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Grafting has been used in agriculture for over 2000 years. Disease resistance and environ-
mental tolerance are highly beneficial traits that can be provided through use of grafting,
although the mechanisms, in particular for resistance, have frequently been unknown. As
information emerges that describes plant disease resistance mechanisms, the proteins,
and nucleic acids that play a critical role in disease management can be expressed in
genetically engineered (GE) plant lines. Utilizing transgrafting, the combination of a GE
rootstock with a wild-type (WT) scion, or the reverse, has the potential to provide pest
and pathogen resistance, impart biotic and abiotic stress tolerance, or increase plant vigor
and productivity. Of central importance to these potential benefits is the question of to
what extent nucleic acids and proteins are transmitted across a graft junction and whether
the movement of these molecules will affect the efficacy of the transgrafting approach.
Using a variety of specific examples, this review will report on the movement of organellar
DNA, RNAs, and proteins across graft unions. Attention will be specifically drawn to the
use of small RNAs and gene silencing within transgrafted plants, with a particular focus
on pathogen resistance. The use of GE rootstocks or scions has the potential to extend
the horticultural utility of grafting by combining this ancient technique with the molecular
strategies of the modern era.
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INTRODUCTION
In agriculture today, the ancient technique of plant grafting is
an indispensable tool that offers an opportunity for combining
beneficial root and shoot characteristics for the production of
high-value horticultural crops. Under natural conditions, plants
can undergo inosculation, the union between plant parts growing
in close proximity whose cambial surfaces are breached through
abrasion allowing separate vasculature systems to merge. For
example, California black oaks are known to share root systems
through natural root grafts and fortuitous contacts between straw-
berry or potato plants can result in stem grafts. Given that “natural
grafting” occurs without human intervention, it is likely the art
of grafting arose through discovery rather than by innovation,
although it is unclear when or where grafting originated (Mudge
et al., 2009). Chinese writings mention grafting of peach varieties
as early as 1560 bc, and grafting was knowledgeably discussed by
Aristotle, Theophrastus, Cato, and Varro from the fourth to first
centuries bc (Roberts, 1949).

Grafting provides a number of critical horticultural benefits.
Grafting two woody species, each with desirable traits, was instru-
mental in the domestication of a variety of tree species (e.g., apples,
pears, and plums) that, otherwise, were recalcitrant to asexual
propagation techniques (Mudge et al., 2009). In perennial species,
grafting is used for clonal propagation and production of special-
ized ornamental trees. Grafting provides the means to repair or

bypass damaged trunks, hasten development of fruiting varieties,
or accentuate useful vigor or dwarfing characteristics. Rootstocks
also provide resistance to pests and pathogens, including insects
and soil-borne diseases, and tolerance of abiotic stress conditions,
such as thermal shock, low root temperature, boron toxicity, and
salinity (Bulder et al., 1991a,b; Ahn et al., 1999; Rivero et al., 2003;
Edelstein et al., 2005, 2007; Dolgov and Hanke, 2006; Venema et al.,
2008). Currently, almost every commercial fruit or nut tree pro-
duction system uses grafting to increase yields or avoid disease
(Kubota et al., 2008).

In many parts of the world, grafting is used in vegetable
production (Edelstein et al., 1999; Romano and Paratore, 2001;
Fernandez-Garcia et al., 2004; Khah et al., 2006; Balliu et al., 2008;
Davis et al., 2008; King et al., 2008; Kubota et al., 2008; Misovic
et al., 2009; Di Gioia et al., 2010). Grafting is used widely with
Solanaceae and Cucurbitaceae crops to reduce infections by soil-
borne pathogens and to enhance the tolerance of abiotic stresses
(Colla et al., 2010; Justus and Kubota, 2010; Lee et al., 2010;
Rouphael et al., 2010; Savvas et al., 2010; Schwarz et al., 2010).
In the Middle East, grafted vegetable rootstocks are used in order
to utilize poorer soils, and in Japan, almost 95% of the water-
melons, oriental melons, eggplants, cucumbers, and tomatoes are
grafted before transplantation to fields or greenhouses (Lee, 1994).
Grafting vegetable and fruit plants became increasingly important
for disease control in Europe and Israel after the soil fumigant
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methyl bromide was banned under the Montreal Protocol in 2005
(Cohen et al., 2007; Davis et al., 2008). In Israel, approximately
20% of the cultivated tomato plants are grafted. Grafting scions
to vigorous, disease-resistant rootstocks is an alternative to chem-
ical control methods, a particularly appealing feature for organic
cultivation of crops. An economic advantage of grafting is that a
few rootstock lines may be utilized with multiple scion varieties,
although the success of particular rootstock:scion combinations
may be variable.

For farmers who grow heirloom tomato varieties organically,
grafting is an emerging option, since, while tasteful and attrac-
tive, these varieties often lack many of the disease resistance and
vigor traits of conventionally produced varieties. The use of grafted
tomatoes in the US has grown (Kubota, 2008; Kubota et al., 2008)
as the demand for elite and heirloom varieties from small organic
farms has increased. In North America,>95% of the grafted toma-
toes are for greenhouse and high tunnel production, reflecting the
markets for high-value fresh tomatoes. While the cost per grafted
tomato seedling in the US is 1.5–2 times greater than for con-
ventional seedlings, the possibility of introducing advantageous
horticultural traits without compromising fruit characteristics
offers significant value. Currently, most propagators supplying
grafted seedlings to the North American market are in Canada
and Mexico, although there are some specialty market suppliers in
Ohio and North Carolina. At least 40 million tomato plants now
are grafted in North America, with the US being the largest user
(Kubota et al., 2008).

While conventional breeding has developed disease-resistant
rootstock genotypes for grafting, the additional approach of trans-
grafting resistant genetically engineered (GE) rootstocks with WT
scions provides a potentially valuable merger of ancient and mod-
ern technologies. In this paper, we discuss how transgrafting can
increase the options to provide agricultural solutions. Our specific
“mechanistic” focus is on the mobilization across graft junctions
of transgenes and the products they encode.

TRANSGRAFTING
Transgrafting (the use of a GE rootstock with a WT-scion, or the
use of a WT rootstock with a GE scion) has the potential to expand
the traits provided by grafting since the benefits derived from
transgenes can be harnessed. A transgrafted plant, with a WT
scion, may allow agricultural industries to benefit from a trans-
genic trait expressed in a rootstock while addressing consumer
concerns about food derived from GE-crops, because the scion
would not have been GE (Haroldsen et al., 2012). Transgrafting
also offers advantages for the environment, since under proper
orchard maintenance, pollen flow concerns would be minimized
because the non-engineered scion would be the only source of
pollen (Lev-Yadun and Sederoff, 2001; COGEM, 2006). In addi-
tion, deregulation of one or a small number of rootstocks that
could be used with multiple scion cultivars or varieties would be
preferable over engineering each scion genotype, especially given
that the cost to deregulate each GE line is $6–15 million in the US
(Kalaitzandonakes et al., 2007). A deregulated rootstock could be
utilized with different scion cultivars and, in some cases, multiple
genera. Accomplishing these benefits while maintaining a scion
that is free of transgenic DNA could facilitate the entry of GE

specialty crops into commercial production since deregulation of
each scion cultivar would likely not be necessary, lowering the
burden placed on specialty crop producers. We focus this review
primarily on the benefits that can be provided by a GE rootstock;
it is also possible that transgrafting can provide benefits to root
crops, such as potato or cassava, if non-GE rootstocks are grafted
with GE scions.

One consideration for the use of transgrafted plants is the
identification of transgene product(s) that have the potential to
move between rootstocks and scions. Systemic acquired resistance
(SAR), mediated by salicylic acid, in grafts made with plants that
are challenged with a pathogen demonstrate that molecules or
signals can move within plants and subsequently provide resis-
tance in anticipation of pathogen contact (Gaffney et al., 1993;
Conrath, 2011). With GE rootstocks, the potential movement of
DNA and RNA genetic or epigenetic factors and translocation of
proteins can be evaluated because of their identifiable and unique
characteristics. While grafted scions and rootstocks are generally
assumed to conserve their own genetic identity, it is becoming evi-
dent that certain transcription factors, mRNAs, regulatory micro
RNAs (miRNAs), small interfering RNAs (siRNAs), peptides, and
proteins are mobile in the plant vascular system and thus, may
cross the graft union. Potentially, delivery of any of these prod-
ucts from a GE rootstock can be advantageous for the scion, as is
the case with SAR, where the plant experiences enhancement of
pathogen and pest resistance (Gaffney et al., 1993).

MOBILITY OF GENETIC COMPONENTS
Historically, nucleic acids were believed to be cell-autonomous
(i.e., contained in the cell of origin), unable to move beyond the
point of synthesis. However, this paradigm has evolved as sensi-
tive analytical methods have become available and been used to
demonstrate that nucleic acids are present and functional outside
of the cells where they are synthesized. Proteins are also known
to cross cellular barriers and exert developmental control beyond
their site of synthesis. The possibility that these molecules can
move shaping the way we think about transgenic rootstocks and
their potential applications.

DNA
While there is no current evidence that would support the move-
ment of genomic DNA through the vascular system of a grafted
plant (apart from DNA-based plant viruses), movement of plas-
tid DNA across cellular barriers immediately adjacent to the graft
junction has been demonstrated (Stegemann and Bock, 2009).
In this study, two cultivars of tobacco were each transformed
with antibiotic-resistance selectable and visual markers. One cul-
tivar was transformed with a kanamycin resistance gene and the
nuclear-encoded yellow fluorescent protein (YFP) and another
cultivar was transformed with a spectinomycin resistance gene
and a plastid-encoded green fluorescent protein (GFP) marker.
Explants taken from tissue immediately adjacent to the graft junc-
tion were able to grow on selective media for both constructs
and fluorescence from nuclei and plastids was detected. This out-
come was not due to cellular fusion but rather to the exchange
of large sections of plastid (but not nuclear) DNA. However, the
study did not exclude the possibility that entire organelles were
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transferred. While this effect was restricted to a few cell layers
near the graft junction, it, nevertheless, challenges the idea that
the rootstock and scion strictly maintain their individual genetic
identities. It has been suggested that exchange of genetic material
might occur during graft healing as cell walls and vascular systems
are being remodeled. The formation of new plasmodesmata could
allow the rootstock and scion cells to become symplastic and, per-
haps, exchange organelles (i.e., chloroplasts in this example); this
would thus accomplish transfer of organellar genes. It is important
to emphasize that the resulting chimera was not due to cellular
fusion, because through single nucleotide polymorphism (SNP)
genotyping and partial sequencing, scion cells were shown to have
incorporated only a large piece of the rootstock plastid DNA.

While it is extremely unlikely that genomic or organellar
DNA would be mobile over long-distances, as suggested by some
researchers (Ohta, 1991), it is possible that heritable changes
induced by epigenetic modifications of genomic DNA may occur
as a result of movement. Heritable changes can result from RNA-
mediated silencing mechanisms; siRNA can induce epigenetic
effects such as sequence-specific DNA methylation (Jones et al.,
2001). Our more recent understanding of heritable epigenetic
influences might explain earlier claims of graft hybridization that
alleged phenotypic changes in grafted pepper progeny due to
mobility of DNA through the graft junction and into the seeds
(Taller et al., 1998; Liu et al., 2010). Although grafting applica-
tions that take advantage of epigenetic modifications have not
been developed, epigenetic changes present an opportunity to
endow progeny with characteristics that result from transcrip-
tional down-regulation or gene silencing without introduction of
heritable transgenic DNA. Furthermore, based on previous epi-
genesis experiments (Jones et al., 2001), subsequent generations
could revert back to non-silenced phenotypes, thereby limiting
the duration of the original modification to the plant of inter-
est, while providing a potential containment against the spread of
transcriptionally modified progeny.

mRNA
Evidence of a highly regulated and selective process involving long-
distance trafficking of mRNA has been demonstrated. Observa-
tions have been made of differential localization and accumulation
of transcripts in sink tissues, presence of mRNA-binding proteins
in phloem sap,and sequence-specific motifs of mobile mRNAs that
interact with transcript-binding proteins. Messenger RNAs encod-
ing transcriptional regulators and cell fate/cycle-related, hormone
response, and metabolic genes have been identified in pumpkin
and tomato sieve tube elements (SE) (Ruiz-Medrano et al., 1999;
Kim et al., 2001; Haywood et al., 2005).

For example, the transcripts of pumpkin CmNACP, a mem-
ber of the family of NAC transcription factors that are involved
in apical meristem development and leaf senescence, have been
identified in scion tissues from pumpkin rootstock–cucumber
scion (i.e., heterografted) plants. This observation supports the
idea of long-distance transport and accumulation of CmNACP
RNA in vegetative, floral, and root meristematic tissues. Data
for this experiment were gathered using in situ RT-PCR and
confirmed by in situ hybridization studies. Further experiments
with seven other phloem sap-localized transcripts gave similar

results, demonstrating the existence of delivery systems of spe-
cific transcripts to shoot and root apices (Ruiz-Medrano et al.,
1999).

In another pumpkin rootstock/cucumber scion heterograft
experiment, a phloem-mobile pumpkin RNA, CmPP16, was found
in stems, leaves, and floral tissues of the scion. It was determined
that the translated protein product CmPP16 bound sense and anti-
sense CmPP16 transcripts and, thus, mediated the transport of its
own mRNA into the phloem translocation stream (Xoconostle-
Cazares et al., 1999). Due to this self-mobility characteristic, the
protein was termed a “plant paralog to viral movement protein.”

In a grafted tomato example, a line carrying the dominant
mutation, Mouse ears (Me), which causes rounded and unlobed
leaflets, was used as the rootstock and grafted to a semi-dominant
Xanthophyllic (Xa) mutant scion with yellow, lobed leaves. Eleven
of 13 grafted plants demonstrated the Me phenotype in the scion.
Interestingly, the Me gene is a fusion of two separate genes, PFP
and LeT-6, that produces two transcript splice variants, but only
the longer transcript is in-frame with the Let-6 homeodomain
and only this transcript was detectable in the scion. Fluorescent
in situ RT-PCR confirmed accumulation of the longer Me tran-
script that had been detected in scion phloem sieve tubes and
associated companion cells (CC) by Northern blots and confocal
imaging. It was concluded that the Me phenotype of the scion
was caused by movement of the Me transcript from the rootstock.
The authors suggested that patterns of transcript accumulation
observed by in situ experiments may not be entirely due to pro-
moters expressing locally, but also may be attributed to transport
of transcripts (Kim et al., 2001). In a follow up experiment, the
Me tomato genotype was used as a heterografted rootstock with
potato as the scion. Again, leaf morphological changes in the scion
were observed and DNA gel blot analysis of the RT-PCR products
demonstrated translocation of the Me transcript across the graft
junction (Kudo and Harada, 2007).

Two mutant transcripts from the GRAS gene family, CmGAIP
and GAI, were used to examine processes underlying mRNA
mobility in pumpkin and Arabidopsis. In pumpkin these genes
influence responses to gibberellin hormones. The pumpkin
CmGAIP transcript, with a deleted DELLA domain, and the
equivalent Arabidopsis mutant gai, with a non-functional DELLA
domain, were analyzed because the DELLA domain mutations
offer an easily trackable semi-dominant, dark-leafed, dwarf phe-
notype. The CmGAIP transcripts were found in stem, leaf, and
floral tissues of heterografted plants with pumpkin rootstocks,par-
ticularly in the stem CC and SE. Long-distance trafficking of these
transcripts influenced development and leaf morphology in the
scion. While the CmGAIP transcripts could be found in floral tis-
sues, they were never detected in maturing fruit tissue; thus, it was
concluded that tissue sink strength did not necessarily affect local-
ization and delivery. To confirm specificity and selectivity and to
rule out promoter effects, enhanced GFP (eGFP) was transformed
into rootstocks under the companion cell-specific SUC2 pro-
moter. Although fluorescent signal from the eGFP protein could
be detected in grafted scions, the eGFP transcript was not detected,
suggesting that inherent properties of particular transcripts were
likely responsible for their mobility or lack of mobility. That is,
CC were able to retain eGFP transcript, but allowed the eGFP
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protein product to enter the phloem and the CC did not retain the
CmGAIP transcripts. The observations suggested a complex, reg-
ulated, and cell/tissue-specific process underlying mRNA phloem
mobility (Haywood et al., 2005). Furthermore, the 3′ untranslated
region (UTR) of the GAI transcript was shown to be necessary and
sufficient to target GFP RNA for long-distance movement (Hay-
wood et al., 2005). A mutated, movement-defective GAI transcript
could be partially rescued by restoring nucleotides involved in the
formation of predicted stem-loop structures. Thus, in addition to
the nucleic acid sequence, the macromolecular structure of the
mRNA may also contribute to its ability to be mobilized (Huang
and Yu, 2009).

Aside from studies of individual transcripts, large scale exper-
iments have identified families of mobile RNAs. Transcripts
within the extracellular apoplastic compartments would be can-
didate mobile RNAs, particularly in the vascular fluids. Out
of 1830 expressed sequence tags (ESTs) isolated from melon
phloem exudate and sequenced, 986 were shown to be unique
and many transcripts associated with biotic responses, stress
and defense responses, metal-ion binding, and signal transduc-
tion were detected. Only three of the 1830 ESTs were identified
as encoding Rubisco or chlorophyll-related proteins. Thus, the
authors of this experiment concluded that the results were not
due to contamination from surrounding cells. Heterografting with
cucumber rootstocks revealed that 43 of the 986 unique tran-
scripts were mobile and translocated through the vascular system
into the pumpkin scion, perhaps suggesting conservation among
these RNA trafficking motifs, at least within the Cucurbits (Omid
et al., 2007). Despite specific experimental examples, the general
mechanism behind RNA trafficking motifs is not well understood.
However, studies using non-protein-coding viroids offer evidence
that the tertiary structure of viroid RNA is a requirement for
mobility across cellular boundaries as well as through the phloem
(Zhong et al., 2007; Takeda et al., 2011).

In addition to the heterografting studies, there is evidence for
cross species mRNA mobility in the parasite–host interaction
between Cuscuta and tomato (Roney et al., 2007). RT-PCR and
microarray analyses showed the presence of over 400 tomato tran-
scripts in Cuscuta tissue. Earlier studies had shown that one of the
transcripts, LeGAI, was mobile in tomato phloem (Haywood et al.,
2005).

It is clear that RNA sequences specify their mobility. Both the
3′ and 5′ UTRs appear to contain cis-acting sequences termed
“zip codes” that provide competence for mRNA vascular trans-
port, transcript stability, and translational regulation (Bassell et al.,
1999; Jansen, 2001; Lucas et al., 2001; Banerjee et al., 2009). It is
known that mobile mRNAs can influence phenotypes (Kim et al.,
2001; Kudo and Harada, 2007) and, at least in one case, this was
demonstrated to be the direct result of translation of the mobile
mRNA (Schmelzer et al., 2005). The experimental evidence makes
it clear that mRNAs are present in the vascular stream and can be
transported with a high degree of specificity. There have been no
studies yet that demonstrate the non-regulated mobility or diffu-
sion of mRNA into the vasculature. Given the relative instability of
nascent mRNAs (Shyu et al., 2008) and the identification of protein
binding regions in mobile mRNAs (Gomez et al., 2005), it is gen-
erally believed that mRNA transport is mediated via a ribonuclear

protein complex (RNP) and movement of isolated single-stranded
RNA (ssRNA) transcripts has not been reported (Lucas et al., 2001;
Gomez et al., 2005; Lough and Lucas, 2006). Aside from providing
protection against endogenous ribonucleases, RNP proteins may
provide additional information for targeting functions. Utiliza-
tion of the mRNA transit mechanisms with specific anti-pathogen
transcripts may be a viable strategy for improving pathogen resis-
tance of scions, although no specific examples for this approach
have been described at present.

Future applications will likely involve the addition of “zip
codes” to target rootstock-generated transcripts to specific scion
tissues or organs. Under the control of temporal, developmental,
or inducible promoters in a rootstock, the effects of the transgene
in the scion would be evident while maintaining the shoot, as well
as its seed and pollen, free from transgenic DNA. In Arabidop-
sis, the mean and median half-lives of mRNAs are 5.9 and 3.8 h,
respectively, but this varies with mRNA function and sub-cellular
localization (Narsai et al., 2007). Given the relatively short half-
lives of RNA transcripts, it is possible that once fruit and other
products are harvested by removal from the plant, any transgenic
RNAs in the scion tissues would degrade because the conduits
from the sites of RNA synthesis, the source rootstocks, have been
severed. Much remains to be discovered in the field of nucleic acid
movement and associations before applications that can utilize
mobile, scion-targeted mRNAs are sufficiently defined to permit
their exploitation.

SMALL NON-CODING RNAs
Small double stranded RNAs [sRNAs, less than 200 nucleotides
(nt)] that participate in gene silencing can be divided into two
major groups: siRNA and miRNA. siRNAs are generated from
perfect double stranded RNAs produced by RNA-dependent RNA
polymerase and can be induced by viruses, genetic constructs,
or experimentally introduced. miRNAs are derived from non-
coding, imperfect stem-loop RNAs and transcribed from their
own promoters by RNA polymerase II. Both are processed by the
RNA-induced silencing complex, but while siRNAs have a strictly
silencing or quenching effect on gene expression, miRNAs are
able to regulate gene expression in a much more tunable manner
(Vazquez et al., 2010).

The silencing effect can be cell-autonomous or non-
autonomous, the latter indicating that silencing effects can be
exerted over long-distances from the site of synthesis. With
endogenous miRNAs, evidence indicates that most appear to be
cell-autonomous (Parizotto et al., 2004; Alvarez et al., 2006). There
are exceptions; for instance, the gradual spreading and accumula-
tion of miRNA166 in phloem tissue has been observed during
leaf development (Juarez et al., 2004). In addition, regulation
of transcription factors in roots and xylem patterning due to
crosstalk between miRNA166 and miRNA165 and transcription
factors has been observed (Carlsbecker et al., 2010). Additionally,
long-distance movement of miRNA399 is essential for inorganic
phosphate uptake in the roots of phosphate-stressed Arabidopsis,
rapeseed, and pumpkin (Lin et al., 2008; Pant et al., 2008).

Non-cell-autonomous gene silencing was first shown in
tobacco with the nitrate reductase gene (Palauqui and Vaucheret,
1995). Subsequent grafting experiments confirmed that, in
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addition to its non-cell-autonomous nature, the effect could
spread unidirectionally from the tobacco rootstock to tobacco
scions across a 30-cm WT-grafted “bridge” (Palauqui et al., 1997).
Similar results were later reported in grafted sunflower using a
GUS marker gene (Hewezi et al., 2005). In both tobacco and sun-
flower, the silencing effect was unidirectional, from rootstock to
scion. Three-week-old embryos (seeds) derived from self-fertilized
graft-silenced scions in sunflower did not show the silencing effect,
demonstrating that, at least in this case, the silencing signal was
not transmitted to the progeny through the graft. Both of these
examples used sense transgenes, therefore this type of silencing
effect commonly is referred to as co-suppression. Several other
groups working with similar systems have reported analogous
results (Voinnet et al., 1998; Sonoda and Nishiguchi, 2000; Crete
et al., 2001; Mallory et al., 2003; Tournier et al., 2006).

In contrast, antisense silencing was shown in tobacco to be not
graft-transmissible regardless of whether the signal originated in
the scion or rootstock (Crete et al., 2001). In tomato grafting exper-
iments with the ACC oxidase gene, antisense silencing of scion
ACC oxidase was not seen early after graft establishment, however
after several weeks a graft-transmissable silencing was observed
(Shaharuddin et al., 2006). This time lag may account for why
the earlier experiments concluded that there was no silencing in
grafted antisense lines. A high level of expression of the target
gene in the scion was necessary for the detection of silencing by
Northern hybridization, as a result of expression of the antisense
construct in the rootstock, a situation similar to the nitrate reduc-
tase experiments discussed earlier (Palauqui et al., 1997). Thus,
experimental time lines, the levels of target gene(s) expression,
and the model organisms used may be important determinants of
the efficacy of antisense silencing in grafted systems.

It has also been shown that even when target gene(s) are not
present in the recipient graft, transgenic siRNAs (in addition to
endogenous sRNAs) can accumulate from donor grafts (Molnar
et al., 2010). Arabidopsis containing a GFP inverted-repeat silenc-
ing construct as the donor was grafted with WT or GFP-expressing
scions as recipients. The sRNAs identified in scion tissues included
siRNAs generated as a result of the GFP construct and a substan-
tial population of endogenous sRNAs from the rootstock donor as
well. Size classes ranging from 21 to 25 nt were most abundant, and
the 24-nt class directed epigenetic modification of the GFP signal
in the scion. The massively parallel deep sequencing methods used
by this group showed that if a silencing target was not present in the
recipient (i.e., completely WT-scion without GFP), then siRNAs
generated from hairpin-GFP in the rootstock were still present in
the scion, albeit at levels several of orders of magnitude lower. This
could be why previous experiments using less sensitive detection
techniques, such as Northern blots, did not detect mobility of the
signal. A recent report has shown that beyond the 24-nt siRNAs
mentioned above, all size classes of siRNAs can trigger homolo-
gous sequence-specific methylation of targets at long-distances, at
least in Arabidopsis (Dunoyer et al., 2010).

What facilitates the movement of sRNAs? sRNAs (∼15 kDa)
and associated RNPs are small enough to be translocated based
on their size, since experiments have shown that a 27-kDa GFP is
able to diffuse into the vascular system (Imlau et al., 1999; Kim
et al., 2005). Results of experiments where movement proteins are

included indicate that spreading of the silencing signal is at least
partially dependent on the size of the plasmodesmatal apertures
(Kobayashi and Zambryski, 2007). Alternatively, movement of the
silencing signal might be selective, perhaps requiring protein–
protein, or protein–nucleic acid interactions in order to obviate
the apparent plasmodesmatal aperture size exclusion limit. This
view is supported by experiments involving mutants defective
or deficient in the ability to move signals (Dunoyer et al., 2005,
2007; Yelina et al., 2010). Regardless of uncertainties related to
the mechanism(s) of sRNA movement, the evidence demonstrates
that movement does indeed occur through the phloem component
of the vascular system and is mediated by plasmodesmata, at least
to some degree.

Many experiments have been performed regarding the mobil-
ity of RNAs, both large and small, but whether the same pathways
that are used for the movement of mRNA are used for miRNA
or siRNA movement has not been determined. The emerging
idea that sRNAs are involved in physiology, defense, and devel-
opment, both cell autonomously and for long-distance signaling,
is becoming more widely accepted (Buhtz et al., 2010). Given the
variability in mobility detected across several studies, it seems that
plasmodesmata-based transport of sRNAs is a regulated process.
However, the molecular mechanisms that mediate sRNA mobility
and whether they are cis or trans-acting are unknown.

Researchers have successfully employed strategies that utilize
the expression of siRNAs in order to protect the plant root
zone from pests and pathogens (Escobar et al., 2002; Klink and
Matthews, 2009). For example, in soybean, resistance strategies
that target soybean cyst nematode genes, including those asso-
ciated with stimulating root growth in infected plants, sperm
production, and female development have been tested (Huang
et al., 2006; Steeves et al., 2006; Klink et al., 2009). By grafting
these plants to WT scions, systemic protection may be achieved
in a manner similar to the virus resistance reported in tobacco
(Smirnov et al., 1997) and more recently in cassava (Manihot escu-
lenta) in experiments demonstrating control of the devastating
Cassava brown streak Uganda virus (Yadav et al., 2011). Aside from
pathogen resistance, down–regulation, and/or epigenetic modi-
fication of transcripts and genetic networks in the scion or the
rootstock also appear to be possible through the use of siRNAs
and could influence scion-specific characteristics, such as flower-
ing time, fruit production or quality, or root characteristics, such
as tuberization in potatoes (Martin et al., 2009).

PROTEIN
In addition to RNAs, proteins may be transported over long-
distances in a regulated fashion. Certain motifs, reminiscent of
nuclear localization signals, allow protein entry into CC and sub-
sequently into the phloem for long-distance movement. Despite
the evidence for selective and regulated processes for protein
long-distance translocation, there is also evidence that shows non-
specific “leakage” of supposedly cell-autonomous proteins into
sieve tubes and subsequently into sink tissues. Xylem vessels, which
mainly transport water and low molecular weight inorganic and
organic solutes, have been shown to contain proteins, although
at lower concentrations than in phloem sap (Aguero et al.,
2008; Buhtz et al., 2010). Proteins targeted to the apoplast may
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inadvertently enter xylem or phloem vasculature and subsequently
be transported to and unloaded in sink tissues.

Examples of movement of proteins include exogenous
viral movement proteins, endogenous transcription factors and
xylem/phloem proteins (P-proteins). Some of the first studies of
xylem protein transport involved viral movement proteins (Wolf
et al., 1989), but as knowledge has progressed, more researchers
have been able to demonstrate mobility of endogenous plant pro-
teins. For many years, proteins had been observed in the phloem,
but the idea of a coordinated, selective, and regulated process of
trafficking, influencing not only development, but plant responses
to environmental cues is a more recent idea that has gained support
(Kehr, 2009). Mobile proteins or non-cell-autonomous proteins
(NCAPs) may be encoded by as many as 20% of the genes in Ara-
bidopsis (Lee et al., 2006). A comprehensive analysis of phloem
sap proteins in pumpkin and cucumber using high resolution 2-D
gel electrophoresis and partial sequencing by mass spectrometry
identified several hundred proteins in the phloem, and the major-
ity of these proteins may have roles in stress and defense reactions
(Walz et al., 2004).

Models of the mechanics underlying protein mobility in the
vasculature include the structures associated with the vascular tis-
sue. Within the phloem, SE, which lack a nucleus, ribosomes, and
a vacuole, depend on neighboring CC for maintenance of their
metabolic tasks (Fisher et al., 1992). Because mature SE cells can-
not synthesize proteins, the likely origins of proteins in the phloem
are immature SE or CC. Structurally different from the plasmod-
esmata that connect mesophyll cells, specialized plasmodesmata
between CC and SE are branched with all of the branches on the
CC side funneling to a single opening on the SE membrane side.
The requirements for specificity of transport between CC and SE
are not completely known but accumulating evidence points to
the importance of these branched plasmodesmata. Reviews from
two research groups establish plasmodesmata as the “gatekeep-
ers” of macromolecular transport into the SE (Zambryski and
Crawford, 2000; Lough and Lucas, 2006). The specific mecha-
nisms governing the regulation of plasmodesmatal apertures are
still a mystery, but fluorescently labeled dextrans and GFP expres-
sion have been used to study plasmodesmatal size exclusion limits
and their function under differing conditions. Through grafting,
the vascular networks (phloem and xylem) of both rootstock and
scion become connected and what is mobile in the rootstock vas-
cular networks is likely to become mobile in the vascular networks
of the scion.

In a thorough heterografting experiment involving 11 inter-
specific and intergeneric Cucurbit graft combinations, several
structural P-proteins appeared in the recipient phloem exudate, as
shown by SDS-PAGE and Coomassie staining. The results effec-
tively demonstrated the direction of transmission was dependent
on the combination of heterograft used, with some graft partners
taking the role of donor or acceptor, and some able to perform
both roles (Golecki et al., 1998). This has clear implications for
choosing of graft partners for GE-modified rootstocks. Fluores-
cence microscopy of graft junctions has shown sieve tube bridges
connecting scion external bundle phloem to internal bundle root-
stock phloem when mobility was demonstrated. This observation
identified physical continuity within the phloem as a prerequisite

for mobility of proteins, but did not resolve the selective direction-
ality observed (Golecki et al., 1999). When two Cucurbit structural
P-proteins, PP1 and PP2 were examined in intergeneric grafts,
RT-PCR and Northern blots demonstrated that protein products
rather than mRNA transcripts were translocated across the graft
junctions.

In addition to structural proteins, RNA-binding proteins
appear to be abundant in the phloem translocation stream.
Phloem sap collected and analyzed from four different sources
(cucumber, lupine, castor bean, and yucca) all contained sRNAs
of 18–25 nt sizes with various abundance profiles for each species.
Fractionation of the phloem sap from pumpkin, cucumber, and
lupine also identified a small ∼27 kDa protein (PSPR1) that bound
strongly to 18–24 nt ssRNA. After cloning the pumpkin PSPR1
gene, microinjection studies demonstrated that PSPR1 specifically
shuttled a high percentage of the ssRNAs across cell boundaries. In
these studies, co-injection and subsequent movement of a 20-kDa
fluorescent dextran showed that plasmodesmatal aperture was at
least 20 kDa. Apparently, dilated plasmodesmata alone were not
sufficient to allow the movement of ssRNAs between cells, since use
of another protein shown to increase plasmodesmatal apertures
(KN1) was not sufficient to allow the movement of the ssRNAs
(Yoo et al., 2004). Given that the ssRNAs were approximately
8 kDa, their lack of movement when KN1 was provided suggested
a sequestration mechanism or a more complex ssRNA-binding
protein interaction than is currently presumed.

In an informative experiment, rice thioredoxin (RPP13-1) a
major phloem sieve tube protein with basic antioxidant func-
tions, was expressed in E. coli and fluorescently labeled with
FITC (Ishiwatari et al., 1995). In tobacco, the labeled, heterol-
ogously expressed RPP13-1 protein was observed to migrate
beyond the site of injection. However, the similarly purified and
labeled E. coli homolog of RPP13-1 was not phloem-mobile under
duplicate conditions, suggesting significant sequence or struc-
ture requirements for movement. Co-injection of rice RPP13-1
and FITC-labeled dextrans established that RPP13-1 increased the
plasmodesmatal size exclusion limit to 9–20 kDa, from ∼1 kDa.
Furthermore, two mutants of RPP13-1 that were deficient for
mobility were identified and crystal structure prediction studies
suggested that charged clusters of residues on the outer surface
were responsible for binding and/or transport of RPP13-1 through
the companion cell-plasmodesmata complex (Ishiwatari et al.,
1998).

Aoki et al. (2002) demonstrated the importance of protein
structure for mobility using two heat shock proteins (HSPs),
CmHsc70-1 and CmHsc70-2, that had been isolated from pump-
kin phloem sap. In microinjection experiments, CmHsc70-1 and
CmHsc70-2, interacted with plasmodesmata, increasing the size
exclusion limit and thereby, enhanced their own cell-to-cell trans-
port. The C-terminal region of these HSPs potentiated their non-
cell-autonomous mobility through the plasmodesmata. A gain-
of-function experiment in which the C-terminal cucumber HSP
motif was fused to a human Hsp70 protein established that the
fusion protein, but not WT human Hsp70, could move from cell-
to-cell following microinjection into pumpkin cotyledons, much
like the movement of injected intact CmHsc70-1 and CmHsc70-
2. Interestingly, fusing the HSP C-terminal motif to GFP did not
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result in cell-to-cell migration, suggesting that at least in this
case, the targeting motif was only active in the context of highly
conserved HSPs (Aoki et al., 2002). Unlike nuclear localization sig-
nals or ER-targeting peptides, vascular system targeting peptides
may have several different motifs, perhaps suggesting specialized
interactions with different families of proteins, and/or selective
import/export mechanisms.

While targeting motifs appear to be important in regulating
mobility, a non-regulated diffusion-based mechanism in the sym-
plast from one cell to another is supported by the observation that
protein size influences non-targeted movement of GFP but differ-
ences appear to be species- and developmental stage-dependent.
Earlier studies indicated that non-regulated diffusion is limited
to ∼50 kDa proteins in mature leaves and 60 kDa proteins in
developing leaves (Oparka et al., 1999; Crawford and Zambryski,
2000).

Unregulated diffusion-based movement across the sieve tube
element–companion cell complex has been observed when CC-
specific promoters (e.g.,AtSUC2) regulate 27 kDa GFP expression.
GFP was detected in the SE and carried to sink tissue in the
translocation stream (Imlau et al., 1999). While it was perhaps
not surprising to detect the GFP in the vascular system due to
the porous end plates of the SE, unloading of the GFP into the
mesophyll sink cells was unexpected. Using the same promoter,
GFP-fusions as large as 67 kDa subsequently were shown to traf-
fic from CC to SE in root tips, although larger variants were
restricted to a zone of cells adjacent to the mature protophloem.
Only the smaller GFP variants (27–36 kDa) moved beyond this
zone (Stadler et al., 2005).

To add further complexity to protein trafficking and regula-
tion, phosphorylation, and glycosylation are required for pump-
kin CmPP16 to interact and form a stable complex with the
mobility-endowing protein, Nt-NCAPP1, prior its phloem traf-
ficking (Taoka et al., 2007). Discrepancies in observed mobility
from one study to another could be attributed to phosphory-
lation and glycosylation since earlier studies did not take these
post-translational, covalent modifications into consideration.

Two groups have demonstrated that non-endogenous proteins
are retained in the rootstock. The Gastrodia antifungal protein
(GAFP-1, a lectin) expressed by transgenic plum rootstocks under
the control of the constitutive CaMV35S promoter was identi-
fied in roots by immunoblot, but not in the soft shoot or leaf
tissues of grafted, WT scions. This suggested that GAFP-1 was
not moving into the WT-scion tissues of transgrafted plum trees
(Nagel et al., 2010). In the other example, transgenic watermelon
rootstocks over-expressing a cucumber mottle mosaic virus coat
protein (CGMMV-CP) gene were transgrafted with WT water-
melon. Protein expression and mRNA levels were detected in the
transgenic rootstock but not in the non-transgenic scion (Youk
et al., 2009). Detection limits of the techniques utilized were not
reported in either of these studies. A pokeweed (Phytolacca amer-
icana) antiviral protein was expressed in transgenic Nicotiana
tabacum rootstocks and provided resistance to potato virus X in
NN and nn grafted non-transgenic scions. However, the antivi-
ral protein was detected only in the rootstocks and not in the
grafted scion tissues (Smirnov et al., 1997). The basis for resistance
expression in this situation is not clear.

Protein translocation from a transgenic rootstock to a WT-
scion will likely depend on the species and/or type of protein in
the transgene construct. Should proteins encoded by transgenes
manage to migrate to the scion, their longevity is a consideration.
For example, NPTII and GUS proteins have estimated half-lives
of 6–7 min and 36 h, respectively, in planta (Lo et al., 2005). If
NPTII were translocated to scions it would be lost rapidly, but
the GUS protein would not be reduced to 1% of the initial level
accumulated in scions for 10 days.

Research on the production of proteins encoded by transgenes
in rootstocks for delivery to scions arguably is more advanced
than analogous work with the use of nucleic acids. For exam-
ple, researchers at the University of Florida have engineered grape
rootstocks that deliver hybrid lytic peptides to control bacterial and
fungal diseases (Dutt et al., 2007; Gray et al., 2007). Work in our lab
has shown that delivery of a protein that inhibits microbial mac-
eration of plant cell walls is possible (below). While advances to
date have focused on delivery of single gene products with specific
functions to scions, future advances may target transport of tran-
scription factors that influence expression of multiple genes, which
could coordinate concerted scion responses to complex challenges
such as pathogens, pests, or abiotic stresses.

DELIVERY OF ANTI-PATHOGEN PROTEINS FROM
ROOTSTOCKS TO SCION: THE pPGIP EXAMPLE
Proteins that are delivered to and function in the apoplast can pro-
vide protection against pathogens, particularly those pathogens
that target the cell wall. The plant cell wall is the site where the
molecular conversations that determine the host plant’s fate are
begun (Cantu et al., 2008a,b). In many plant–microbe or plant–
pathogen interactions, the plant cell walls are a major obstacle
to colonization or expansion within plant tissues. To overcome
this barrier, most fungal pathogens produce a variety of enzymes,
which degrade the host cell wall. Polygalacturonases (PGs) (EC
3.2.1.15) are often the first enzymes secreted during the infections
(Collmer and Keen, 1986). PGs cleave α-(1 → 4) linkages between
d-galacturosyl residues in pectic homogalacturonan, causing cell
separation and tissue maceration. Botrytis cinerea expresses six
PGs during infection and growth on plant hosts (Wubben et al.,
1999) and the PG-inhibiting protein (PGIP) produced in pear
fruit (pPGIP), inhibits some but not all of these PGs (Sharrock
and Labavitch, 1994).

Given the importance of PGs in pest and pathogen interac-
tions with plants, it is not surprising that PGIPs are components
of the defenses against invasion by pathogens and pests (Pow-
ell et al., 2000; Ferrari et al., 2003; Aguero et al., 2005; Shackel
et al., 2005; Celorio-Mancera et al., 2008). Tomato foliar and ripe
fruit resistance to the fungal pathogen, B. cinerea, is improved
about 40% by the constitutive over-expression of pPGIP in toma-
toes (Powell et al., 2000). The Miridae insect, Lygus hesperus,
produces PGs that cause damage to alfalfa and cotton florets
(Shackel et al., 2005) and PGIPs can inhibit these PGs and may,
therefore, reduce the damage to plant tissues (Celorio-Mancera
et al., 2008). The nematode, Meloidogyne incognita) causing root
knot disease expresses PGs (McCarter et al., 2003), but it is not
known if they can be inhibited by PGIPs. PGIPs expressed in
rootstocks, therefore, are potential anti-pathogen proteins that
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FIGURE 1 | PCR products from tomato and grape leaf tissues using (A)

genomic DNA and (B) reverse transcribed mRNA (cDNA). Actin gene
from each respective species was used as a positive control. Western blots
(C) of protein extracts taken from scion and rootstock leaf tissues.
Coomassie-stained total protein is used as a loading control. pPGIP is
visualized with a polyclonal antibody whose limit of detection is 40 ng of
protein. The pPGIP protein detected in the scion leaves has moved from
transgenic rootstocks into wild-type (WT) scion tissue (lanes 4–6, 10, 12).
This movement is not seen in the reciprocal graft (lanes 2, 8). Movement
was not detected in grape scion (lane 11), though present in the rootstock.
Cross-reactivity of the pPGIP antibody to wild-type tomato tissue can be
observed in lanes 2 and 3 (rootstock), but these bands do not match the
size of the transgenic pPGIP. Graft combinations are represented by stacked
rectangles (bottom = rootstock; top = scion) with dark boxes representing
transgenic portions of the plant and light boxes representing WT.

could be delivered from the rootstock to the scion in transgrafted
plants.

Our work has shown that pPGIP expression reduces the effects
of Pierce’s Disease in grapevines, caused by the bacterium, Xylella
fastidiosa (Aguero et al., 2005) because it inhibits the X. fastidiosa
virulence factor, PG (Roper et al., 2007; Perez-Donoso et al., 2010).
As with other vascular pathogens, the X. fastidiosa PG contributes
to disease development by digesting the polysaccharides in the pit
membranes of the xylem network. When intact, these so-called
“membranes” (they are actually primary cell wall structures) help
to prevent the pathogen’s vessel-to-vessel spread from the initial
sites of infection of grapevines (Sun et al., 2011). Because pPGIP
inhibits the X. fastidiosa PG and because pPGIP can enter the
xylem, PGIPs in the xylem of both the rootstock and the scion
could provide protection against other PG-utilizing pathogens in
the water transport system.

We have observed that when pPGIP-expressing transgenic
plants are used as rootstocks onto which non-expressing scions
are grafted, the pPGIP protein, but not the pPGIP-encoding
nucleic acids, are exported to the scion, crossing the graft union
via the xylem system (Aguero et al., 2005). In grafted tomato
plants expressing pPGIP in the rootstock, pPGIP protein has been
detected in scion leaves (Figure 1). Similarly, in grafted grapevines,
we have observed the pPGIP protein in the wild-type scion tissue
grafted onto pPGIP-expressing rootstocks (Figure 1).

Furthermore, we have observed that expression of pPGIP in
rootstocks reduces pathogen damage in scion tissues (Figure 2).
Thus, defense factors in roots (e.g., pPGIP) can be made avail-
able to scions via grafting, improving the vigor, quality, and
pathogen/pest resistance of the food-producing scion and its crop.

CONCLUDING REMARKS
Grafting has been used extensively to improve productivity, mainly
in woody perennial horticultural crops like fruits and nuts, but is

FIGURE 2 | Disease severity of B. cinerea infections ofT5 control

(ungrafted) and transgrafted (T5:pPGIP rootstock withT5 scion) light red

fruit. (A) Disease severity is measured as the diameter of the macerated
tissue around the sites of inoculation. Each fruit was inoculated at five

puncture sites with 1000 B. cinerea spores in 10 μl water. Fruit were
maintained in moist crispers at 20˚C and lesion diameter was measured daily
(Cantu et al., 2008a, 2009). SE of the mean (SEM) are indicated. (B) Image of
infected fruit 3 days post infection.
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increasingly used to enhance the productivity and disease resis-
tance of high-value vegetable crops. Transgrafting should extend
the utility and value of the grafting strategy, enabling the utiliza-
tion, in rootstocks, or scions, of transgenes whose products serve
novel, potentially powerful functions. Obvious examples are the
introduction of genes with demonstrated efficacy in disease resis-
tance (e.g., PGIPs) and pest control, but also may include traits that
target developmental events, metabolic pathways, or fruit quality.
In designing and utilizing these strategies it will be important to
consider the mechanisms that regulate long-distance transloca-
tion of DNA, RNA, sRNAs, and proteins to assess the durabil-
ity and efficacy of alternative strategies. Key questions regarding

regulatory consideration also must be assessed as this technol-
ogy matures and research projects approach commercial reality.
With increasing understanding of the mobilization of transgene-
encoded molecules, researchers continue to expand the ability to
deliver agronomic improvements to food products, extending the
utility of horticultural grafting and providing a modern arsenal of
options to an ancient art.
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