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Plants are sessile and cannot move to appropriate hiding places or feeding grounds
to escape adverse conditions. As a consequence, they evolved mechanisms to detect
changes in their environment, communicate these to different organs, and adjust develop-
ment accordingly. These adaptations include two long-distance transport systems which
are essential in plants: the xylem and the phloem.The phloem serves as a major trafficking
pathway for assimilates, viruses, RNA, plant hormones, metabolites, and proteins with
functions ranging from synthesis to metabolism to signaling. The study of signaling com-
pounds within the phloem is essential for our understanding of plant communication of
environmental cues. Determining the nature of signals and the mechanisms by which they
are communicated through the phloem will lead to a more complete understanding of plant
development and plant responses to stress. In our analysis of Arabidopsis phloem exu-
dates, we had identified several lipid-binding proteins as well as fatty acids and lipids. The
latter are not typically expected in the aqueous environment of sieve elements. Hence, lipid
transport in the phloem has been given little attention until now. Long-distance transport
of hydrophobic compounds in an aqueous system is not without precedence in biological
systems: a variety of lipids is found in human blood and is often bound to proteins. Some
lipid–protein complexes are transported to other tissues for storage, use, modification, or
degradation; others serve as messengers and modulate transcription factor activity. By
simple analogy it raises the possibility that lipids and the respective lipid-binding proteins
in the phloem serve similar functions in plants and play an important role in stress and
developmental signaling. Here, we introduce the lipid-binding proteins and the lipids we
found in the phloem and discuss the possibility that they may play an important role in
developmental and stress signaling.
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PHLOEM CONTENTS, STRUCTURE, AND FUNCTION
Plants contain two long-distance transport systems: the xylem for
water and nutrient transport, and the phloem. During the last
10–15 years, the view of the phloem function has changed from
that of simple assimilate transport to a trafficking system for stress
signals and developmental regulators (Citovsky and Zambryski,
2000; Wu et al., 2003; Ding et al., 2003; Haywood et al., 2005).
It is now accepted that the phloem is a conduit system which is
crucial for the transport of mineral nutrients, plant viruses, virus-
induced silencing, defense against pathogen infection, and sig-
naling of environmental conditions, and developmental changes
(Lucas et al., 1995; Ryabov et al., 1999; Burton et al., 2000; Seo et al.,
2001; Yoo et al., 2004; Suárez-López, 2005; Kehr, 2006; Lough and
Lucas, 2006). It contains small molecules (Chen et al., 2001; Corbe-
sier et al., 2003; Maeda et al., 2006), peptides and proteins (Fisher
et al., 1992; Sakuth et al., 1993; Schobert et al., 1995; Kühn et al.,
1997; Marentes and Grusak, 1998; Kehr et al., 1999; Xoconostle-
Cazares et al., 1999; Haebel and Kehr, 2001; Hoffmann-Benning
et al., 2002; Giavalisco et al., 2006; Lin et al., 2009), nucleic acids
(Kühn et al., 1997; Ruiz-Medrano et al., 1999; Yoo et al., 2004;
Haywood et al., 2005), and lipids (Madey et al., 2002; Guelette

et al., 2007, 2012). Furthermore, phloem transport is likely a regu-
lated process, dependent on interactions between several proteins
or RNA and proteins (Xoconostle-Cazares et al., 1999; Aoki et al.,
2002, 2005; Yoo et al., 2004; Lee et al., 2005; Kehr and Butz, 2008;
Ham et al., 2009). Phloem movement occurs in the sieve elements,
which have evolved to optimize longitudinal flow by removing any
obstacles in the form of organelles and by increasing the porosity
of the cell walls at the longitudinal ends (van Bel and Knoblauch,
2000). While sieve elements may still contain nuclei, vacuole, and
organelles during their early development, those cell components
disintegrate leaving the sieve elements with only the plasma mem-
brane and a thin cytoplasm containing endoplasmic reticulum,
phloem-specific plastids, and a few, often dilated, mitochondria
(Shah and Jacob, 1969; Cronshaw, 1981; Behnke and Schulz, 1983;
Behnke, 1991; van Bel and Knoblauch, 2000). As a result, it had
long been assumed that most sieve-tube proteins are synthesized
in the companion cells and transported into the sieve elements via
plasmodesmata. However, recent findings of ribosome subunits in
sieve-tube elements have reopened the debate on whether a func-
tional protein synthesis machinery exists in the sieve elements
(Raven, 1991; Hayashi et al., 2000; Lin et al., 2009).
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LIPIDS IN THE PHLOEM
While the role of RNA, viruses, and many proteins in the phloem
is extensively studied, lipophilic compounds were not expected in
an aqueous environment like the phloem sap. Consequently, long-
distance lipid transport or signaling has been given little attention
until now. Yet, lipids ranging in complexity from simple lipids like
Jasmonic acid (JA) to phytosterols, to more complex glycolipids
have been described in the phloem of canola, Perilla, Arabidopsis,
cabbage, tomato, and tobacco among others (Madey et al., 2002;
Guelette et al., 2007, 2012; Behmer et al., 2011).

Lipids like oxylipins are synthesized in response to pathogen
attack and act as messengers during systemic acquired resistance.
One well studied example is the fatty acid derivative jasmonic acid
(JA), an oxylipin, which has been shown to be transported in the
phloem in response to pathogen infection (Schilmiller and Howe,
2005; Lough and Lucas, 2006; Thorpe et al., 2007; Truman et al.,
2007). It may act via a non-autonomous (slow; phloem-mediated)
and an autonomous (fast; possible electric or hydraulic signal; see
Koo and Howe, 2009) pathway. Three enzymes which are essential
for JA biosynthesis (allene oxide synthase, allene oxide cyclase, and
lipoxygenase) are also present in sieve elements, indicating that its
synthesis occurs, at least in part, within the sieve elements (Hause
et al., 2003).

Recently, Behmer et al. (2011) suggested the presence of phy-
tosteroids and cholesterol in the phloem sap. Thus far their role
remains unknown.

Additional experiments have shown that canola phloem sap not
only contains lipid droplets, but that the fatty acid composition of
these lipids is distinct from those typically found in membranes
(Madey et al., 2002) and includes short- and medium-chain as well
as odd-carbon-number fatty acids. This suggests that lipids are not
only present in the phloem but also that they are phloem-specific
rather than membrane degradation products.

Our analysis of phloem exudates harvested from 6-week-old
Arabidopsis thaliana (Guelette et al., 2012; see Materials and
Methods in Appendix and 8-week-old Perilla crispa, Hoffmann-
Benning et al., 2002) revealed the presence of lipids (Guelette et al.,
2007, 2012), several of which were unusual due to their shortness
or odd number of carbons (propanoic acid, nonanoic acid, dode-
canoic acid, tetradecanoic acid, pentadecanoic acid). Saturated,
even-numbered fatty acids make up 10–40% of the total fatty
acids in most naturally occurring lipids. Fatty acyl groups of less
than 16 carbons or odd-carbon-number are not typically present
in plant membranes and, thus, these fatty acids appear to be spe-
cific to the plant phloem. Yet their function remains unknown.
Though they could simply be transported in the phloem, a role
in pathogen response, or signaling has been discussed in the lit-
erature (Sanz et al., 1998; Hamberg et al., 1999). We showed that
these fatty acids are intrinsic to phloem exudates and suggest that
they are either transported in the phloem as one form of photoas-
similate and cell building blocks destined for sink tissues or, more
likely, as developmental signals. The question is: are there more
complex lipids in the plant phloem and could they also play a role
in long-distance signaling?

Thin-layer chromatography confirmed the presence of polar
lipids in the phloem exudate, several of which have retention
times different from typical leaf/membrane lipids. This suggests

that they are indeed not contaminants but may instead perform
separate functions. LC–MS was used to confirm the occurrence of
lipids and other hydrophobic compounds in exudates. Mass over
charge-based characterization of ions in conjunction with detec-
tion of at least two predicted MS/MS fragments using lipid profiler
and alternative manual interpretation of mass spectra suggests
the presence of species of phosphatidic acid (PA), lysophospha-
tidic acid (LPA), phosphatidylglycerol, phosphatidylinositol (PI)
plus its phosphates (PIPs), di- and triacylglycerols, and phos-
phatidylcholine (PC) in the phloem exudates (Guelette et al.,
2012).

Inositol-3-phosphate and PIP2 are important second messen-
gers in animals as well as in plants (Ananieva and Gillaspy, 2009;
Munnik and Vermeer, 2010); in plants phophatidic acid (PA) and
lysophosphatidic acid (LPA) also appear to play an important role
(Wang, 2004; Katagiri et al., 2005; Munnik and Testerink, 2009).
PA has been proposed to be involved in intracellular abscisic acid
(ABA), wound, and pathogen-related signaling/response (Katagiri
et al., 2005; Testerink and Munnik, 2005; Lee and Lee, 2008). So
far, there is no evidence about their long-distance transport and
action, which could potentially be via the phloem as representa-
tives of all three lipid groups (PIPs, PA, LPA) were identified in our
preliminary characterization of phloem lipids.

A second lipid group we identified were phosphatidyl cholines
(PC). In addition to their function as membrane components, PCs
may play a role in signaling through the generation of diacylglyc-
erols by PC-specific phospholipases. The resulting diacylglycerols
would be more saturated and have different activities compared to
PI-derived diacylglycerols. It has been suggested that PC may play
a role in intracellular signaling in prokaryotes, humans, and pos-
sibly even plants (Hunt, 2006). Our findings raise the possibility
that phloem lipids could play a similar role in plant long-distance
signaling.

EXAMPLES OF LONG-DISTANCE LIPID TRANSPORT AND
SIGNALING IN OTHER BIOLOGICAL SYSTEMS
The presence of hydrophobic compounds in an aqueous system
like the sieve elements, though unusual, is not unheard of in bio-
logical systems: other aqueous biological systems like the human
blood contain a variety of lipids, many of which play a crucial role
in human health. They are typically bound to proteins which can
serve multiple functions such as transport to other tissues for stor-
age, use, modification, or degradation. The best-known example
would be the lipid cholesterol. It is either bound to low-density
lipoproteins (LDL) and transported throughout the bloodstream
for uptake into cells and incorporation into membranes; or it is
bound to high-density lipoproteins (HDL) or within chylomi-
crons and moved to the liver for degradation (for a summary
see Nelson and Cox, 2008). Thus, the nature of the protein to
which the lipid is bound not only determines its direction of
transport but also its fate. Other proteins transport essential vit-
amins or play a role in signaling (Blaner, 1989; Glatz et al., 1995;
Charbonneau et al., 2009). In several cases lipid–protein com-
plexes serve as messengers and affect transcription factor activity
(Tontonoz et al., 1994; Nagy and Szanto, 2005). These mecha-
nisms are generally important in mammalian systems but their
possible importance in plants is virtually unexplored. They raise
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the possibility that lipids and the respective lipid-binding pro-
teins in the phloem serve similar functions in plants and play
an important role in stress and developmental signaling. Many
lipids (phosphatidic acid, phosphoinositides) are already known
to function as second messengers. However, virtually nothing is
known about their possible long-distance transport. It is conceiv-
able that these lipids are transported in the phloem in the form
of protein–lipid complexes. This mechanism of lipid signaling in
the plant through phloem transport is a new area of research
which is expected to contribute new concepts to plant develop-
ment. We hypothesize that plant phloem lipids are bound to and
transported by lipid-binding proteins using mechanisms similar
to those in the human blood. Consequently plant phloem lipid–
protein complexes may have regulatory and transport functions
similar to those in mammals and may play an important role in
stress related and developmental signaling beyond what is already
known about hormones like JA. The question remains: Are there
any phloem proteins which bind lipids and could serve as good
candidates for this function?

PUTATIVE LIPID-BINDING PROTEINS IN THE PHLOEM AND
THEIR POSSIBLE FUNCTION IN RELATION TO SIGNALING
Lipid-binding proteins in the phloem could have several roles:

(i) they could mediate the release of the lipid into sieve element
either by participating in the transport of lipids into the sieve
element or in its release from the membrane,

(ii) they could bind specific phloem lipids, thus facilitating
their solubilization in the exudate as well as their (targeted)
transport,

(iii) they could be part of a receptor which senses the lipid
(-signal) and transfers it out of the sieve element, or,

(iv) the protein could be the signal itself, with its activity
modulated by the bound lipid.

These possibilities remain to be tested, however, three known
examples of phloem lipid-binding proteins and predictions based
on homologies to known proteins support these options.

While many lipid-binding proteins have been identified in dif-
ferent plant species, only three have previously been described in
phloem exudates: DIR1, a lipid transfer protein (LTP) was shown
to play a role in systemic acquired resistance in Arabidopsis and
tomato (Maldonado et al., 2002; Mitton et al., 2009). Similarly, an
Acyl-CoA-binding protein has been identified in phloem exudates
from rice (Suzui et al., 2006). However, as of yet, no connection
has been made to phloem lipids. Representatives of both protein
classes have been found in the phloem as well as in other plant tis-
sues like the leaves. In both cases, the mechanism of their function
in the phloem remains unknown. A third example of a predicted
lipid-binding protein in the phloem is Flowering locus t (FT).
It belongs to the family of Phosphatidylethanolamine-binding
proteins (PEBPs), which also have a low affinity for Phosphatidyli-
nositol1. In animals, PEBPs play a role in neuronal development,
Alzheimer’s disease, and in the regulation of signaling pathways

1http://www.nextprot.org

like the MAP kinase pathway (Vallée et al., 2003; Zhao et al., 2011).
The PEBP homolog in the plant Antirrhinum appears to play a
role as a kinase regulator (Banfield and Brady, 2000). Whether FT
functions in a similar fashion and what its lipid-binding partners
are remains to be shown (Kikuchi et al., 2009; Danilevskaya et al.,
2011; Karlgren et al., 2011).

In our analysis of Arabidopsis phloem exudates we were able
to detect 14 putative lipid-binding proteins, 10 of which have
characteristics which could allow a function in lipid-based long-
distance signaling and are discussed below. Expression in the
phloem/companion cells for all but two of them has been shown
(Table 1; Mustroph et al., 2009; Guelette et al., 2012).

Two of the proteins identified in our phloem exudates are
characterized as lipases. Proteins are often included in that cat-
egory based on sequence similarity with known lipases. Lipases
are lipolytic enzymes which can function in membrane synthesis
and turnover or in signaling (Beisson et al., 2003). Lipases have
been implicated in salicylic acid signaling (Feys et al., 2001) and
wound response (Guan and Nothnagel, 2004). The first lipase-like
protein (At4g16820) is annotated as a phospholipase A (PLA-Iβ2),
a triacylglycerol lipase or DAD1-like acyl hydrolase. It acts in a
redundant manner together with other lipases in salt stress as well
as in wound and pathogen-induced production of Jasmonic acid
(Beisson et al., 2003; Ellinger and Kubigsteltig, 2010; Ellinger et al.,
2010)2. It contains one transmembrane domain suggesting that it
is anchored in the membrane. Thus, rather than participating in
long-distance transport of (signaling) lipids, it may assist in the
release of those lipids into the sieve element.

The second lipase-like protein, At1g29660 is annotated as a
GDSL lipase/fatty acyl transferase. It has been found in the nucleus,
ER, peroxisomes, and extracellular space and appears to be reduced
in response to drought (Huang et al., 2008; Ding et al., 2009). Its
function is unknown and may range from hydrolysis of triacyl-
glycerols to the fatty acid transfer between phosphatidylcholine
and sterols (cd01846)3. As for the DAD1-like lipase, the exact
enzymatic/lipolytic activity has yet to be characterized.

The phloem exudate also contains an aspartic protease. Some
aspartic proteases have the ability to cleave membrane proteins.
Their activity can sometimes be modulated by association with
certain membrane lipids. It has been proposed that apoplastic
aspartic proteases may cleave lipids off acyl-CoA-binding proteins
to act (in conjunction with DIR1) in pathogen response/signaling
(Xiao and Chye, 2011). Hence it appears more likely that they
serve in a localized process, for example in the release of lipids for
binding to DIR1 rather than in long-distance transport.

GRP17 has previously been identified in Arabidopsis pollen and
in seeds (Mayfield et al., 2001). It contains an oleosin domain. The
role of oleosins in the seed is to prevent lipid aggregation and con-
trol oil-body size (Mayfield and Preuss, 2000). It is conceivable that
it plays a similar role in the phloem sap, functioning to solubilize
lipids in an otherwise aqueous environment.

Another of the proteins in phloem exudates is the sub-
unit P of a phosphatidylinositol N -acetylglucosaminyltransferase

2http://www.ncbi.nlm.nih.gov
3http://www.ncbi.nlm.nih.gov/Structure/
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Table 1 | Lipid-binding proteins identified in Arabidopsis thaliana phloem exudates.

Identified proteins Accession number MW (kDa) mRNA in CCs Tryptic fragments

Lipase class 3 family protein At4g16820 58 No VPGIFADNDK

VDMKMSPYLK

Aspartic protease At4g04460 56 Yes LNDENADMVPLK

Glycine-rich protein (oleosin) GRP17 At5g07530 53 Yes KKKCMSGGMSGSEEGMSGSEGGMSSGGGSK

DNPPPAGLPPNSGAGAGGAQSLIKKSK

KSMSGGMSGSEEGMSGSEGGMSSGGGSK

Put. PIG-P At2g39435 50 No YDQQNFKSK

GDSL motiv Lipase/hydrolase At1g29660 40 Yes ITFSGQVENYK

Annexin* At1g35720 36 Yes TGTDEGALTR

YGDDHGEEILK

TLDKELSNDFER

TSTQLLHAR

14-3-3-like protein GF14 epsilon psi At1g22300 28 Yes ILSSIEQK

At2g10450 9 DSTLIMQLLP

DSTLIMKILR

Lipid-associated family protein At4g39730 20 Yes IYDKDGDYIGIK

Major latex protein/Bet v I like protein* At1g70890 18 Yes SFAFTLQVTPK

VLEGDLMNEYK

NKIEAVDPEK

IEAVDPEK

EIDEHLLAEE

Bet v 1 allergen-like protein At1g23130 18 Yes ERIEAVDQEK

VGSVIFWNYAIDGQPK

Proteins marked with an asterisk have previously been identified in phloem exudates. Data were extracted from Guelette et al. (2012); occurrence of mRNAs in

companion cells (CC) is based on findings by Mustroph et al. (2009).

(PIG-P), which catalyzes the transfer of N -acetyl glucosamine to
phosphatidyl inositol in the first step of the glycosylphosphatidyli-
nositol (GPI)-anchor synthesis. GPI anchors are glycolipids which
anchor proteins to membranes (Watanabe et al., 2000). In ani-
mals, GPI anchors may interact directly with receptor proteins in
the signaling of neural and brain development (Peles et al., 1997;
Ferrando-Miguel et al., 2004). Only few GPI-anchored proteins
have been found in plants. They include arabinogalactan proteins
(AGPs), which have been shown to contain a classical C-terminal
GPI anchor signal sequence (Schultz et al., 1998): upon synthe-
sis in the ER they are secreted into the apoplast, where the AGPs
could be cleaved by phospholipases and act as signal molecules.
It is possible that GPI-anchored proteins participate in cell-to-cell
or even long-distance interactions.

Annexins have been shown to bind phospholipids/membranes
and are involved in Ca2+-signaling as well as callose formation
(Andrawis et al., 1993; Mortimer et al., 2008). Expression of Ara-
bidopsis annexin 1 is upregulated in response to salt and water
stress as well as salicylic acid and ABA (Konopka-Postupolska
et al., 2009). Similarly, a Medicago truncatula annexin-like pro-
tein AnxMs2 is induced under stress conditions (salt, osmotic,
drought) and localizes in the nucleolus even though it contains no
typical nuclear localization signal. This suggests that it could play
a role in membrane trafficking and intracellular signal transduc-
tion (Kovács et al., 1998). Annexin transcript levels vary depend-
ing on tissue type and age, suggesting specific purposes during
different developmental stages. They possibly play a role in tip

growth, gravitropic response, mechanical stress, Ca2+-signaling
as well as callose formation and cold, oxidative, saline, and ABA
stress responses (Andrawis et al., 1993; Mortimer et al., 2008).
Plant annexins have been identified in the plant phloem before
(Barnes et al., 2004; Giavalisco et al., 2006). Yet their role in long-
distance transport is not clear. It is conceivable that they function
in phospholipid-based long-distance signaling processes.

14-3-3 proteins are small conserved proteins, which play an
important role in regulatory processes and signal transduction.
In animal systems, free Raf kinases appear to be bound to 14-3-3
proteins, however, once they bind to liposomes/membranes, the
14-3-3 protein dissociates (Hekman et al., 2006). This suggests
that 14-3-3 proteins may modulate binding of proteins to lipids.
In plants they activate transcription by binding to activators in
the nucleus (Ferl, 1996; Fu et al., 2000; Emi et al., 2001). Taoka
et al. (2011) have shown that they can act as receptors for rice
Hd3a. Hd3a is the rice homolog to FT, a putative phosphatidyl
ethanolamine-binding protein (PEBP) which travels in sieve ele-
ments and is essential for the induction of flowering (Corbesier
et al., 2007; Lin et al., 2007; Tamaki et al., 2007). Many PEBPs act as
kinase regulators in signaling pathways in both animals and plants
(Banfield and Brady, 2000; Zhao et al., 2011). This suggests that
rather than transporting lipids/lipid signals 14-3-3 proteins may
act as receptors for lipid/protein signals.

The major latex protein-like protein and the Bet v 1 allergen-
like protein belong to the Bet v 1 like superfamily. Members of
this superfamily can be major plant allergens but also play a role
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in the response to biotic and abiotic stress and in development
(Mogensen et al., 2002). The Bet v 1 superfamily contains proteins
with low sequence similarity but a common hydrophobic fold. This
fold has high structural similarity with the cholesterol-binding fold
of the human MLN64 protein suggesting the possibility of a role
in phytosteroid transport (Neudecker et al., 2001). Members of
this superfamily include ceramide transfer proteins, phosphatidyl-
choline transfer proteins, phosphatidyinositol transfer proteins,
acetyl-CoA hydrolases, and HD-Zip transcription factors from
plants (Ariel et al., 2007; Radauer et al., 2008). The discovery of
representatives of the proteins in phloem exudates suggests that
they may not just play a role in transmembrane lipid transport
but in long-distance lipid transport and signaling as well. While
their lipid-partners remain to be identified it is intriguing that
phosphatidylcholine and phosphatidylinositol transfer proteins
belong into this group of proteins while the respective lipids are
also present in phloem exudates.

One of the smallest putative lipid-binding proteins we iden-
tified in phloem exudates is a hypothetical protein character-
ized as a lipid-associated family protein (PLAFP). It contains
a PLAT/LH2 domain. The proposed function of this domain
is to mediate interaction with lipids or membrane-bound pro-
teins. While the function of this domain is yet unknown, proteins
containing it appear to be stress-induced. To examine the lipid-
binding properties of PLAFP, we cloned PLAFP into the pET15b
expression vector (Novagen) and overexpressed it in E. coli host
strain OrigamiB(DE3)pLysS (Novagen; see Appendix). The pro-
tein was purified and lipid-binding assessed using lipid overlay and
lysosome-binding assays (Figure 1; Awai et al., 2006; Lu and Ben-
ning, 2009; see Appendix). Both tests showed that PLAFP binds
phosphatidic acid (PA) but not the other tested phospholipids.

This is the first example where a phloem lipid-binding pro-
tein (PLAFP), and its respective lipid partner (PA) have both been
found within phloem exudates and suggests that PA is indeed
transported within or into the phloem while bound to a protein.
Whether the function of this protein is that of loading/unloading
the lipid into and out of the phloem, as a receptor or as a transport
molecule, and whether it has a true signaling function remains to
be shown.

Our detection of these lipids and a lipid-binding protein
with specific PA-binding properties suggests that lipids and long-
distance lipid signaling may play a larger and more complex role
in the plant than previously thought and should be explored.

CONCLUSION
We and others have been able to detect several fatty acids and lipids
in phloem exudates, some of which are known factors in intracel-
lular signaling (PA, PIP, and PC). In addition, we find proteins
with the predicted, or in some cases known, ability to bind and

FIGURE 1 | Lipid-binding assays. (A) Protein–lipid overlay assay using
purified PLAFP. Ten nanomole of selected phospholipids were spotted on a
hybond-C membrane and overlaid it with 1 μl/ml purified PLAFP. PE,
phosphatidyl ethanolamine; PA, phosphatidic acid; PC, phosphatidyl
choline; PS, phosphatidyl serine; PG, phosphatidyl glycerol; PI, phosphatidyl
inositol. (B) Liposome binding assay using purified PLAFP. Liposomes were
prepared from PC, PA, or PC:PA (1:1, w/w). Bound protein was detected by
antibody against the His-tag.

transport these lipids and with a role in intracellular signaling
(i.e., Annexin; Andrawis et al., 1993).

Together, this suggests that phloem lipids may not only be
involved in intracellular signaling but also play an important role
in long-distance lipid signaling. We postulate that the lipids may
be released, possibly from membranes, in response to an environ-
mental stimulus (lipases, aspartic protease) followed by transport
(PLAFP, annexin, Bet v 1-like proteins) into and throughout the
phloem and binding to a receptor at the target tissue (PLAFP,
14-3-3 proteins).

It is clear that even though lipids and lipid-binding proteins
in the phloem have been studied very little, those that have been
studied in other plant tissues, have a significant impact in sig-
naling. However, the mechanisms of lipid uptake, translocation,
and action are largely unknown suggesting that this aspect of
phloem transport needs to be studied further. Lipid signaling in
the plant through phloem transport is a new area of research which
is expected to contribute new concepts to plant development.
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APPENDIX
MATERIALS AND METHODS
Harvest of phloem exudate
Phloem exudate from 6-week-old Arabidopsis plants using the
EDTA-facilitated method described in Guelette et al. (2012). In
short, leaves were cut at the base of petiole under 20 mM K2-
EDTA, pH 7.0, and incubated in microtubes containing 1.2 ml of
the same solution for 1 h. After 1 h the solution was discarded. The
petioles were washed thoroughly and placed in a new microtube
containing 1.2 ml deionized water. Exudates were collected for 6–
8 h in a dark, humid atmosphere, immediately frozen in liquid
nitrogen, lyophilized, and stored at −80˚C.

Analysis of proteins in the phloem exudates
Phloem exudates from 20 leaves per replicate (three repli-
cates total) were subjected to 15% SDS-polyacrylamide gel elec-
trophoresis. Protein bands were excised and digested with trypsin
according to Shevchenko et al. (1996). For liquid chromatogra-
phy/mass spectrometry (LC–MS/MS) tryptic fragments were dis-
solved in 2% ACN/0.1% formic acid. Analysis was performed on a
Capillary LC system (Waters Corp., Milford, MA, USA) coupled to
a LCQ DECA ion trap mass spectrometer (Thermofinnigan, San
Jose, CA, USA) equipped with a nanospray ionization source. The
sample was trapped onto a Peptide Cap Trap (Michrom BioRe-
sources, Auburn, CA, USA) and flushed onto a 5 cm × 75 μm
ID picofrit column packed with 5 μm ProteoPep C18 material
(New Objective, Woburn, MA, USA), and eluted with a gradient
of 2–95% ACN in 0.1% formic acid at a flow rate of 200 nl/min
for 60 min. Peptides/proteins were identified using the programs
SEQUEST, MASCOT, or gpm.org. Carbamidomethyl Cys was set
as fixed modification and oxidation of Met was allowed. Up to two
missed tryptic sites were permitted. Peptide tolerance was set to
2.5 Da and MS/MS tolerance was set to 0.8 Da. Positive identifica-
tion required at least two unique peptides per proteins counting
only peptides with significant scores (95% confidence per peptide;
>2.5 for SEQUEST). Three proteins with a single peptide identifi-
cation were included due to the fact that their mass corresponded
to the predicted size from the gel and they were seen in at least
two independent preparations. Database searches using individ-
ual tryptic fragments were performed using the BLAST searches
at NCBI (http://www.ncbi.nlm.nih.gov/blast).

Analysis of lipids in phloem exudates
Phloem exudates were phase partitioned against chloro-
form:methanol (1:1, v/v), concentrated under N2 and submit-
ted to LC–MS. Lipid analysis was performed using a Waters
LCT Premier mass spectrometer (LC-TOF–MS) with multiplexed
CID (collision-induced dissociation at 20, 35, 50, 65, and 80 V)
and a gradient from 10% A (10 mM Ammonium formate) to
99% B (acetonitrile:isopropanol; 1:2) on the column described
above using both positive and negative ion mode. Data are
representatives of three biological replicates.

Protein expression and purification
A cDNA clone for PLAFP (At4g39730), U21720, was obtained
from Arabidopsis Biological Resource Centre, Ohio State Uni-
versity (Columbus, OH, USA). The coding region of PLAFP,

excluding 69 nucleotide region encoding the 23 amino-acid pre-
dicted signal peptide, was PCR amplified using the forward
primer, 5′-GCGCATATGGAAGATGATCCAGACTGTGTATACA-
3′ and reverse primer,5′-GCGCATATGTTAAACGACCCAAGAAA
GCTTTTTCCG-3′ which introduced NdeI sites at both ends of
the PCR product. The PCR product was cloned into pGEMT-
easy vector (Promega), and subcloned into pET15b expression
vector (Novagen) using NdeI site, to generate the expression
clone, pET15b-PLAFP. E. coli host strain OrigamiB(DE3)pLysS
(Novagen) was transformed with pET15b-PLAFP and the trans-
formants were selected by Amp, Kan, Cm, and Tet resistance.
Protein expression was induced by adding IPTG up to the final
concentration of 0.5 mM. Protein was extracted and purified using
the HisLink™resin (Promega) using the HEPES buffers containing
different concentrations of imidazole, following the manufac-
turer’s protocol. Purification steps are shown in Figure A1 below.
The purified protein was exchanged into 10 mM KH2PO4 (Lu and
Benning, 2009) using a PD10 column (GE healthcare).

PROTEIN–LIPID OVERLAY ASSAY
A phospholipid strip was prepared by spotting 10 nmol of different
phospholipids (Avanti Polar Lipids) onto a Hybond-C membrane
(GE Healthcare). Protein–lipid overlay assay was performed as
described (Awai et al., 2006). The lipid strip was blocked with
the blocking buffer (3% BSA in TBST, 10 mM Tris–HCl, pH 8.0,
150 mM NaCl, 0.2% Tween 20) for 1 h and then incubated in
the blocking buffer containing purified PLAFP (1 μg/ml) at 4˚C
overnight. The membrane was washed with TBST twice and incu-
bated in the blocking buffer with Anti-polyHis mouse monoclonal
antibody (Sigma) at 1:1000 dilution for 2 h at room tempera-
ture. The membrane was washed twice with TBST and incubated
in the blocking buffer with horseradish peroxidase-conjugated

FIGURE A1 | Purification of PLAFP. (Top) SDS-PAGE gel for different
fractions of purification of PLAFP-His. M, molecular weight marker; CL,
cleared lysate; FT, flow-through; W1, wash fraction; E1–E6, elution
fractions. (Bottom) Western blot analysis for the above listed factions using
Anti-His antibody to visualize PLAFP-His.
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anti-mouse antibody (BioRad) at 1:10,000 dilution for 1 h at room
temperature. The membrane was washed twice with TBST and
detection was done using a chemiluminescence detection system
(Thermo scientific).

LIPOSOME BINDING ASSAY
Liposomes were prepared using PC, PA, or a mixture of
PC and PA, following the method described in (Awai et al.,

2006). Liposomes (250 μg) were mixed with 1 μg of puri-
fied PLAFP and TBS (50 mM Tris–HCl, pH7.0, 0.1 M NaCl)
to make 100 μl solution. The mixture was incubated at 30˚C
for 30 min, followed by centrifugation at 10,000 × g for 10 min
at 4˚C. The pellet was washed twice with ice-cold TBS and
then mixed with SDS-PAGE sample buffer. Western blot analy-
sis was done using the antibodies and detection system mentioned
above.
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