upregulated
twofold in our microarrays (Table 1) and also reported to be
induced in LDs in an FT-dependent manner (Schmid et al., 2003).
Moreover, the At3g28500 gene was upregulated fourfold when
HEME ACTIVATOR PROTEIN 3b (HAP3b), which encodes a
CCAAT-binding transcription factor, is overexpressed and down-
regulated more than twofold in hap3b mutants. HAP3b overex-
pressors display early flowering whereas hap3b mutants are late
flowering under LDs (Cai et al., 2007) suggesting that At3g28500
is an important component of flowering under LDs. Although the
significance of overexpressing a 60S acidic ribosomal protein gene
for promoting flowering is unknown, it is tempting to speculate
that the translation of select mRNA in the cell particularly those
involved in flowering might be affected, and thus partly explain
early flowering in AtFAAH overexpressors.

It should be noted that the early flowering phenotype exhibited
by AtFAAH overexpressors is not typical of other early flowering
plants in Arabidopsis. For example, early flowering in FT over-
expressors under SDs is typically accompanied by smaller rosette
leaves and a reduced number of rosette leaves (Kardailsky et al.,
1999; Kobayashi et al., 1999; Abe et al., 2005). A reduced number
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FIGURE 6 | Exogenous NAE 12:0 application delays flowering time in wild

type plants. (A) Number of leaves of in 24-day-old plants treated with solvent
control solution of 35 μM NAE 12:0 at 7 or 20 days after planting. (B)

Representative images of wild type Arabidopsis plants exposed continuously
to NAE 12:0 beginning at 7 or 20 days after planting. Note the shorter

inflorescence stems of NAE 12:0-treated plants. (C) Quantification of the
length of the inflorescence stem after the initiation of flowering. Note that
flowering in NAE 12:0-treated plants was delayed by about 6 days regardless of
whether the plant was treated at 7 or 20 days after planting. Asterisks indicate
statistically significant difference according to Student’s t -test (p < 0.01).

of rosette leaves is also a characteristic found in several flowering
mutants that enhance the expression of FT (Piñeiro et al., 2003;
Yoo et al., 2005; Cai et al., 2007; Seo et al., 2011), and reflects
the shorter period of vegetative growth. The number of leaves of
AtFAAH overexpressors and wild type at 21 and 28 days, under
SD conditions, were the same, indicating that vegetative devel-
opment was not accelerated. However, by 28 days most AtFAAH
overexpressors had transitioned to flowering with 9–10 rosette
leaves, while most wild type plants were vegetative and still pro-
ducing leaves. AtFAAH overexpressors therefore behaved more like

plants grown under LD conditions, which, irrespective of geno-
type, produced seven to nine leaves before flowering (Figure 2).
These data indicate that the early flowering in AtFAAH overex-
pressors is independent of the rate of rosette leaf production and
is not a product of enhanced growth, but results from uncou-
pling flowering from photoperiod, presumably via FT activation.
In addition to FT, overexpression of other genes in the flowering
pathway uncouple flowering from photoperiod including CON-
STANS (CO), a transcription factor that activates FT (Takada and
Goto, 2003), and the downstream meristem identity genes LEAFY
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(LFY ; Schultz and Haughn, 1991) and APETALA1 (AP1; Mandel
et al., 1992). If AtFAAH overexpression bypasses photoperiodic
induction by elevating FT directly, elevated LFY, and AP1 would
be expected. However, these genes did not change significantly in
microarray studies of AtFAAH overexpressors.

Recent work in tomato (Shalit et al., 2009) and maize
(Danilevskaya et al., 2010), define FT and its orthologs as general
determinacy factors that function to limit vegetative growth – with
smaller leaves and the transition to reproductive growth being
only two manifestations of the broader impacts. However, the
reduced leaf size that commonly accompanies FT overexpression
was not observed in AtFAAH overexpressors. It is possible that
elevated AtFAAH, which previously was shown to enhanced veg-
etative growth in Arabidopsis (Wang et al., 2006), can overcome
the negative effects of FT overexpression on leaf development by
reducing endogenous levels of NAE (Figure 5). Consistent with
this notion is the finding that exogenous application of NAE 12:0
to wild type plants,which was more than 30% less in AtFAAH over-
expressors than wild type, delayed flowering in wild type plants
(Figure 6).

A global expression study of Arabidopsis shoot apices uncovered
a large number of potential floral repressors that were downreg-
ulated upon photoperiodic induction compared to upregulated
genes (Schmid et al., 2003). A similar trend was observed in
AtFAAH overexpressors in that there were more genes downregu-
lated than upregulated (Figure 3; Table 1). Interestingly, four of the
potential floral repressors identified by Schmid et al. (2003) were
also downregulated in AtFAAH overexpressors including genes
encoding mannose-binding lectin superfamily protein (At3g16460),
cupredoxin superfamily protein (At3g27200), squamosa-promoter
binding protein-like (SPL; At5g43270), and TRAF-like family pro-
tein (At3g20370). Although members of the SPL gene family are
known to regulate floral transition through microRNAs (miR-
NAs) and FT activation (Wang et al., 2009), the significance of the
downregulation of the aforementioned four genes for the early
flowering phenotype of AtFAAH overexpressors is not clear. Acti-
vation of FT expression also is well known to be regulated by the
B-box zinc finger transcription factor CO, particularly under LD
conditions (An et al., 2004; Ayre and Turgeon, 2004). Expression of
CO was not significantly changed in AtFAAH overexpressors but a
gene homologous to CO (At3g02380) was twofold downregulated
(Table S1 in Supplementary Material). Because it is the timing of
CO expression and CO protein stability that is crucial for pho-
toperiodic flower induction (Imaizumi, 2010), we cannot rule out
the possibility that microarray analysis of AtFAAH overexpressors
was not able to detect significant changes in CO expression given
that RNA from only one time point was collected. Alternatively,
there are reports that induction of FT expression and flowering
could be facilitated by CO-independent pathways. For example,
the miRNA172 pathway was shown to induce FT expression and
flowering in Arabidopsis despite the absence of functional CO
(Jung et al., 2007). The depletion of endogenous NAEs by AtFAAH
overexpression could bypass the requirement for CO to trigger
FT expression through yet to be characterized CO-independent
pathways.

N -lauroylethanolamine (NAE 12:0) elicits a number of
growth inhibitory effects when applied to Arabidopsis seedlings

(Blancaflor et al., 2003; Motes et al., 2005). This NAE type is com-
paratively low in concentration in desiccated seeds, but is among
the most prevalent NAE type in seedling and leaf tissues (Wang
et al., 2006; Figure 5). Seed germination and post-germinative
growth is characterized by the targeted depletion of the predom-
inant polyunsaturated NAEs such that the NAE composition and
content of vegetative tissues differs substantially from that of seeds
(Kim et al., 2010). While there is much to be learned about the
relationship of individual NAE species with physiological func-
tion in plants, this manuscript provides new information about
NAE 12:0, namely the delay in flowering time in Arabidopsis.
Plants watered with NAE 12:0-containing solutions (35 μM) were
delayed in flowering (Figure 6). This delay was observed whether
the exogenous application of NAE 12:0 began at 7 or 20 days after
sowing indicating that the timing (prior to flowering) but not the
length of exposure to NAE 12:0 was required to delay their tran-
sition to flowering. Perhaps more significantly, the endogenous
level of NAE 12:0 was the NAE type that was most altered in the
AtFAAH overexpressing lines, suggesting that the specific metab-
olism of NAE 12:0 by AtFAAH is related to flowering transition
time. Response to application of NAE 12:0 solutions to the soil
implies that NAE 12:0 is likely taken up through the roots and
translocated to the shoots to where it exerts its effect. It is tempt-
ing to speculate that FT may be a direct target of NAE 12:0, since
FT has homology to known phosphatidylethanolamine binding
proteins (PEBP). To our knowledge there have been no studies
to examine the interaction of acylethanolamines with FT or FT-
related proteins. In fact the annotation of FT as a member of the
PEBP family comes from sequence homology rather than from
functional binding data. Certainly future experiments to probe
the role of NAE signaling in flowering time via FT should include
assays of direct interaction between FT and NAE 12:0 and other
ethanolamine-containing lipids. Whether the action of NAE 12:0
on FT is direct or indirect, the data presented here provide the
first indication that NAE metabolism may play a role in the sig-
nal transduction events that lead to FT-mediated transition from
vegetative to reproductive growth in Arabidopsis. It remains to be
tested whether or not the NAE pathway represents a bypass of
other floral transition mechanisms such as CO.
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APPENDIX

FIGURE A1 | At3g28500 is strongly expressed in flowers and inflorescence meristem (arrows). In silico expression profiling of At3g28500 based on
publicly available microarray data sets from Genevestigator [(A), Zimmermann et al., 2004] and Arabidopsis eFP browser [(B), Winter et al., 2007].

FIGURE A2 | Relative expression of FT and SEP3 of 7-day-old

Arabidopsis seedlings treated with 50 μM NAE 12:0 for 24 h as

determined by quantitative RT-PCR.
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