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The activation of phospholipase D (PLD) produces phosphatidic acid (PA), whereas plant
sphingosine kinase (SPHK) phosphorylates long-chain bases to generate long-chain base-
1-phosphates such as phytosphingosine-1-phosphate (phyto-S1P). PA and phyto-S1P have
been identified as lipid messengers. Recent studies have shown that PA interacts directly
with SPHKs in Arabidopsis, and that the interaction promotes SPHK activity. However,
SPHK and phyto-S1P act upstream of PLDα1 and PA in the stomatal response to abscisic
acid (ABA). These findings indicate that SPHK/phyto-S1P and PLD/PA are co-dependent
in the amplification of lipid messengers, and that crosstalk between the sphingolipid-
and phospholipid-mediated signaling pathways may play important roles in plant stress
signaling.
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INTRODUCTION
Different classes of lipids have been implicated as lipid messengers
in plant growth, development, and stress responses, and recent
results have begun to unveil complex interactions among differ-
ent lipid signaling pathways (Peters et al., 2010; Guo et al., 2011).
Under a given stress, more than one lipid mediators are often pro-
duced, with some being antagonistic and others having similar
functions. Both phosphatidic acid (PA) and long-chain base-1-
phosphate (LCBP) promote abscisic acid (ABA)-mediated stom-
atal closure and decrease reactive oxygen species (ROS)-induced
cell death (Jacob et al., 1999; Zhang et al., 2003; Coursol et al., 2005;
Shi et al., 2007). ABA and ROS are pivotal signals impacting various
aspects of plant growth and stress responses. This raises intriguing
questions of how these two lipid signaling processes interact to
mediate plant stress responses. Recent results indicate a crosstalk
between phospholipase D (PLD) and sphingosine kinase (SPHK)
during the production of lipid messengers. These interactions of
phospholipid- and sphingolipid-mediated signaling pathways may
play important roles in plant response to various stresses.

DIFFERENT PLDS INVOLVED IN DIVERSE STRESS
RESPONSES
Phospholipase D hydrolyzes phospholipids to produce PA and a
free head group (Figure 1). This enzyme was first discovered in
plants and has since been found to occur also in bacteria, fungi,
and animals (Wang et al., 1994; Qin et al., 1997; Wang, 2001).
The Arabidopsis genome has 12 genes encoding PLDs, which are
grouped into six classes, PLDα(1–3), β(1, 2), γ(1–3), δ, ε, and
ζ(1, 2) based on the gene sequences, protein domain structures,
and enzymatic biochemical properties (Wang et al., 2006). PLDα,
β, γ, δ, and ε contain a Ca2+/phospholipids-binding C2 domain
whereas PLDζ1 and ζ2 contain the pleckstrin homology (PH) and
phox homology (PX) domain (Wang et al., 2006). All the PLDs
have two conserved HxKxxxD (HKD) motifs that are involved

in catalytic activities (Wang et al., 2006; Li et al., 2009). Some of
the C2-containing PLDs contain a polyphosphoinositide-binding
region (PBR1) located between two HKD domains, which binds
phosphatidylinositol 4,5-bisphosphate (PIP2; Zheng et al., 2002).

These sequence differences provide a structural basis for dis-
tinctively different biochemical properties for different PLDs. All
the C2-containing PLDs require Ca2+ for activity, but PX and
PH-containing PLDζs do not (Wang et al., 2006). In addition, the
differences in the C2 sequences can explain in part, the differ-
ent Ca2+ concentration requirements. PLDα1 is most active when
assayed at millimolar [Ca2+] whereas PLDβ1 and PLDγ1 require
micromolar concentrations of Ca2+ for optimal activity and also
require PIP2 as a co-factor (Qin et al., 1997; Zheng et al., 2002; Pap-
pan et al., 2004). PLDδ and PLDε both are active within a broad
range of Ca2+ concentrations (μM–mM; Hong et al., 2008, 2009).
PLDδ requires oleate and PIP2 for its activity, but PLDε is active
under the reaction conditions of PLDα1, β1, γ1, and δ (Wang and
Wang, 2001; Qin et al., 2002; Hong et al., 2008). Arabidopsis PLDs
also selectively hydrolyze common membrane phospholipids such
as PC, PE, and PG (Li et al., 2009). The varied co-factor require-
ments and substrate preferences for different PLDs indicate that
specific PLDs are activated differently in the cell, and may have
unique cellular and physiological functions (Li et al., 2009).

Different PLDs are involved in various physiological processes,
displaying unique and overlapping functions (Figure 1; Li et al.,
2009). PLDα1-deficient plants have an altered plant response to
several stresses, including water loss (Sang et al., 2001a), ROS pro-
duction (Sang et al., 2001b; Zhang et al., 2009), and salt tolerance
(Bargmann et al., 2009;Yu et al., 2010). PLDδ is involved in freezing
tolerance (Li et al., 2004), dehydration (Katagiri et al., 2001), salt
tolerance (Bargmann et al., 2009), H2O2-induced programmed
cell death (PCD; Zhang et al., 2003), microtubule organization,
and cytoskeletal rearrangement (Gardiner et al., 2001, 2003).
PLDα3 is also involved in salt tolerance (Hong et al., 2008) whereas
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FIGURE 1 | Generation of PA from phospholipids and PA target proteins

functionally characterized in plants. PA is generated via two pathways
during stress responses: PLD hydrolyzes phospholipid to generate PA, and
PLC hydrolyzes phospholipid to generate DAG which can be phosphorylated
by DAG kinase (DGK). PA has been found to interact with target proteins to
regulate cellular functions. Examples of PA regulation of target proteins are
discussed in the text and the references are cited in the text. *Indicates
that PA is generated from PLD while others are not determined.

PLDε enhances Arabidopsis nitrogen signaling and growth (Hong
et al., 2009). PLDζ1 and ζ2 are involved in lipid remodeling and
root growth in plant responses to phosphate deprivation (Cruz-
Ramirez et al., 2006; Li et al., 2006a,b). PLDζ1 is implicated in
root-hair patterning (Ohashi et al., 2003), and PLDζ2 participates
in vesicle trafficking to regulate auxin response (Li and Xue, 2007).

PA AS A PIVOTAL CLASS OF LIPID MESSENGERS
One mechanism by which PLDs affect plant stress responses is
to produce PA, which has been identified as a class of lipid mes-
sengers in plants and animals (Figure 1). PA constitutes less than
1% of total phospholipids in most plant tissues, but the cellular
level of PA changes dynamically in plants under abiotic and biotic
stresses (Wang et al., 2006). The amount of PA in Arabidopsis leaves
increased more than 60% within 10 min of application of ABA
(Zhang et al., 2004). Other stresses, including wounding, freez-
ing, various osmotic stresses, oxidative stress, and drought, induce
accumulation of PA (Li et al., 2009). Manipulations of various
PLDs in Arabidopsis have shed light on the regulatory functions of
PA. Characterization of knockouts, knockdown, and overexpres-
sion lines of PLDs, has shown that PA produced from different
PLDs has unique roles in plant response to different stresses,
including water deficits, high salinity, freezing, phosphate depriva-
tion, nitrogen availability, and plant-pathogen interactions (Sang
et al., 2001b; Zhang et al., 2003; Hong et al., 2008, 2009; Bargmann
et al., 2009; Peters et al., 2010).

One mode of PA action is its direct interaction with target pro-
teins (Figure 1). In yeast and animal cells, PA binds to transcrip-
tional factors, protein kinases, lipid kinases, protein phosphatases,
and proteins involved in vesicular trafficking and cytoskeletal
rearrangement (Wang et al., 2006; Gomez-Cambronero, 2010).
In plants, PA has been found to interact with ABI1 PP2C phos-
phatase (Zhang et al., 2004), phosphoinositide-dependent protein
kinase1 (Anthony et al., 2004), phosphoenolpyruvate carboxy-
lase (Testerink et al., 2004), CTR1 protein kinase (Testerink et al.,
2007), the actin capping protein AtCP (Huang et al., 2006), lipid
transport protein TGD2 (Lu and Benning, 2009), NADPH oxidase
(Zhang et al., 2009), mitogen-activated protein kinase 6 (Yu et al.,

FIGURE 2 | Phosphorylation of sphingosine and phytosphingosine by

SPHK and the interaction SPHK and PA. (A) SPHK catalyzes the
formation of S1P or phyto-S1P from sphingosine or phytosphingosine. S1P
or phyto-S1P can be degraded by S1P phosphatase (SPP) or S1P lyase (not
shown). (B) Surface plasmon resonance (SPR) analysis of interaction of PA
with SPHK1. Liposomes containing PC only or PC plus 16:0/16:0 or
18:1/18:1 PA were used to analyze the interaction. Liposome containing of
PC did not bind to SPHK1. Liposomes containing both PC and PA (16:0/16:0
or 18:1/18:1) bound to SPHK1. (B) is based on data from Guo et al., 2011.

2010), and SPHK (Guo et al., 2011; Figure 1). Several potential
PA-interacting proteins were identified by PA-affinity chromatog-
raphy followed by mass spectrometric analyses in plants (Testerink
et al., 2004). PA-protein interaction may modulate the function of
a protein in two ways, tethering it to the membrane to change their
localization, and/or increasing or decreasing the enzyme catalytic
activity. For example, PLDα1-derived PA interacts with ABI1 and
tethers ABI1 to the plasma membrane (Zhang et al., 2004). PA
binds to Arabidopsis NADPH oxidase and SPHK to promote their
activity (Zhang et al., 2009; Guo et al., 2011).

In addition to PLD, signaling PA can be produced by the dia-
cylglycerol (DAG) kinase phosphorylation of DAG, which is often
produced by the activation of phospholipase C (PLC; Figure 1).
Two distinctively different PLC families have been described in
plants, the phosphoinositol 4,5-bisphosphate-hydrolyzing PI-PLC
(Munnik, 2001) and the non-specific PLC (NPC) that hydrolyze
common membrane phospholipids such as PC and PE (Peters
et al., 2010). It should be noted that DAG itself can serve as a lipid
mediator; DAG promotes stomatal opening (Lee and Assmann,
1991; Peters et al., 2010), whereas PA promotes stomatal closure
(Jacob et al., 1999; Zhang et al., 2004; Mishra et al., 2006).

SPHKs IN PLANTS
Sphingosine kinase is a member of the DAG kinase family (Strub
et al., 2010), and phosphorylates long-chain bases (LCBs) to
LCBPs, such as sphingosine-1-phopshate (S1P) and phyto-S1P
(Figure 2A). SPHK activity and function have been well char-
acterized in animals and yeast (Worrall et al., 2003). In mammals,
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two SPHKs and their product S1P have important roles in regula-
tion of many cellular processes including cell growth, suppression
of apoptosis, and pathophysiology of various diseases (Strub et al.,
2010). While sphingosine (d18:1Δ4) is the predominant LCB in
animal cells, it is only detected as a minor LCB in some plants
or absent in other plants, such as Arabidopsis (Lynch et al., 2009;
Michaelson et al., 2009). A recent survey of 21 species from dif-
ferent phylogenetic groups has found that d18:1Δ4 is present in
non-seed land plants and monocots (wheat, barley, maize, and
ryegrass), but it is absent in Arabidopsis and soybean (Islam et al.,
2012). Instead, 4-hydroxy-sphingenine (t18:0, commonly known
as phytosphingosine), 4-hydroxy-8-sphingenine (t18:1Δ8), and 8-
sphingenine (d18:1Δ8) are predominant LCBs in plants (Lynch
et al., 2009). Plant extracts and purified SPHKs phosphorylate
various LCBs to generate LCBPs (Coursol et al., 2005; Guo et al.,
2011).

The Arabidopsis genome contains five genes with sequence sim-
ilarities to mammalian SPHKs. At5g23450 encodes a LCB kinase
AtLCBK1 (Nishiura et al., 2000; Imai and Nishiura, 2005) whereas
At5g51290 is regarded as a ceramide kinase (Liang et al., 2003).
At2g46090 did not have sphingosine-phosphorylating activity
(Worrall et al., 2008). At4g21540 was originally annotated as
one SPHK, and this sequence consists of two repeats that are
most similar to mammalian SPHKs. A cDNA from the sec-
ond repeat was reported to encode an active SPHK, designated
SPHK1 (Worrall et al., 2008). A recent study has established
that the At4g21540 locus is actually comprised of two separate
SPHK genes, SPHK1 and SPHK2. The conclusion is supported
by molecular cloning, sequence analysis, and the distinguishable
patterns of expression of SPHK1 and SPHK2 in Arabidopsis tis-
sues (Guo et al., 2011). The stop codon of SPHK2 is 788 bp
upstream of the start codon of SPHK1. Both SPHK1 and SPHK2
were localized on tonoplasts (Worrall et al., 2008; Guo et al.,
2011). SPHK1, SPHK2, and AtLCBK1 utilize various LCBs as sub-
strates with different preference. Among the substrates tested,
AtLCBK1 prefers d-erythro-dihydrosphingosine to sphingosine
and phytosphingosine, whereas SPHK1 and SPHK2 are most
active on sphingosine. AtLCBK1 cannot phosphorylate D-threo-
dihydrosphingosine (Imai and Nishiura, 2005) but both SPHK1
and 2 can even though SPHK2 has much a lower activity than
SPHK1 (Guo et al., 2011). Because of the low occurrence of sphin-
gosine in plant tissues and the broad substrate specificity of SPHKs,
it was suggested that plant SPHKs should be called LCB kinase
(LCBK) in plants (Lynch et al., 2009). This change will require
renaming some of the genes in the family. SPHK1 and SPHK2 are
used here for consistency with published nomenclature on these
enzymes (Worrall et al., 2008; Guo et al., 2011, 2012).

LCBs AS LIPID MEDIATORS
Like glycerophospholipids, sphingolipids serve not only as a main
component of cell membranes, but also important signaling mol-
ecules (Lynch et al., 2009; Pata et al., 2010). S1P is produced in
animal cells by two SPHKs and is degraded either by S1P lyase or
S1P phosphatases (Figure 2A). S1P regulates a variety of devel-
opmental and disease processes in animals (Strub et al., 2010).
Many lines of evidence indicate that S1P is an intracellular mes-
senger acting directly on intracellular target proteins (Maceyka

et al., 2012). In addition, S1P is exported out of cells to mediate
signaling pathways through five specific G protein-coupled recep-
tors (S1RP1–S1RP5) on the plasma membrane (Maceyka et al.,
2012).

Sphingolipids are emerging as important mediators in plants
and accumulating evidence indicates that sphingolipid metabo-
lites, including LCBs, LCBPs, and ceramides, are involved in var-
ious signaling pathways in plants (Lynch et al., 2009; Pata et al.,
2010). Characterization of Arabidopsis deficient in sphingolipid
metabolism genes facilitates the understanding of signaling and
physiological functions of sphingolipid in plants. The key roles of
sphingolipids in PCD have been extensively investigated (Berkey
et al., 2012). For example, characterization of ceramide kinase
mutant (acd5) shows that ceramide induces plant PCD whereas
phosphorylated ceramide partially attenuates PCD (Liang et al.,
2003). Recent studies suggest that both LCB and LCBP are involved
in PCD (Shi et al., 2007; Alden et al., 2011). Mutation of a LCB1
subunit of serine palmitoyltransferase blocks accumulation of
LCBs in Arabidopsis and indicates that LCBs are involved in initi-
ating PCD through induction of ROS production in Arabidopsis
(Shi et al., 2007; Wang et al., 2008). LCBPs have been shown to
decrease ROS-induced PCD whereas unphosphorylated LCBs pro-
mote ROS-mediated cell death (Shi et al., 2007). LCB-induced
ROS production is also found to depend on NADPH oxidase Res-
piratory Burst Oxidase Homolog D (Peer et al., 2011). Recently, a
study indicates that another subunit of serine palmitoyltransferase,
LCB2a, is required for PCD, and MPK6 mediates downstream
signal in LCB-induced PCD (Saucedo-Garcia et al., 2011). These
results suggest that the balance between unphosphorylated and
phosphorylated form of sphingolipids may function as a rheostat
in regulation of PCD.

SPHK/PHYTO-S1P AND PLD/PA BOTH INVOLVED IN THE ABA
SIGNALING PATHWAY
One of the functions that have been studied for SPHK and
phyto-S1P is their roles in mediating ABA-promoted stomatal clo-
sure. ABA treatments increased SPHK activity in Arabidopsis and
drought stress induced the production of LCBPs in Commelina
communis (Ng et al., 2001; Coursol et al., 2003). Application of S1P
induces stomatal closure and inhibits stomatal opening (Ng et al.,
2001). Knockout of either SPHK1 or SPHK2 decreased the sensi-
tivity to ABA in Arabidopsis, whereas overexpression of SPHK1 or
SPHK2 increased ABA sensitivity (Worrall et al., 2008; Guo et al.,
2011). The involvement of LCBP in the ABA signaling in guard cells
is further supported by analysis of the LCBP phosphatase AtSPP1
mutant spp1 (Figure 2A). AtSPP1 is suggested to be involved in
regulation of LCBP level during ABA response. The spp1 plants
displayed increased sensitivity to ABA in stomatal closure due to a
defect in LCBP degradation in the mutant (Nakagawa et al., 2011).
Thus, LCBP levels regulated by SPHKs and AtSPP1 may play an
important role in the ABA signaling pathway.

Likewise, a number of studies have shown that PLD and PA
play important roles in signaling ABA-mediated stomatal closure
(Jacob et al., 1999; Zhang et al., 2004). PLD and PA promote open
stomata to close and meanwhile prevent the closed stomata from
opening (Jacob et al., 1999; Zhang et al., 2004). In Arabidopsis,
PLDα1-deficient plants displayed insensitivity to ABA, whereas
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FIGURE 3 | Proposed model for crosstalk between PLDα1/PA and

SPHK/phyto-S1P in ABA-mediated stomatal closure signaling

pathway. ABA may be perceived by the receptor (PYR/PYL/RCAR) in the
cytosol, leading to activation of SPHK to produce phyto-S1P which initiates
a cascade to activate PLDα1. PLDα1 hydrolyzes phospholipids to increase
PA level in membrane (plasma membrane and tonoplast). PLDα1-deprived
PA promotes the ABA effect through three targets: (i) PA binds to ABI1 and
tethers ABI1 to the membrane to inhibit its negative effect; (ii) PA
stimulates plasma membrane-localized NADPH oxidase to form secondary
messenger: ROS; (iii) Increased PA in tonoplast interacts with SPHK and
promotes its activity to form a positive loop. PLDα1/PA- and
SPHK/phyto-S1P-mediated signaling pathway activates ion channel activity,
leading to ion flux in guard cell and finally stomatal closure. Note that this
model summarizes the crosstalk between PLDα1/PA and SPHK/phyto-S1P
and their roles in ABA-mediated stomatal closure, not all ABA signaling
components are included in this model. Arrow indicates positive regulation,
bar indicates repression. Red arrow represents reactions which produce
secondary signaling molecules.

overexpression (OE) of PLDα1 resulted in increased sensitivity to
ABA (Sang et al., 2001a). PLDα1 regulates ABA signaling path-
ways through different interactions (Figure 3). PA binds to ABI1
phosphatase 2C, and this interaction inhibits the negative function
of ABI1 in ABA response and mediates ABA-promoted stomatal
closure (Zhang et al., 2004; Mishra et al., 2006). On the other
hand, PLDα1 interacts with Gα to mediate the ABA inhibition of
stomatal opening (Zhao and Wang, 2004; Mishra et al., 2006). In
addition, PLDα1-derived PA binds to and increases NADPH oxi-
dase activity to promote the production of ROS in ABA-mediated
stomatal closure (Figure 1; Zhang et al., 2009).

PA INTERACTION WITH SPHK TO PROMOTE LCBP
PRODUCTION
The findings that both PLD/PA and SPHK/phyto-S1P are involved
in stomatal closure raise an intriguing question of whether the
two lipid signaling processes interact to mediate plant responses to
ABA and stress. A recent study investigated the direct interaction of
PA with two Arabidopsis SPHKs (Guo et al., 2011). PA binds to both
Arabidopsis SPHKs and the interaction stimulates SPHK activ-
ity. The interaction was demonstrated by different approaches,
including lipid-filter binding, liposome binding, surface plasmon
resonance (SPR), and validated using PA-SPHK co-precipitation
from protoplasts (Figure 2B; Guo et al., 2011, 2012). PA has vari-
ous molecular species which differ in acyl chain length and degree
of saturation. PAs with 18:1/18:1, 16:0/18:1, and 16:0/18:2 acyl

chains bind strongly to both SPHKs, whereas 16:0/16:0, 8:0/8:0,
18:0/18:0, and 18:2/18:2 PAs bind poorly to SPHKs (Guo et al.,
2011).

The identification of SPHKs as molecular targets of PA indi-
cates that PA may mediate the ABA activation of SPHK in plants.
Indeed, in response to ABA, the LCBP level is lower in pldα1. In
addition, the application of PA increased the LCBP production in
protoplasts (Guo et al., 2012). These results are consistent with the
hypothesis that SPHK activation by ABA is mediated by PA. On the
other hand, in response to ABA, the PA production in sphk1-1 and
sphk2-1 was significantly lower than WT while overexpression of
SPHK increased PA production, suggesting that PLDα1 activation
depends on SPHK (Guo et al., 2012). Taken together, these results
indicate a co-dependence of PLD/PA and SPHK/phyto-S1P in the
production of PA and phyto-S1P lipid messengers (Figure 3).

SPHK/LCBP ACTING UPSTREAM OF PLD/PA
To delineate the signaling steps of PLDα1 and SPHKs in the ABA
signaling, PA and phyto-S1P were supplemented to the epidermal
peels of PLDα1 or SPHK -deficient plants. PA promoted stomatal
closure in PLDα1-KO or SPHK -KO leaves, whereas phyto-S1P
promoted stomatal closure in SPHK -KO but not in PLDα1-KO
mutant. Furthermore, the addition of 1-butanol, which suppresses
PA production by PLD, attenuated the effect of phyto-S1P-induced
stomatal closure (Guo et al., 2012). These results suggest that
phyto-S1P-mediated stomatal closure requires PLDα1, and that
SPHK/phyto-S1P acts upstream of PLDα1.

These enzymatic, genetic, physiological, and lipid analyses
indicate a positive interplay between the two lipid signaling
processes, SPHK/phyto-S1P and PLD/PA, in plant response to
stresses (Figure 3). ABA is produced under various stresses, such as
drought and high salinity. ABA activates SPHKs to generate phyto-
S1P which promotes the activation of PLDα1, possibly through
increasing the cytoplasmic Ca2+ concentration (Figure 3). PA pro-
duced by activated PLDα1 binds to SPHK and promotes SPHK
activity, forming a positive feedback loop in response to ABA. The
resulting increase in PA regulates downstream proteins includ-
ing ABI1 and NADPH oxidase in ABA-mediated stomatal closure
(Zhang et al., 2004, 2009; Mishra et al., 2006; Figure 3).

The interplay between PLDα1 and SPHK provides insights to
a mechanism by which stress signaling events are communicated
between the plasma and vacuolar membranes (Figure 3). The sub-
cellular localization of membrane-based lipid signaling is expected
to play an important role in regulation of enzyme activation,
generation of lipid messengers, and mediation of downstream
events (Li et al., 2009). It is not well understood how signaling
events between different subcellular compartments are coordi-
nated. In animals, acidic phospholipids including PA have been
shown to stimulate SPHK activity (Olivera et al., 1996). PA has
been implicated in promoting the intracellular translocation of
cytosolic murine SPHK1 to membrane regions that are enriched
in PA (Delon et al., 2004). By comparison, SPHKs in Arabidop-
sis are already associated with tonoplasts, and surface dilution
kinetics analysis indicates that PA stimulates SPHK activity by
promoting the substrate binding to the catalytic site of SPHK
(Guo et al., 2011). At present, the source and level of free LCBs
in the tonoplast are unknown. LCBs are synthesized in the ER
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and the level of free LCBs is very low in Arabidopsis. It might be
possible that LCBs are released from the catabolism of complex
sphingolipids by ceramidase activity. In addition, the level of free
LCBs may increase via de novo biosynthesis in response to stimuli.
For example, infection of Pseudomonas syringae triggered de novo
synthesis of phytosphingosine from sphinganine and phytosphin-
gosine constitutes about 5–8% of total LCBs in Arabidopsis leaves
(Lynch et al., 2009; Maceyka et al., 2012).

PLDα1 is present in both the soluble and membrane fractions
and it translocates from the cytosol to membranes in response to
stress (Ryu and Wang, 1998; Fan et al., 1999). In response to ABA,
SPHK is activated to produce phyto-S1P (possibly along with other
LCBPs) on the vacuolar membrane. Phyto-S1P does not activate
PLDα1 directly in vitro (Guo et al., 2012). It was shown that S1P
caused an increase in Ca2+ in response to ABA (Ng et al.,2001),and
thus phyto-S1P may increase cytoplasmic Ca2+ to promote PLDα1
translocation to the plasma membranes and tonoplasts. Ca2+ is
a key factor required for PLDα1 activity (Qin et al., 1997). Ca2+
promotes PLD translocation and its binding to the C2 domain
increases the protein association with membrane lipids such as
PC. This membrane association activates PLD to generate PA that
binds to SPHK to promote its activity, thus forming a positive
feedback loop.

PERSPECTIVES
The progress in understanding the crosstalk of signaling events
provides a functional arrangement of SPHK/phyto-S1P and
PLD/PA in transducing ABA signals in guard cells. Meanwhile,
the connections between the two lipid signaling processes raise
many questions that warrant further investigations. ABA signal-
ing involves multiple pathways and many regulatory elements. A

core pathway of ABA signaling has been established: ABA binds
to the receptor PYR/PYL/RCARs, leading to inhibition of negative
regulator type 2C protein phosphatases such as ABI1, resulting
in SNF1-related kinase 2 (SnRK2) activation involved in mediat-
ing downstream signaling (Klingler et al., 2010; Umezawa et al.,
2010). How would the SPHK/phyto-S1P- and PLD/PA-mediated
processes interact with the PYR/PYL/RCAR-ABI1-SnRK2 compo-
nents? PA has been shown to bind to and inhibit ABI1 (Zhang et al.,
2004). Would the PYR/PYL/RCAR-ABI1-SnRK2 components be
involved in the activation of SPHK and/or PLD? ABA is a key
stress hormone involved in plant response to various stresses. Is
the crosstalk between PLDα1/PA and SPHK/phyto-S1P involved
in other regulatory pathways in plant response to other stresses?
Both PA and LCBP have been implicated in decreasing ROS-
induced PCD, and different PLDs have been shown to promote
ROS production and response (Zhang et al., 2003, 2009). PLDs are
activated rapidly under various stress conditions. Would the acti-
vation of the plasma membrane-associated PLDs act upstream of
SPHKs under different stresses? In addition, multiple LCB kinases,
including AtLCBK1, SPHK1, and SPHK2, exist in Arabidopsis, and
double and triple mutants deficient in two or more of these kinases
can be made to help determine the role of these enzymes in the
production and function of LCBPs in plant growth, development
and response to stresses. Further study of the signaling events will
lead to a better understanding of how plants adapt to stresses and
changing environments.
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