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Diacylglycerol kinase (DGK) is a pivotal enzyme that phosphorylates diacylglycerol (DAG)
to form phosphatidic acid (PA). The production of PA from phospholipase D (PLD) and the
coupled phospholipase C/DGK route is an important signaling process in animal and plant
cells. In this study, we report a genomic analysis of eight putative rice DGKs encoded
by a gene family (OsDGKs) grouped into three clusters. To further investigate the func-
tions of the OsDGKs, a double-stranded RNA (dsRNA)-induced RNA silencing method was
established. Introduction of in vitro-synthesized dsRNAs corresponding to a unique or con-
served region of OsDGKs into rice protoplasts abolished or diminished the expression of
individual or multiple OsDGK genes. Suppressing the expression of OsDGKs resulted in a
distinct depletion of the transcripts of the defense gene OsNPR1 and the salt-responsive
gene OsCIPK15. Our primary results suggest that OsDGKs are involved in the signaling of
stress responses.
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INTRODUCTION
Phospholipase C (PLC) catalyzes the hydrolysis of phosphatidyli-
nositol 4,5-bisphosphate [PtdIns(4,5)P2] to produce diacylglyc-
erol (DAG), which is phosphorylated to phosphatidic acid (PA) by
diacylglycerol kinases (DGKs; Arisz et al., 2009). In animal cells,
DAG and PA are important signaling molecules. DGK is thought
to act as a conversional switch with two functional implications:
the termination of DAG signaling and the initiation of PA sig-
naling (Frere and Paolo, 2009). However, no direct DAG target
(such as PKC in animal cells) has been found in plants, and the
role for DAG as a plant signaling molecule has yet to been con-
firmed (Munnik and Testerink, 2009). In contrast, PA generated
from both the PLD and PLC/DGK pathways is emerging as a stress
signal molecule in plants (Munnik and Testerink, 2009; Hong et al.,
2010; Zhang et al., 2010). PLD-derived PA has been found to regu-
late a series of developmental and environmental responses via its
downstream targets (Li et al., 2009; Zhang et al., 2010). Relatively
little genetic evidence for PA from PLC-coupled DGK regulating
signaling in plant cells has been found (Munnik and Testerink,
2009).

Diacylglycerol kinase activity has been reported in several
plant species, including tobacco, wheat, tomato, and Arabidop-
sis (Kamada and Muto, 1991; Lundberg and Sommarin, 1992;
Wissing and Wagner, 1992; Katagiri et al., 1996; Snedden and
Blumwald, 2000). Recently, multiple DGK-encoding genes have
been isolated from plants (Snedden and Blumwald, 2000; Gómez-
Merino et al., 2005; Chen et al., 2007). In Arabidopsis, AtDGK2 and
AtDGK7 have been biochemically characterized (Gómez-Merino
et al., 2004, 2005). A hydrophobic segment at the N-termini of
AtDGK1 and AtDGK2 is necessary to target the resulting proteins
to endoplasmic reticulum (ER) membranes (Vaultier et al., 2008).

In rice, pharmacological evidence indicates that PLC/DGK-
mediated signaling is required for a benzothiadiazole-induced

oxidative burst and hypersensitive cell death, and the tran-
scription of one OsDGK is induced during this process (Chen
et al., 2007). No genomic analysis of the rice DGK family
has been reported. In this study, we report that OsDGKs are
grouped into three clusters (I, II, and III) based on gene archi-
tecture, evolutionary relationships, and sequence identity. The
transcription of OsDGKs was characterized using RT-PCR and
real-time PCR, and their expression levels following treatment
with xylanase or salt were analyzed. We established a transient
double-stranded RNA (dsRNA)-induced RNA silencing assay
that was used for rapid analysis of OsDGK functions in stress
responses.

MATERIALS AND METHODS
SUSPENSION CELL CULTURES AND TREATMENTS
Rice (Oryza sativa L. Nipponbare ssp. japonica) suspension cells
were initiated from embryogenic calli induced from mature rice
scutella. The cells were grown in 100-ml conical flasks contain-
ing Murashige and Skoog liquid medium supplemented with
3% sucrose and 2 mg/l 2,4-D, and incubated on a rotary shaker
(100–120 rpm) at 26 ± 2˚C in darkness. The suspension cells were
subcultured every 7 day.

Fresh suspension cells were collected by centrifugation after
subculture for 4 to 5 day, and then treated with 200 μg/ml xylanase
(Trichoderma viride; Fluka Bio-Chemika).

RICE SEEDLING GROWTH AND PROTOPLAST ISOLATION
Rice seedlings were grown in a growth room at 27˚C for 2–3 weeks.
Seedlings of 5–8′′ high were used for protoplast isolation accord-
ing to the method of Sheen (2001) with modifications. Stems,
including the sheaths of young seedlings, were cut into ∼0.5–
1.0 mm segments using a razor blade, and immediately placed in
a Petri dish containing K3 medium (see Table A1 in Appendix)
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supplemented with 1.5% cellulase R-10 (Yakult Honsha, Japan)
and 0.3% macerozyme R-10 (Yakult Honsha). The segments were
vacuum-infiltrated for 1 h at 20 mmHg and digested in darkness
with gentle shaking (∼40 rpm) at room temperature for about 4 h.
Following the incubation, the enzyme solution was gently removed
using a glass pipette, and the same volume of W5 solution (154 mM
NaCl, 125 mM CaCl2, 5 mM KCl, 2 mM MES, 5 mM glucose, pH
5.6) was added to the Petri dish for further shaking (∼80 rpm) for
1 h to release the protoplasts. Both the enzyme solution and the
W5 solution were filtered through a 35- to 75-μm nylon mesh.
The protoplasts were collected by centrifugation at 150 × g for
4 min at room temperature. The pelleted protoplasts were washed
twice with W5 solution and counted under a microscope using a
hemocytometer.

STRESS TREATMENTS
Protoplasts (1 × 105) were incubated in a six-well dish with each
well containing 2 ml of WI culture medium (500 mM mannitol,
4 mM MES, 20 mM KCl, pH 5.6) supplemented with 150 μg/ml
xylanase. For salt treatment, protoplasts (1 × 105) were incubated
in modified WI culture medium containing 50 mM NaCl (400 mM
mannitol, 4 mM MES, 20 mM KCl, 50 mM NaCl, pH 5.6). WI cul-
ture medium was used as a control. The protoplasts were incubated
at 28˚C in darkness for the indicated times, followed by harvesting
with centrifugation at 200 × g for 5 min.

RNA ISOLATION, RT-PCR, AND REAL-TIME PCR
Total RNAs were isolated from suspension cells or protoplasts
using Trizol reagent according to the manufacturer’s protocol
(Takara, Japan). Reverse transcription was performed using Prime
Script™RT Reagent Kit (Takara). RT-PCR conditions were as fol-
lows: denaturing at 95˚C for 5 min, followed by 30 cycles of 95˚C for
30 s, 55˚C for 30 s, and 72˚C for 30 s, and a final extension at 72˚C
for 5 min. The primers used for RT-PCR analyses are described in
Table A2 in Appendix. The OsGAPDH gene was amplified as an
internal control.

Real-time PCR conditions were as follows: denaturing at 95˚C
for 30 s, followed by 40 cycles of 95˚C for 5 s, 58˚C for 10 s, and
72˚C for 10 s, and a final extension at 72˚C for 5 min. The primers
used for real-time PCR analyses are described in Table A3 in
Appendix. The expression level of the OsActin gene detected with
actin-specific primers was used to standardize the RNA sample for
each real-time PCR. The real-time PCR was performed according
to the manufacturer’s protocol (SYBR Premix Ex Taq™; Takara)
in an ABI PRISM 7500 real-time PCR system.

IN VITRO SYNTHESIS OF dsRNA
In vitro synthesis of dsRNA was carried out according to the
method of Zhai et al. (2009) with minor modifications. DNA tem-
plates were synthesized by PCR from rice cDNA and engineered
to contain the minimal T7 RNA polymerase promoter sequence

FIGURE 1 | Phylogenetic analysis of the DGK family in rice and

Arabidopsis. Accession numbers for the DGKs are as follows: AtDGK1
(At5g07920), AtDGK2 (At5g63770), AtDGK3 (At2g18730), AtDGK4
(At5g57690), AtDGK5 (At2g20900), AtDGK6 (At4g28130), and AtDGK7
(At4g30340); OsDGK1 (Os04g54200), OsDGK2 (Os08g08110), OsDGK3

(Os02g54650), OsDGK4 (Os12g38780), OsDGK5 (Os03g31180),
OsDGK6 (Os08g15090), OsDGK7 (Os01g57420), and OsDGK8
(Os12g12260). At, Arabidopsis thaliana; Os, Oryza sativa. The
phylogenetic analysis was performed with the neighbor-joining method
using the MEGA program.
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(TAATACGACTCACTATAGGGAGG) at both the 5′ and 3′ ends.
The primers used to amplify DNA from the targeted genes are
listed in Table A4 in Appendix. The PCR conditions were as fol-
lows: denaturing at 94˚C for 5 min, followed by 32 cycles of 94˚C
for 30 s, 62˚C for 45 s, and 72˚C for 1 min, and a final extension at
72˚C for 10 min. dsRNAs were synthesized in vitro using the Ribo-
MAX™Large Scale RNA Production Systems T7 Kit (Promega)
according to the manufacturer’s recommendations. DNA tem-
plates were removed using RNase-free DNase (Promega). dsRNA
was purified using the RNeasy kit (Qiagen). The dsRNA was dis-
solved in DEPC-treated H2O, and its yield was measured using a
UV spectrometer. Typical yields of RNA from 1 μg of DNA tem-
plate were in the 80- to 100-μg range. The dsRNA was separated
on a 1% agarose gel to check its integrity and size.

To prepare the fluorescent dsRNAs, a 40-bp of dsRNA directed
against OsPLDα1 was synthesized, and labeled with FAM fluores-
cence at the 5′ end of sense strand. The sense and antisense strands
of dsRNAs were: 5′-AGGCGCCACCAAGGUGUAUUCUACCA
UUGAUCUGGAGAAA (sense); 5′-UUUCUCCAGAUCAAUGGU
AGAAUACACCUU GGUGGCGCCU (antisense). The transfec-
tion of the dsRNA was done according to the protocol by the man-
ufacturer (GenePharma, China). The fluorescence was visualized
under a confocal microscope (TCS SP2, Leica, Germany).

TRANSFECTION OF PROTOPLASTS WITH dsRNAs
Protoplasts (1 × 106 ml−1) in W5 solution were incubated on ice
for 30 min. The protoplasts were pelleted and resuspended at
1 × 106 ml−1 in MMg solution (0.6 M mannitol, 15 mM MgCl2,
4 mM MES, pH 5.6). dsRNA (5–10 μg) was added to 100 μl of pro-
toplasts (1 × 105 in MMg solution) to which an equal volume of
PEG solution [40% (v/v) PEG4000, 0.4 M mannitol, 0.1 M CaCl2]
was gradually added, and the mixture was incubated at room
temperature in darkness for 15 min. The transfected protoplasts
were collected by centrifugation for 2 min at 150 × g after diluting
the transfection mixture with 600 μl of W5 solution. The proto-
plasts were resuspended in 1 ml of W5 solution and incubated in
a six-well culture plate at 28˚C in darkness for the indicated times.

RT-PCR ANALYSIS OF GENE EXPRESSION IN RNAi PROTOPLASTS
At the end of the transfection, the protoplasts were collected by
centrifugation for 2 min at 150 × g. Total RNAs were isolated from
protoplasts with the Trizol reagent according to the manufacturer’s
protocol (Takara). Reverse transcription was performed using the
Prime Script™RT reagent Kit (Takara). The primers used for
RT-PCR analyses are described in Table A2 in Appendix. The gene-
silencing effect of the dsRNA was visualized in a 1% agarose gel,
comparing the relative expression of RNAi-targeted genes to that
of OsGAPDH. All photographs were taken in the Bio-Rad UV-Gel
documentation system using Quantity-One analysis software.

GENOMIC SEARCH AND SEQUENCE ANALYSIS
To identify DGK gene homologs in rice, BLAST searches were
performed using the reported sequences of OsDGK (Os04g54200;
Zhang et al., 2008) and AtDGK (Gómez-Merino et al., 2004) at
the TIGR1 and NCBI2 web sites. Sequences of rice and Arabidopsis

1http://rice.plantbiology.msu.edu
2http://www.ncbi.nlm.nih.gov/

DGK (Gómez-Merino et al., 2004) proteins were aligned using
CLUSTAL X (ver. 1.83), and a phylogenetic tree was constructed
with the neighbor-joining method using the MEGA program3.

DOMAIN ANALYSIS
Searches for conserved domains in the OsDGK proteins were
carried out using SMART4 and PFAM5

RESULTS
THE DGK FAMILY IN RICE
To identify members of the DGK family in rice (O. sativa),
sequence information from Arabidopsis and rice was used to per-
form searches of relevant DNA databases and protein domains.
Text searches using the keyword “diacylglycerol kinases” were also
performed. Eight putative genes were identified in rice using these
approaches. The obtained sequences were further analyzed for
their potential to encode a DGK using the programs PFAM and
SMART. To study the evolutionary relationships between differ-
ent DGK members, the MEGA program was used to analyze the
phylogenetic relationships of DGKs from rice and Arabidopsis
(Figure 1). The results indicate that OsDGKs fall into three phylo-
genetic clusters, as also described for the AtDGKs (Gómez-Merino
et al., 2004). Cluster I comprises OsDGK (4, 5, 8), and its closest
homologs are AtDGK (1, 2); cluster II contains OsDGK (3, 6), and
AtDGK (1, 4, 7 ) are within the same group; finally, the isoforms
OsDGK (1, 2, 7 ) fall into cluster III, along with AtDGK (5, 6).

PROTEIN DOMAINS IN OSDGKs
Domain analyses using the SMART and PFAM databases revealed
that the rice DGK family contains a catalytic domain, an accessory
domain, a C1 domain, and a PPR domain (Figure 2). In eukaryotic
DGKs, the kinase domain contains a conserved catalytic domain
with a presumed ATP binding site, and an accessory domain to
make contact with the catalytic domain (Gómez-Merino et al.,

3http://www.megasoftware.net
4http://smart.embl-heidelberg.de/
5http://pfam.sanger.ac.uk/search.

FIGURE 2 | Schematic presentation of the structure of OsDGK

proteins. Conserved domains were identified by SMART and are
highlighted in different colors.
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2004; Arisz et al., 2009). The C1 domain contains a tandem Cys-
rich sequence, which was first identified in PKC as binding to
DAG and phorbol esters (PE; Azzi et al., 1992). This domain was
suggested to exist in Arabidopsis DGKs (AtDGK1 and AtDGK2;
Gómez-Merino et al., 2004; Arisz et al., 2009). The PPR (pen-
tatricopeptide repeat) domain has been proposed to mediate

FIGURE 3 | RT-PCR analysis of OsDGK transcripts in rice cells treated

with xylanase. Suspension cells were treated with 200 μg/ml xylanase for
the indicated times, and OsDGK transcripts were monitored by RT-PCR.
Approximately 0.1 μg of total RNA was used in each PCR. OsDGK6 was
undetectable in cells with or without xylanase treatment. The OsGAPDH
gene was used as an internal control.

macromolecular interactions. More than 400 genes encoding PPR
proteins have been reported to exist in Arabidopsis, and most are
predicted to reside in either mitochondria or chloroplasts (Small
and Peeters, 2000; Lurin et al., 2004).

All of the OsDGKs were found to contain a catalytic domain
and an accessory domain. In addition, OsDGK (4, 5, 8) harbor two
C1 domains, whereas OsDGK6 has four putative PPR domains
(Figure 2). To our knowledge, among the reported plant DGKs,
only OsDGK6 contains a PPR domain. It should be noted that
OsDGK6 could be a unique (or putative) OsDGK, according
to protein structure analysis (Figure 2), but it was nevertheless
grouped into the same cluster (II) as OsDGK3 in a bioinformatics
analysis (Figure 1). A similarity analysis revealed the highest sim-
ilarity between OsDGK6 and OsDGK3 (Table A5 in Appendix).
In addition, we isolated all OsDGK cDNAs except for that of
OsDGK6. RT-PCR analysis did not detect the OsDGK6 tran-
script under normal or stress conditions (Figure 3); therefore,
the existence and function in rice of this OsDGK have yet to be
determined.

XYLANASE-INDUCED EXPRESSION OF OsDGK IN CELLS
The expression of OsDGK genes in suspension cells was analyzed
using RT-PCR. Under control conditions, the transcription of
six of the eight OsDGKs (all except for OsDGK2 and OsDGK6)
was confirmed. The activation of PLC and DGK pathway has
been reported in tomato cells treated with the fungal elicitor
xylanase (Laxalt et al., 2007). We therefore explored whether

FIGURE 4 | Real-time PCR analysis of the expression of OsDGK (1, 2, 3, 7 ). Rice protoplasts were treated with 150 μg/ml xylanase. The transcripts of four
OsDGK genes were monitored with real-time PCR.The data shown are averages of three replicates, each with three PCR samples from the same cDNA archive.
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expression of OsDGK(s) are activated by the xylanase. Treatment
of cells with 200 μg/ml xylanase led to increases in the tran-
scription of OsDGK (1, 2, 3, 4). Although the basal transcript
levels of OsDGK (5, 7, 8) were high, their transcription was not
affected by xylanase treatment. The transcription of OsDGK6 was
undetectable with or without xylanase (Figure 3).

We selected OsDGK (1, 2, 3), which were induced by xylanase,
and OsDGK7, which was not induced by xylanase, for further test-
ing with real-time PCR. As shown in Figure 4, the transcription
of both OsDGK1 and OsDGK3 gradually increased in xylanase-
treated protoplasts. The transcription of OsDGK2 exhibited a
sharp peak at 2 h after the addition of 150 μg/ml xylanase. A peak
in the OsDGK2 transcript was also found in the RT-PCR analysis,
but it appeared earlier, probably due to the higher concentration

of xylanase (150 μg/ml there) used. The transcription of OsDGK7
was not affected by xylanase under the tested conditions.

TRANSIENT SUPPRESSION OF OsDGK EXPRESSION BY INTRODUCTION
OF THE CORRESPONDING dsRNA
To study the functions of OsDGKs in rice cells, we established
methods for dsRNA-induced RNA silencing according to pub-
lished procedures (Endo et al., 2008; Zhai et al., 2009). Transfection
with in vitro-synthesized dsRNAs against target genes into cells
resulted in the depletion of their transcripts due to the combined
actions of the DICER enzyme and the RNA-induced silencing
complex (RISC) enzyme (Figure 5A).

We first selected OsPLDα1 to test because the expression of
its mRNA was characterized in our previous work (Shen et al.,

FIGURE 5 | Double-stranded RNA-induced RNA silencing in rice

protoplasts. (A) Simple illustration of dsRNA-induced RNA silencing.
When a long dsRNA is introduced into plant cells, the endogenous DICER
enzyme cuts long dsRNA into short siRNAs. The RNA-induced silencing
complex (RISC) enzyme attaches to these siRNAs, forming the
siRNA–RISC complex (Plasterk, 2002). The target mRNA is attached to the
siRNA–RISC complex and cleaved into small pieces. This process inhibits
the expression of target genes. (B) Dose dependence of the transient
RNAi silencing of OsPLDα1 in rice protoplasts. Protoplasts were
transfected with 0, 5, or 10 μg of dsRNA against OsPLDα1 (RNAi) or with
sterile water (Control), followed by incubation in darkness for 24 h. The

silencing effect of OsPLDα1 was monitored using RT-PCR. (C) Time
dependence of transient RNAi silencing of OsPLDα1 in rice protoplasts.
Protoplasts were transfected with 10 μg of a dsRNA against OsPLDα1
(RNAi) or with sterile water (Control). RNAi and control protoplast samples
were collected at 24 and 50 h, respectively, and then analyzed with RT-PCR
for OsPLDα1 transcripts. 18S rRNA was amplified as an internal control.
(D) A 40-bp of synthesized dsRNA labeled with FAM fluorescence at the 5′

end of sense strand against OsPLDα1 was transfected into rice
protoplasts. The fluorescence was visualized under a confocal microscope
after 8 h incubation in darkness. Control, protoplasts were transfected with
water.
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2011). A dsRNA against a 486-bp sequence corresponding to the
OsPLDα1 coding sequence was synthesized in vitro. Rice pro-
toplasts were transfected with 5 or 10 μg of dsRNA (RNAi) or
with sterile water (control, as a mock transfection) and incubated
for 24 h in darkness. The silencing effects of dsRNA were dose-
dependent (Figure 5B). This inhibition of transcription lasted for
at least 50 h (Figure 5C).

To prove the in vitro-synthesized dsRNA was transported into
protoplasts, we synthesized a 40-bp dsRNA labeled with FAM flu-
orescence at the 5′ end of sense strand against OsPLDα1, and
transfected into rice protoplasts. The transfected protoplasts were
visualized under a fluorescent microscope after 8 h incubation in
darkness. The fluorescence was found in protoplasts. As a con-
trol, no fluorescence was found in the protoplasts transfected with
sterile water (Figure 5D). This together with the RT-PCR results
suggest that in vitro-synthesized dsRNA had been transported into
protoplasts and suppressed gene transcripts.

We then tried to silence expression of the OsDGK family.
Two in vitro-synthesized dsRNAs against conserved regions of
OsDGK (1, 2, 3, 7 ) and OsDGK (4, 5, 8) were simultaneously trans-
fected into protoplasts. Mock-transfected protoplasts (control)
and two dsRNA-transfected protoplasts (RNAi) were collected
for RT-PCR analysis after incubation in darkness for 24 h. The
abundance of the OsDGK transcripts after RT-PCR analysis was
normalized to the internal standard gene OsGAPDH. As shown
in Figure 6A, the transcription of seven OsDGKs was success-
fully repressed simultaneously by two dsRNAs as compared the
mock-transfected control.

We next carried out gene-specific interference of the expres-
sion of OsDGK s. RT-PCR analysis was undertaken for OsDGK2,
OsDGK3, and OsDGK7 after transient RNAi using in vitro-
synthesized dsRNAs corresponding to their 3′-untranslated
regions (3′-UTRs). The expression of OsDGK2 was repressed
significantly by introducing in vitro-synthesized dsRNA directed
against its 3′-UTR, whereas the expression of OsDGK3 and
OsDGK7 was not affected (Figure 6B). Similarly, gene-specific
interference was found for OsDGK3 versus OsDGK2 and OsDGK7,
and OsDGK7 versus OSDGK2 and OsDGK3. Taken together, these
results suggest that the introduction of dsRNAs is effective for
targeted gene silencing in rice protoplasts.

EFFECT OF THE TRANSIENT SILENCING OF OsDGK ON THE
TRANSCRIPTION OF GENES RELATED TO STRESS TOLERANCE
Using the transient RNA interference assay, we next explored
the functions of the OsDGK s in stress responses. The WRKY
transcriptional factors have been reported to be involved in vari-
ous stress responses; in particular, overexpression of OsWRKY71
enhances resistance to virulent bacterial pathogens (Liu et al.,
2007). Treatment of protoplasts with xylanase (150 μg/ml)
induced an increase in the expression of OsWRKY71 and the
pathogen-related gene OsNPR1 (Liu et al., 2005). Transient silenc-
ing of OsDGK s triggered by the introduction of two dsRNAs
corresponding to the conserved regions of OsDGK (1, 2, 3, 7 ) and
OsDGK (4, 5, 8; Figure 6A) prevented the increases in expression
of OsWRKY71 and OsNPR1 induced by xylanase (Figures 7A,B).

We next asked whether OsDGKs regulate abiotic stress
responses. The expression of OsWRKY7 was not affected by salt

FIGURE 6 | Multi-gene and specific gene silencing of OsDGKs in

protoplasts using transient RNAi. (A) Multi-gene silencing of OsDGKs in
rice protoplasts using transient RNAi. RT-PCR analysis of OsDGKs was
performed after transient RNAi by simultaneously introducing two
in vitro-synthesized dsRNAs against conserved regions of OsDGK (1, 2, 3,
7 ) and OsDGK (4, 5, 8 ). Mock-transfected (Control) and two
dsRNA-transfected protoplasts (RNAi) were incubated for 24 h, followed by
protoplast collection for RNA isolation. OsGAPDH was amplified as an
internal control. (B) Gene-specific silencing of OsDGKs in rice protoplasts
with transient RNAi. RT-PCR analysis of OsDGK2, OsDGK3, and OsDGK7
was performed after transient RNAi using in vitro-synthesized dsRNAs
against the 3′-UTR regions of each. dsRNA-transfected (RNAi) and
mock-transfected (Control) protoplasts were incubated for 24 h, followed by
protoplast collection for RT-PCR analysis. OsGAPDH was amplified as an
internal control.

stress; transient silencing of OsDGK s had no effect on OsWRKY7
expression (Figure 8A). However, under salt stress, the expression
of OsCIPK15 (CIPK, for calcineurin B-like protein interaction
protein kinase) was induced, and the overexpression of OsCIPK15
improved the salt tolerance of rice seedlings (Xiang et al., 2007). An
increase in the transcription of OsCIPK15 was also observed in rice
protoplasts exposed to NaCl solution. This NaCl-induced increase
in OsCIPK15 was repressed in cells in which OsDGK s were tran-
siently silenced (Figure 8B). These results suggest that OsDGKs
regulate abiotic and biotic stresses through different signaling
pathways.

DISCUSSION
Diacylglycerol kinase phosphorylates DAG to generate PA, serv-
ing as a DAG consumer as well as a PA generator. Therefore,
DGK is thought to regulate the balance between these two lipid
messengers by catalyzing their interconversion (Frere and Paolo,
2009). The mammalian DGKs are a large enzyme family with
10 isozymes, which are subdivided into five groups according to
their structural features (Sakane et al., 2007). In the Arabidop-
sis genome, seven DGK isoforms that form three clusters have
been identified (Gómez-Merino et al., 2004). The rice DGKs also
group into three clusters (Figure 1). Both Arabidopsis and rice
DGKs contain catalytic and accessory domains (Gómez-Merino
et al., 2004; Figure 2). OsDGK(4, 5, 8) and AtDGK(1, 2) belong
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FIGURE 7 | Effects of silencing of OsDGKs on OsWRKY71 and OsNPR1

transcription induced by xylanase in rice protoplasts. After transient
RNAi using two in vitro-synthesized dsRNAs against conserved regions of
OsDGK (1, 2, 3, 7 ) and OsDGK (4, 5, 8 ) for 24 h, the transfected protoplasts
were treated with 150 μg/ml xylanase for 6 h. The protoplasts were
collected for real-time PCR analysis to detect transcripts of OsWRKY71 (A)

and OsNPR1 (B). Values followed by different letters differ significantly
(P < 0.01).

to cluster I, which possesses two cysteine-rich domains conferring
C1 domains. These domains are absent from other Arabidopsis
and rice DGKs (Figure 2; Vaultier et al., 2008). The C1 domain
can bind to proteins to modulate the interaction with lipids and
proteins (Colon-Gonzalez and Kazanietz, 2006). AtDGK7 still
displays kinase activity in the absence of the C1 domain (Gómez-
Merino et al., 2005), suggesting that this domain is not necessary
for its phosphorylation activity (Snedden and Blumwald, 2000). By
fusion with fluorescent proteins, the hydrophobic segment in the
amino-terminal region upstream of the C1 domain in AtDGK1
and AtDGK2 has been proven to be sufficient and necessary to
sequester proteins to ER membranes (Vaultier et al., 2008). How-
ever, whether the final localization of full-length DGKs is identical
with this segment is unclear. Much less is known about plant DGKs
than animal DGKs.

Transient RNA interference caused the decreased expression of
unique and multiple OsDGK genes in rice protoplasts (Figure 6).
This approach has also been successfully used in Arabidopsis and

FIGURE 8 | Effects of silencing of OsDGKs on transcription of

OsWRKY71 and OsCIPK15 induced by NaCl in rice cells. Following
transient RNAi using two in vitro-synthesized dsRNAs against conserved
regions of OsDGK (1, 2, 3, 7 ) and OsDGK (4, 5, 8 ) for 24 h, the transfected
protoplasts were treated with 50 mM NaCl for 6 h. The protoplasts were
collected for real-time PCR analysis to detect transcripts of OsWRKY71 (A)

and OsCIPK15 (B). Values followed by different letters differ significantly
(P < 0.01).

Zinnia (Endo et al., 2008; Zhai et al., 2009). Introduction of in
vitro-synthesized dsRNAs corresponding to the cellulose synthesis
gene CesA into Zinnia cells repressed the expression of Zinnia
CesA homologs. The repression phenocopies Arabidopsis cellulose
synthase mutants that have defects in secondary cell wall synthesis
and increased abnormal tracheary elements (Endo et al., 2008). In
our work, repression of multiple OsDGK genes impaired stress-
induced gene expression (Figures 7 and 8). The combination of
transient RNA interference and DGK mutants will help to fully
elucidate the functions of DGKs in plants.
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APPENDIX

Table A1 | K3 medium used for rice protoplast system.

K3 medium 10 × B5 Macro, 100 × B5 micro (I), 1000 × B5 micro (II), 100 × B5 vitamins, 200 × MES (0.1 g/ml), 500 × myo-inositol

(0.05 g/ml), 100 × NH3NO3 (25 mg/ml), 100 × CaCl2 (75 mg/ml), 100 × xylose (25 mg/ml), 0.4 M d-mannitol. pH is adjusted

to 5.6 by 1 M KOH.

10 × B5 Macro (1 l) KNO3 25 g, (NH4)2SO4 1.34 g, CaCl2·2H2O 1.5 g, MgSO4·7H2O 2.5 g, NaH2PO4· H2O 1.5 g.

100 × B5 Micro(I) (1 l) MnSO4·H2O 0.78 g, ZnSO4·7H2O, 0.2 g, H3BO3 0.3 g, KI 0.075 g.

1000 × B5 Micro(II) (1 l) NaMoO4·2H2O 0.250 g, CuSO4·5H2O 25 mg, CoCl2·6H2O 25 mg.

100 × B5 Vitamins (1 l) Vitamin B1 (thiamine-HCl) 1 g, vitamin B6 (pyridoxine-HCl) 0.1 g, nicotinic acid 0.1 g.

K3 medium was prepared according to the method by Chen et al. (2006) with minor modification.

Table A2 | List of oligos used for RT-PCR analysis.

Genes Directions Oligos (5′–3′)

OsDGK1 Forward CTGGCACCAGGAAAGTACAAGATAGAGAC

Reverse TCGTGGTTGCTACAGCACATCGG

OsDGK2 Forward AGACTTATTGAGGTTGTTGGATTCCGTGAT

Reverse CAGGGATCTTGAATGTATCTGCGGC

OsDGK3 Forward GTTCTGAATGGGAGCAAGTTACAATGC

Reverse AGAGAAGGGTAAGGAACTTTGTTTATCTCG

OsDGK4 Forward ATCGCTCTGAGGAGGATTCTTTCTGC

Reverse CTTCAATATCAGATGGCGGGTCAATAG

OsDGK5 Forward TGAGATTCCAGAGGATTCAGAAGGTGTT

Reverse CCTCTTCTGAGATGCAGTGATTAGGTGAC

OsDGK6 Forward CCATTCGGATAGTCAAGAACCTC

Reverse CCAACTATGCGGACTTAACCAG

OsDGK7 Forward GGGGAAGAGAAATCCTGGAACAGATG

Reverse ATTGGATGACATAGGGATGCACAGAAC

OsDGK8 Forward TCTGTCTGTGAAAGAAGTTGCCCAAG

Reverse TCTTGCCGTTAATGAAAACAAGCAGT

OsPLDα1 Forward GGTAACCGTGAGGTGAAGCA

Reverse GCATTCCCAGGTGCTCGTAC

OsGAPDH Forward ACCACAAACTGCCTTGCTCC

Reverse ATGCTCGACCTGCTGTCACC

18S rRNA Forward CCTATCAACTTTCGATGGTAGGATA

Reverse CGTTAAGGGATTTAGATTGTACTCATT
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Table A3 | List of oligos used for real-time PCR analysis.

Genes Directions Oligo (5′–3′)

OsDGK1 Forward GGCTGCTTGGTGTAGTTAGTG

Reverse TCTTGGTCAGTGGTTGGGTT

OsDGK2 Forward TCGTCTGTCTCAACCTGCCTAG

Reverse CACGGAATCCAACAACCTCAAT

OsDGK3 Forward GAATGGGAGCAAGTTACAATG

Reverse ATCGGAATGAGCTTCGACAA

OsDGK7 Forward TACAGTCAGTAAGACAAGCGAAAG

Reverse CAGCGAATGAGGCAAATCCA

OsWRKY71 Forward CGCCGACCCATCCGACCTCA

Reverse TCTTGACAGGGCAGGCGGGA

OsNPR1 Forward CCCGCGATGTTCGAACGTGC

Reverse CGACGAGAGCCCCGACCTGT

OsCIPK15 Forward GTTACCACTTCCTATCATATCATC

Reverse CTAAACATCAACTCTCCAAATAC

OsActin Forward AGGAAGGCTGGAAGAGGACC

Reverse CGGGAAATTGTGAGGGACAT

Table A4 | List of oligos used in amplifying DNA templates for in vitro dsRNA synthesis.

Targeted Gene Directions Oligos (5′–3′) Size of dsRNA (bp)

OsPLDα1 Forward GCTTAATACGACTCACTATAGGGAGGTTGACGATGAGTACATCATCATCGG 486

Reverse GCTTAATACGACTCACTATAGGGAGGCTATGAGGTGAGGATGGGGGGCATG

OsDGKs(1,2,3,7) Forward GCTTAATACGACTCACTATAGGGAGGTGTCGGCTTTCGCGATGCCT 208

Reverse GCTTAATACGACTCACTATAGGGAGGGGCTGCTTCCATGGCTCCCC

OsDGKs(4,5,8) Forward GCTTAATACGACTCACTATAGGGAGGCGCGCGCAGAGGTTAGCTCA 229

Reverse GCTTAATACGACTCACTATAGGGAGGGGAGGCCGCATGGCCGATAG

OsDGK2 (3′-UTR) Forward GCTTAATACGACTCACTATAGGGAGGAATTGGTATCTTTTCTAGGTTGCAT 260

Reverse GCTTAATACGACTCACTATAGGGAGGTCTGCTGAACAATAAACAAGAAATC

OsDGK3 (3′-UTR) Forward GCTTAATACGACTCACTATAGGGAGGAATCAGGGTCGTATTCTAGATCGTT 303

Reverse GCTTAATACGACTCACTATAGGGAGGCATAACAGGAGGGGAAATCTGAGTA

OsDGK7 (3′-UTR) Forward GCTTAATACGACTCACTATAGGGAGGTGACGAGGTTTTGTACGTATGGCTG 342

Reverse GCTTAATACGACTCACTATAGGGAGGCGTGGAGGTATATTCTGCGGGTAGT

Table A5 | Amino acid sequence identities among OsDGKs.

OsDGK1 OsDGK2 OsDGK3 OsDGK4 OsDGK5 OsDGK6 OsDGK7 OsDGK8

OsDGK1 81 32 27 25 29 63 25

OsDGK2 31 25 25 29 62 24

OsDGK3 24 25 54 33 26

OsDGK4 59 17 25 50

OsDGK5 16 23 52

OsDGK6 30 17

OsDGK7 24

OsDGK8
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