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Phosphatidic acid (PA) is a lipid second messenger that is formed transiently in plants
in response to different stress conditions, and plays a role in recruiting protein targets,
ultimately enabling an adequate response. Intriguingly, this increase in PA concentration
in plants is generally followed by an increase in the phospholipid diacylglycerolpyrophos-
phate (DGPP), via turnover of PA. Although DGPP has been shown to induce stress-related
responses in plants, it is unclear to date what its molecular function is and how it exerts its
effect. Here, we describe the physicochemical properties, i.e., effective molecular shape
and charge, of DGPP. We find that unlike PA, which imparts a negative curvature stress
to a (phospho)lipid bilayer, DGPP stabilizes the bilayer phase of phosphatidylethanolamine
(PE), similar to the effect of phosphatidylcholine (PC). DGPP thus has zero curvature. The
pKa2 of the phosphomonoester of DGPP is 7.44 ± 0.02 in a PC bilayer, compared to a
pKa2 of 7.9 for PA. Replacement of half of the PC with PE decreases the pKa2 of DGPP
to 6.71 ± 0.02, similar to the behavior previously described for PA and summarized in the
electrostatic–hydrogen bond switch model. Implications for the potential function of DGPP
in biomembranes are discussed.
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INTRODUCTION
Biological membranes are crucial for the function of all cells in all
living organisms. They act as selective barriers, within, or around
a cell. Biomembrane structure and function is not only critically
influenced by membrane proteins, but also by their diverse lipid
composition. The phase behavior and structure of many mem-
brane lipids has been determined in great detail (e.g., see Gennis,
1989; Marsh, 2012). Despite this wealth of information, much still
needs to be learned in order to fully appreciate the defining proper-
ties of membrane lipids and understand the huge diversity of lipids
found in biological membranes. In particular, lipids that function
as important signaling molecules and often occur in membranes
in minute and rapidly changing concentrations deserve further
attention.

Phosphatidic acid (PA) has emerged as a lipid-signaling mole-
cule in all eukaryotes. In plants, it plays a role in stress signaling.
It is rapidly generated in response to salinity, cold, wounding,
and pathogen attack. Recent data from plants, mammals, and
yeast indicate that the formation of PA functions as a membrane-
localized signal, affecting downstream responses by binding spe-
cific protein targets. These include protein kinases and phos-
phatases, and various proteins involved in vesicular trafficking
(Stace and Ktistakis, 2006; Testerink and Munnik, 2011). More-
over, because of its small polar headgroup, adding negative charge
and curvature to the bilayer, PA formation has profound effects on
membrane architecture, and could reduce the energy barrier for

vesicle fission and fusion, even without interaction with proteins
(Roth, 2008).

Stress induced increases in plants are always transient, and sev-
eral enzymes have been identified that function in attenuation of
the PA signal (Testerink and Munnik, 2011). One of these routes is
phosphorylation of PA to diacylglycerol pyrophosphate (DGPP)
by PA kinase [(PAK), see Figure 5 for structure of DGPP and PA].
This pathway was first discovered in vivo through 32Pi-labeling
studies in the green alga Chlamydomonas, where treatment with
the G-protein activator mastoparan resulted in a dramatic increase
in PA, which was accompanied by an increase in another, unknown
lipid, which later turned out to be DGPP (Munnik et al., 1995,
1996).

Although present in minute amounts under control condi-
tions, DGPP levels are induced upon several biotic and abiotic
cues. DGPP levels increase upon hyperosmotic stress treatment
of Chlamydomonas, the resurrection plant Craterostigma plan-
tagineum, rice leaves and cell suspension cultures of tomato, alfalfa,
and Arabidopsis thaliana (Pical et al., 1999; Munnik et al., 2000;
Darwish et al., 2009). Interestingly, DGPP is also formed upon elic-
itation by both pathogenic and beneficial microorganisms. Treat-
ment of suspension-cultured tomato cells with pathogen effectors
(van der Luit et al., 2000; de Jong et al., 2004) and Nod factor treat-
ment of Vicia sativa seedlings and Medicago cell suspensions (den
Hartog et al., 2001, 2003) all result in DGPP increases. Moreover,
treatment of cells or seeds with the plant stress hormone ABA was
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also shown to induce an increase in DGPP (Katagiri et al., 2005;
Zalejski et al., 2005). Interestingly, downstream ABA responses,
such as plasma membrane anion currents and Rab18 gene expres-
sion, could be induced by treatment of the cells with C18:1 DGPP,
indicating a role for DGPP in ABA signaling (Zalejski et al., 2005,
2006).

The kinetics of formation of PA and DGPP, as well as labeling
techniques, have shown that DGPP is synthesized by phosphory-
lation of PA (Munnik et al., 1996). However, the gene encoding
the PAK activity still has not been identified to date, severely ham-
pering any genetic analysis of the pathway. In turn, DGPP can be
dephosphorylated again to PA by an enzyme called DGPP phos-
phatase (DPP). Four genes encoding DPPs have been identified
in Arabidopsis thaliana, called AtLPP1–4 (Jeannette et al., 2010).
Interestingly, an Atlpp2 insertion mutant exhibits increased levels
of both DGPP and PA during germination (Katagiri et al., 2005).
This suggests that the mutant is disturbed in both DPP and PAP
activity, consistent with AtLPP2’s similar affinity for both sub-
strates (Pierrugues et al., 2001). The lpp2 mutant was shown to be
more sensitive to ABA than wild-type with regard to seed germina-
tion (Katagiri et al., 2005) and ABA-induced guard cell responses
in the leaf (Paradis et al., 2011).

A FUNCTIONAL ROLE OF DGPP IN PLANTS: DEFINING MOLECULAR
PROPERTIES
Fifteen years after its discovery in plants, our understanding of
DGPP formation and degradation in plants is still fragmentary and
its molecular function is still completely unknown. A thorough
in vitro investigation of molecular properties such as ionization
and membrane packing properties is of key importance to under-
stand how DGPP affects both membrane architecture and protein
binding. Recent physicochemical studies of PA have led to the
electrostatic–hydrogen bond switch model, and turned out to be
crucial to explain some of its physiological functions (e.g., binding
of Opi1 to PA). Young et al. elegantly showed how the ionization
properties of PA explain the binding of the transcription repressor
Opi1 and suggested that PA acts as a pH sensor in yeast linking
metabolism and lipid synthesis (Ktistakis, 2010; Young et al., 2010;
Orij et al., 2011; Shin and Loewen, 2011). In analogy to PA, the
physicochemical properties of DGPP are likely crucial for a full
understanding of the physiology of this unusual plant lipid. Aside
from one recent study describing the surface properties of DGPP
in Langmuir monolayers (Villasuso et al., 2010), there is, to the
best of our knowledge, no physicochemical data available for this
lipid.

Here, we describe our initial characterization of the effective
lipid molecular shape and the ionization properties of DGPP in
simple model membrane systems. These data will set a crucial
baseline against which to compare data from more complicated
lipid and buffer compositions. We show that ionization properties
of the phosphomonoester of DGPP mimic those of PA, i.e., follow
the electrostatic–hydrogen bond switch model. These data thus
suggest that DGPP is able to interact with cationic protein domains
and may possess its own unique signaling functions. Contrary to
PA though, DGPP is not a cone shaped lipid, i.e., is not able to
impart a negative curvature stress to the membrane and facilitate
the insertion of hydrophobic protein domains into the membrane.

Thus, DGPP packing properties more closely resemble those of PC,
completely opposite to PA. This finding is likely to have significant
implications for proteins binding to DGPP. Additionally, the pres-
ence of two phosphates could significantly change the presentation
(orientation and position) of the phosphomonoester of DGPP in
the lipid headgroup–acyl chain interface.

RESULTS
DGPP STABILIZES THE BILAYER PHASE
A qualitative description of effective molecular shape for mem-
brane lipids is conveniently achieved by determining their effect
on the bilayer to hexagonal (Lα–HII) phase transition temperature
of dielaidoylphosphatidylethanolamine (DEPE; Rand et al., 1990;
Kooijman et al., 2003). Dielaidoylphosphatidylethanolamine is
chosen for its convenient Lα to HII phase transition temperature
of 65˚C and matching number of acyl chain carbons, and unsatu-
ration. An additional benefit of DEPE over other PE’s is that many
previous studies used this lipid as matrix and can thus be used
to compare our current results (e.g., Rand et al., 1990; Fuller and
Rand, 2001; Szule et al., 2002; Kooijman et al., 2003).

Here we used differential scanning calorimetry (DSC) to deter-
mine the effect of 5 mol% DGPP on the HII phase transition
temperature of DEPE, and compare those data with that of other
well-known membrane lipids. Figure 1A shows representative
DSC scans for the Lα–HII phase transition of DEPE, and DEPE
containing 5 mol% of DOPE, DOPC, DGPP, DOPA, and LPC as
indicated. In order to show the consistency of these results and to
quantify the shift in TH we plotted the TH for each of these con-
ditions in Figure 1B. Shown is the average of three independent
experiments and samples. The error bar denotes the calculated SD.
From these data it is clear that unlike DOPA, DGPP increases the
Lα to HII phase transition temperature of DEPE and the data is
highly reproducible. In the case of the DOPA-DEPE and DGPP-
DEPE mixtures the data shows two peaks (see Figure 1A). This
likely represents a demixing of the mixtures at the Lα–HII phase
transition, resulting in, respectively, a DOPA and DGPP rich and
poor phase. We will comment on this in the discussion. Interest-
ingly, when we compare the effect induced by DGPP with that of
DOPC (also shows a small amount of peak splitting and thus likely
a DOPC poor and rich phase at the transition) we notice that both
are essentially equal. This suggests that DGPP has a cylindrical
shape and will thus stabilize the bilayer phase of DEPE. Consistent
with our previous results for DOPA we again show that DOPA has
essentially the same effect on the phase transition temperature of
DEPE as DOPE (Kooijman et al., 2003). Hence DOPA and DOPE,
under experimental conditions of 150 mM NaCl and at pH 7.2
(pH at 22˚C), have a similar effective molecular shape. We showed
that the same is true for a quantitative measure of effective molecu-
lar shape, i.e., the spontaneous curvature (Kooijman et al., 2005a).
Not surprisingly, LPC strongly stabilizes the bilayer phase of DEPE
again consistent with our previous work (Kooijman et al., 2003).

IONIZATION OF DGPP IN DOPC
Effective lipid molecular shape is sensitive to environmental factors
such as temperature, ionic strength, and pH. In the case of DGPP
with a pyrophosphate headgroup, these parameters will influence
the charge carried by this group. Additionally headgroup charge
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FIGURE 1 | (A) differential scanning calorimetry data for 5 mol% of
indicated phospholipid in DEPE. Bottom curve is DEPE control. Shown is
the third upscan of each experiment. (B) Means of the THII from three

independent experiments. In the case of DOPA, DGPP, and DOPC only the
THII value for the furthest and most prominent peak (up or down from
DEPE) is shown.

and how this charge depends on pH and membrane lipid compo-
sition is of critical importance to understand binding of cationic
protein domains and lipid–lipid interactions. Hence we set out to
determine the negative charge (pKa’s) of the phosphomonoester
of DGPP.

Ionization of small concentrations of anionic lipids in a mul-
tilamellar matrix (multilamellar vesicles, MLVs) of zwitterionic
lipids is most conveniently achieved using solid state (magic angle
spinning, MAS) NMR techniques. Static 31P NMR of MLVs results
in a large chemical shift anisotropy (CSA) and does not allow for
discrimination of the individual chemical shift of the phospho-
lipids making up the phospholipid bilayer (Hauser, 1989; Swairjo
et al., 1994). In the Lα phase the spectra are characterized by a
low field shoulder and high field peak as indicated in Figure 2.
These spectra are representative of large MLVs. The static spec-
tra shown in Figure 2 thus confirm that the lipid dispersions
used in our studies form lipid bilayers. We thus used 31P MAS
NMR to prepare pH titration curves for the phosphomonoester
of DGPP in DOPC alone and in an equimolar mixture of DOPC
and DOPE. Figure 3A shows the 31P NMR spectra for 5 mol%
DGPP in DOPC plotted as a function of pH. The PC peak is
clearly visible as the low field peak near 0 ppm, and the two DGPP
peaks are also clearly visible upfield from PC due to the additional
shielding by the electrons of the pyrophosphate group. The peak
furthest upfield is identified as the phosphodiester peak of DGPP
as it is shielded the most, as expected. It is broadened over the
entire pH range studied. The phosphomonoester peak is iden-
tified as the downfield peak from the phosphodiester peak and
clearly shifts as a function of pH just as we observed previously
for other lipid phosphomonoesters (Kooijman et al., 2005b, 2007,
2008, 2009). The phosphomonoester peak of DGPP is seen to
split into two peaks in the regions of the titration curve where
charge is constant and indicates the spin–spin coupling of the
two phosphate groups in the pyrophosphate (Friebolin, 2011).
In regions where charge changes as a function of pH the peak
is somewhat broadened and the ∼15 Hz splitting is no longer
observable.
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FIGURE 2 | Proton decoupled 31P NMR spectra of (A), 5 mol% DGPP in

DOPC, and (B) 5 mol% DGPP in an equimolar mixture of DOPC and

DOPE. Spectra are plotted against an 85% H3P04 external standard, the
pH of the samples is as indicated.

In order to determine the ionization constants for the phospho-
monoester group we determined the peak positions using Bruker
Topspin software and plotted these as a function of pH to create
the titration curve for DGPP in DOPC shown in Figure 3C (red
circles). When the peak is split in two due to spin–spin coupling
we take the average of the two peak positions as this indicates the
true chemical shift of the phosphate (Friebolin, 2011). The solid
line(s) in Figure 3C are non-linear least squares fits using Eq. 1.
The pKa values for DGPP in DOPC are summarized in Table 1.

Phosphatidylcholine, while a major zwitterionic lipid, is usually
not the only one present and membranes generally contain a sig-
nificant amount of PE. Hence we also determined the ionization
behavior of DGPP in an equimolar mixture of DOPC and DOPE.
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FIGURE 3 | 31P NMR spectra for 5 mol% dioleoyl diacylglycerol

pyrophosphate (18:1 DGPP) in (A), DOPC, and (B), an equimolar mixture

of DOPC and DOPE as a function of pH. (C), pH titration curves for 5 mol%

DGPP in DOPC (red curve) and 5 mol% DGPP in DOPC–DOPE 1:1 (blue
curve). Lines are best non-linear least squares fits to a
Henderson–Hasselbalch type equation.

Table 1 | Ionization constants for 5 mol% DGPP in multilamellar

vesicles of DOPC and DOPC/DOPE; and for 10 mol% PA in

multilamellar vesicles of DOPC.

pKa1 pKa2

DGPP in DOPC 2.82 ± 0.15 7.44 ± 0.02

DGPP in DOPC/DOPE (1:1) 2.61 ± 0.22 6.71 ± 0.02

PA in DOPC2 3.2 ± 0.3 7.92 ± 0.03

2Data taken from Kooijman et al. (2005b).

The 31P NMR spectra as a function of pH are shown in Figure 2B.
For the two low field peaks, the PE peak is found slightly down
field of that for PC (indicating the deshielding of the phosphate in
PE compared to PC). Interestingly, the phosphomonoester peak
splitting is considerably more pronounced in the PE contain-
ing membrane compared to the membrane containing just PC
(compare Figures 3A,B). Again we plot the peak position of the
phosphomonoester peak of DGPP as a function of pH and the
data is shown in Figure 3C (blue circles), and the pKa values are
summarized in Table 1. It should be noted that at high pH the
amine of PE deprotonates resulting in a negatively charged lipid.
This alters membrane electrostatics and might affect the charge of
DGPP. However we do not observe a large effect as the data still
fit a simple Henderson–Hasselbalch behavior (R2 > 0.99). This is
likely due to the fact that at high pH DGPP (phosphomonoester)

is already fully deprotonated and a resulting increase in the nega-
tive electrostatic potential does not additionally affect the charge
of DGPP’s phosphomonoester.

Interestingly the titration curves for DGPP in the DOPC and
the DOPC–DOPE 1:1 model membrane do not overlap. In fact
the degree of ionization of the phosphomonoester of DGPP in the
PE containing membrane is considerably larger compared to the
ionization of DGPP in the PC membrane as indicated by the shift
of the titration curve to lower pH values. This striking difference in
degree of ionization (and thus pKa) is also indicated by the straight
line drawn at pH 7.2. In the case of the PC:DGPP membrane the
line hits the titration curve significantly lower compared to the
PC:PE:DGPP curve. The higher on the curve the higher the total
negative charge, keeping in mind that this position indicates the
percentage of phosphomonoester groups that carry −1 and −2
negative charges (fractional charges being non-physical). These
data are consistent with the electrostatic–hydrogen bond switch
model that we described previously for PA (Kooijman et al., 2007;
Kooijman and Testerink, 2010).

DISCUSSION
Taken together these data present an intriguing picture of the
physicochemical properties of DGPP. On the one hand the effec-
tive molecular shape of DGPP is opposite to that of PA, but on the
other the ionization properties of the phosphomonoester group
of DGPP follows the same behavior previously described for PA.
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Here, we discuss the potential implications of these data for the
function of DGPP in biological membranes.

EFFECTIVE LIPID SHAPE OF DGPP
We compared the effect of a small concentration of DGPP on
the Lα–HII phase transition temperature of DEPE to that of well-
known lipids such as DOPE, DOPA, DOPC, and LPC. The packing
properties of these model phospholipids can be divided in the fol-
lowing three groups: negative curvature (DOPE and DOPA), zero
curvature (DOPC), and positive curvature (LPC). Our data clearly
show that DGPP behaves in a manner consistent with the behavior
of DOPC, and thus indicate that at physiological pH and salt con-
centration DGPP can be considered a membrane stabilizing lipid,
contributing negligible curvature to a membrane.

The zero curvature (cylindrical effective molecular shape) of
DGPP is caused by several factors. The main factor is the increased
steric interaction in the headgroup region caused by a larger
headgroup. This headgroup is not only larger due to the pyrophos-
phate vs. phosphomonoester of PA, but also due to additional
water molecules that hydrate this group. It is unlikely that the
observed bilayer stabilization by DGPP in our experiments is
caused only by an expansion of the bilayer due to charge repul-
sion. Although DGPP carries more negative charge than PA, in
fact highly charged lipids have been found to exhibit favorable
interactions that rather result in a condensing effect. Janmey and
coworkers for example suggest that favorable interactions between
highly charged polyphosphoinositides are potentially mediated by
hydrogen bond interactions (Levental et al., 2008a,b). We recently
showed, albeit indirectly, that PI4,5P2 likely forms domains in a
PC bilayer, using similar 31P NMR titration curves as employed
here for DGPP (Kooijman et al., 2009). Also, Villasuso et al. (2010)
recently showed a condensing effect of DGPP monolayers in the
presence of PA. This latter finding suggests interesting possibilities
to the potential role of DGPP in biological membranes. In con-
clusion it should be noted that despite significant negative charge
PA does form the hexagonal phase with PE, and in fact destabilizes
the PE lipid bilayer. Charge effects certainly play a role in the effec-
tive molecular shape of DGPP but are not, a priori, the dominant
factor.

The cylindrical nature of DGPP is in stark contrast to our pre-
vious data for PA which destabilizes the bilayer under identical
physiological conditions. Our data would thus favor a model for
the function of DGPP which is opposite that of PA. Along the
same line these data indicate that if PA is converted to DGPP
upon plant cell exposure to stress, the resulting DGPP might no
longer favor the binding of PA specific proteins that require the
negative curvature stress induced by PA to effectively bind to the
membrane. Additionally, conversion of PA to DGPP in plant cell
membranes undergoing membrane fission or fusion might result
in an inhibition of membrane fusion (fission).

DEMIXING OF DGPP AND PA AT THE Lα–HII PHASE TRANSITION
We very consistently observed that the phase transition for DEPE
witnessed by DSC indicates some degree of demixing of DEPE and
DGPP (and DOPA). This observation might be explained by the
fact that PE is likely to form hydrogen bonds with the pyrophos-
phate headgroup of DGPP. The effect of PE on the ionization

behavior of the phosphomonoester group of DGPP is a sign of
this hydrogen bonding (discussed below). Alternatively it might
be caused by a combination of non-ideal mixing of the acyl chains
(trans double bonds for DEPE and cis double bonds for DOPA
and DGPP) combined with more favorable interactions (through
hydrogen bonds) between the headgroups. It is likely not caused
by complete phase separation as we took care in preparing the
lipid films at a temperature above the T m for DEPE. Whatever the
reason for this intriguing observation our data demonstrate that
DGPP and DOPA have an opposite effect on the phase transition;
DGPP stabilizes the bilayer and PA destabilizes the bilayer of DEPE.
In future work we plan to follow up on this observation and inves-
tigate whether or not PE or other hydrogen bond donors are able
to phase separate with DGPP from the rest of the membrane in
the physiologically relevant Lα phase. Non-ideal mixing and fluid–
fluid immiscibility was studied for PE–PA mixtures previously and
depending on the acyl chain composition and pH shows complex
behavior (Garidel et al., 2011). Hydrogen bond induced phase
separation of anionic phospholipids has been observed previously
(Redfern and Gericke, 2004; Dasgupta et al., 2009; Kooijman et al.,
2009), and forms another intriguing example by which lipids may
form important signaling platforms in biomembranes.

THE PHOSPHOMONOESTER OF DGPP FOLLOWS THE
ELECTROSTATIC–HYDROGEN BOND SWITCH MODEL
Previously we showed for PA that the ionization behavior of
its phosphomonoester headgroup sets it apart from other, more
abundant, anionic lipids (Kooijman et al., 2005b, 2007). Upon ini-
tial ionization (to 1 negative charge) the remaining hydrogen in the
headgroup is more stably bound by both covalent and electrostatic
interactions (situation sketched in Figure 5 for the phosphomo-
noester of PA and DGPP). When a hydrogen bond is formed with
this phosphomonoester headgroup this bonding will result in a
competition for electrons and the last hydrogen in the headgroup is
facilitated to deprotonate earlier compared to the situation lacking
the hydrogen bond. This peculiar ionization behavior was summa-
rized in the electrostatic–hydrogen bond switch model (Kooijman
et al., 2007) and was instrumental in explaining the recent data for
Opi1 of Loewen and coworkers (Young et al., 2010).

Here we show that like PA, the phosphomonoester headgroup
of DGPP, follows this behavior exactly as might be expected
(Kooijman and Burger, 2009; Kooijman and Testerink, 2010).
Upon addition of PE to the membrane the pKa2 of DGPP’s
phosphomonoester is decreased significantly. This indicates that
protein binding might be pH sensitive as was observed for some PA
binding proteins. However no specific DGPP binding protein has
been identified to date (aside from the observation that Opi1 has
some affinity for DGPP; Young et al., 2010), but it will be impor-
tant to check this possibility in the case genuine DGPP binding
proteins are identified. pH sensitivity might point to significant
cellular functions, and the linking of distinct signaling pathways
as was observed for Opi1 binding to PA.

THE pKa2 FOR DGPP IS LOWER THAN THAT OF PA
We previously determined the pKa2 of 10 mol% DOPA in a DOPC
membrane and found it to be 7.9 (see Table 1). Here find that
5 mol% DGPP has a pKa2 of 7.4, significantly lower than that of
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PA. We confirmed that the pKa2 for 5 mol% of DOPA in DOPC
is around pH 7.9 as well (data not shown) which indicates that
this difference in pKa value is not due to a lower concentration
of DGPP compared to DOPA. The most likely explanation of the
difference in pKa2 between PA and DGPP is that the phosphomo-
noester of DGPP is located in a completely different region of the
membrane. With the two phosphates stacked on top of each other,
the phosphomonoester of DGPP penetrates much farther toward
the aqueous phase than the phosphomonoester of PA and is likely
to experience a much larger dielectric constant. A larger dielectric
constant results in a lowering of the pKa (Cevc, 1990; Tocanne and
Teissie, 1990).

The lower pKa2 for DGPP indicates that at constant pH DGPP
carries more negative charge than the phosphomonoester of PA,
ignoring for the moment the potential negative charge on the
phosphodiester of DGPP (see discussion below). This higher
charge would favor the interaction of cationic protein domains,
and might result in a displacement of a PA bound protein to DGPP.
However, DGPP is a membrane stabilizing phospholipid, and this
displacement of the protein from PA to DGPP might thus (para-
doxically) mean that the protein loses its affinity for the membrane
thereby potentially turning of a PA signal. In this way both the
charge and packing properties of DGPP might work in tandem
to turn off a PA signal. Additionally, DGPP may have its own
signaling properties, and through the highly negatively charged
phosphomonoester is able to interact electrostatically (and via
the electrostatic–hydrogen bond switch) with cationic proteins.
It will thus be important to screen PA binding proteins for their
propensity to bind DGPP.

WHAT ABOUT THE CHARGE ON THE PHOSPHODIESTER OF DGPP?
DGPP contains two phosphate groups (as pyrophosphate) in its
headgroup which means that it can potentially carry three nega-
tive charges, compared to the two for PA. We also clearly observe
the phosphodiester peak of DGPP and observe that its position
does not change as significantly upon a change in pH as does
the peak of the phosphomonoester (see Figure 4). This is not
unexpected as the total shift induced by the deprotonation of the
phosphodiester group likely only induces a modest shift in the
chemical shift value. Consider for example the first pKa of the
phosphomonoester which induces only a very modest shift in the
chemical shift. When we compare the total shift in the chemical
shift for the phosphomonoester (pKa1) and the phosphodiester
(over the entire pH range) the value is of the same magnitude.
However when we plot the shift of the phosphodiester peak of
DGPP as a function of pH for both titration curves we observe
a behavior that identically follows the pH titration curve of the
phosphomonoester. Figure 4 shows the shift of the phosphodi-
ester of DGPP for the PC/PE matrix. In contrast the PE and PC
peaks are essentially constant. Hence it is likely that the shift of the
phosphodiester peak is induced solely by the decrease in shield-
ing of the phosphomonoester group induced by deprotonation
upon an increase in pH. It is thus not possible to unambigu-
ously define the ionization of the phosphodiester group based
on our NMR data alone (Figures 3 and 4). From first princi-
ples it is highly likely however that it is still protonated until
quite high pH values, and may even have a pKa well above the

FIGURE 4 | Peak positions of the phosphodiester of DOPE (triangle),

DOPC (square), and DGPP (circle) as a function of pH.

physiological range. This is understood from the fact that initial
deprotonation of the headgroup will impede additional depro-
tonation since the negative charge will attract protons from the
bulk to the membrane interface. These interfacial protons decrease
the interfacial pH and hence decrease the likelihood that addi-
tional protons will deprotonate. Since the ionization behavior
of the phosphodiester clearly indicates a pKa1 that is compara-
ble to that of PA (see Table 1) it is not likely that the proton
of both the phosphodiester and phosphomonoester are able to
deprotonate at the same time. If the phosphodiester is proto-
nated over the entire physiologically relevant pH range than DGPP
will at most carry two negative charges in a biological mem-
brane. This is contrary to the assumptions made by Villasuso
and coworkers (Villasuso et al., 2010) who assumed that DGPP
is able to carry three negative charges. Clearly though this point
warrants further investigation; using optical spectroscopy we will
investigate the ionization of the phosphodiester group in more
detail.

IMPLICATIONS FOR THE POTENTIAL ROLE OF DGPP IN BIOLOGICAL
MEMBRANES
The findings of our current study are schematically summarized
in Figure 5. DGPP is formed via a phosphorylation of PA. Our
data now shows that under physiological conditions this results in
the conversion of an anionic lipid with negative membrane curva-
ture to an anionic lipid with more negative charge and (essentially)
zero membrane curvature. This conversion of PA to DGPP by PAK
activity thus has significant implications for the original PA signal.
PA binding proteins may no longer be able to bind to DGPP due
to its lack of negative curvature, higher negative charge, and differ-
ent position of the phosphomonoester in the headgroup interface
of the lipid bilayer. Further work on the ionization state of the
phosphodiester of DGPP and on the effect of additional charge
and effective molecular shape effectors will likely provide addi-
tional insight into the physicochemical properties of the intriguing
phospholipid DGPP.
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FIGURE 5 | Structure and functional model for DGPP. On the left the
chemical structures of dioleoyl PA (top) and DGPP (bottom) are indicated. PA
kinase activity is responsible for the synthesis of DGPP, but the enzyme
responsible is currently unknown. Conversion of DGPP back to PA is
facilitated by a family of known lipid phosphate phosphatases. On the right

the effective molecular shape of PA and DGPP at physiological pH and salt
(NaCI) concentration is shown. The negative charge of both PA and DGPP is
shown. In similar membrane environments (lipid composition) and under
physiological conditions DGPP carries more negative charge then PA as
indicated by the thicker “charge.”

MATERIALS AND METHODS
MATERIALS
1,2-Dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC),1-oleoyl-
2-hydroxy-sn-glycero-3-phosphocholine (LPC), 1,2-dioleoyl-sn-
glycero-3-phosphatidyl-ethanolamine (DOPE), 1,2-dioleoyl-sn-
glycero-3-phosphate (sodium salt; DOPA), 1,2-dielaidoyl-sn-
glycero-3-phosphatidylethanolamine (DEPE), and 1,2-dioleoyl-
diacylglycerolpyrophosphate (DGPP) were purchased from Avanti
Polar Lipids (Birmingham, AL, USA). All lipids were dissolved in
chloroform, methanol (2:1 volumetric ratio) and were used as they
were received from Avanti. Lipid purity of our stocks was regularly
checked by HPTLC plates and judged to be better than 99%, as one
single spot on iodine stained plate. Water used in the experiments
was of HPLC grade and purchased from Fisher Scientific. All buffer
components were at least of HPLC grade.

SAMPLE PREPARATION
Differential scanning calorimetry samples were prepared by mix-
ing appropriate amounts of lipid stock. The resulting lipid–solvent
mixtures were then dried under a stream of N2 gas, at a tempera-
ture above the main melting transition for DEPE (T m = 38˚C).
This is important as drying of lipid mixtures may result in
demixing and thus two types of vesicle populations. Keeping
the temperature of the solvent above the T m of the lipids in
the mixture should prevent this. These lipid films (7 μmol of
total lipid) were then placed in a vacuum oven under high vac-
uum for at least 30 min at 45˚C to remove residual traces of
solvent. Lipid films were stored under N2 in a −20˚C freezer
until used, usually within a week. Multilamellar dispersions were
prepared by suspension of the lipid film in 1 mL of 150 mM
NaCl, 1 mM EDTA, 20 mM HEPES at pH 7.2 buffer solution.
The sample was then heated in a water bath at a tempera-
ture above the main melting point (T m) but below the HII

phase transition temperature of DEPE, in this case approxi-
mately 45˚C, for 9 min and then vortexed for 1 min. This was
repeated two more times to make multilamellar vesicles. The
sample and the reference buffer were then degassed before they
were loaded in the calorimeter. Both the lipid stock solutions
and the remainder of the sample used in the calorimeter were
tested for concentration accuracy by phosphate assay (Rouser et al.,
1970).

NMR samples, for pH titration purposes, were prepared by
mixing appropriate amounts of lipid stock to prepare lipid films of
the following lipid composition: A, 95 mol% DOPC, and 5 mol%
DGPP; B, 47.5 mol% DOPC, 47.5 mol% DOPE, and 5 mol%
DGPP. The mixtures were dried to a thin lipid film on the bot-
tom of specially made borosilicate glass tubes (15 mm test tube
size) in the rotary evaporator set-up at 45˚C. Lipid stocks and
films were kept under an inert atmosphere of N2 gas during
sample preparation. Hydrated lipid samples were prepared by sus-
pending the lipid film in a buffer of the appropriate pH. Buffers
used were: 20 mM Citric Acid, 30 mM MES 4 < pH < 6.7, 50 mM
Tris 6.7 < pH < 8.5, 50 mM CHES 8.5 < pH < 10.5, and contained
100 mM NaCl and 2 mM EDTA to complex any traces of divalent
cations. The hydrated lipid suspensions were flash frozen in dry ice
cooled ethanol, and subsequently warmed to room temperature.
The MLV suspension was occasionally vortexed as it thawed. This
procedure assured full dispersion of the lipid film in the buffer.
The pH of the lipid dispersion was measured with a Sentron intelli
probe (RL Instruments, Manchaug, MA, USA) on a standard pH
meter, which is particularly well-suited for samples with high lipid
concentrations. This pH, measured after lipid hydration, was used
to construct the pH titration curves. The lipid dispersions were
concentrated in a tabletop centrifuge (14,900 rpm, 1 h; 20˚C) and
the (wet) lipid pellet was transferred to 4 mm zirconium MAS
NMR sample tubes.
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DIFFERENTIAL SCANNING CALORIMETRY
Differential scanning calorimetry measurements of mixed mul-
tilamellar vesicles were carried out using a Microcal VP-DSC
(Northampton, MA, USA). The scan rate was 0.75˚C/min and the
total lipid concentration was 7 mM. This concentration was cho-
sen in order to be able to clearly identify the change in enthalpy
for the Lα to HII phase transition. The change in enthalpy for the
Lα to HII phase transition is much less energetic than the Lβ–Lα

phase transition, thus requiring a higher concentration. A total of
six heating/cooling cycles (generally 20–80˚C, but 20–100˚C for
the LPC containing sample) were recorded and the third heating
scan (fifth scan overall) was found to be representative.

NMR SPECTROSCOPY
NMR spectroscopy was performed as previously described
(Kooijman et al., 2009). Briefly, MAS 31P experiments were car-
ried out using an observer pulse width of 5.25 μs. Static spectra
to confirm phospholipid organization employed 1H decoupling
(90˚, 22.25 μs, 120 DB). Spectra were recorded using a 1 s delay
time between pulses. Samples were spun at the magic angle (54.7˚)
at 5 kHz to average the CSA, and the chemical shift position of
the lipids was recorded relative to an external 85% H3PO4 stan-
dard. Under stable spinning conditions, typically, 25,000 scans
were recorded. Experiments were carried out at a temperature
of 25.0 ± 1.0˚C. Static spectra, using low power proton decou-
pling (using the spinal-64 pulse program), were recorded in the
same 4 mm CP MAS NMR probe, after the MAS spectra had
been recorded. Typically between 50,000 and 100,000 scans were
recorded.

DETERMINATION OF pKa VALUES
The pKa value’s for the phosphomonoester group of DGPP
were determined using equation (1), which was derived from
the Henderson–Hasselbalch equation using the assumption that
the observed chemical shift values are weighted averages of
the chemical shifts of the fully protonated, singly dissociated
and doubly dissociated states (Appleton et al., 1989). The pKa
values are determined utilizing a non-linear least squares fit
procedure.

δ = δAB + δAA10(pK a1−pH) + δBB10(pH−pK a2)

1 + 10(pK a1−pH) + 10(pH−pK a2)
(1)

δAA, δAB, and δBB are the chemical shifts of the fully proto-
nated, single dissociated and double dissociated state respec-
tively, δ is the measured pH dependent chemical shift and pKa1

and pKa2 are the first and second dissociation constant of the
phosphomonoester.
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