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Heritable changes of phenotype arising in plant ontogenesis by the influence of environ-
mental factors belong to the most intriguing genetic phenomena. An unusual inheritance
pattern was detected during examination of male fertility restoration in the CMS-inducing
“9E” type cytoplasm of sorghum: Rf-genes were functional in self-pollinated progeny of
F1 hybrids yet were either not expressed or poorly expressed in backcrosses of these
hybrids to CMS-lines with the same cytoplasm type. In experiments on parallel growing of
the same F1 hybrid combinations in the “dry plot” and in the “irrigated plot,” it was found
that high level of plant water availability during panicle and pollen developmental stages
significantly increased male fertility of F1 and test-cross hybrid populations, in which fertility-
restoring genes were in heterozygote state, whereas in F2 populations the influences of
water availability conditions cause less pronounce effects. Similarly, male-sterile F1 plants,
being transferred from the “dry plot” to greenhouse, produced male-fertile panicles. In
addition, male-sterile plants from F2 families, which segregated-out as recessives, being
transferred to greenhouse also produced male-fertile panicles. In the progenies of these
revertants that were grown in field conditions and in the “dry plot,” stable inheritance of
male fertility for three cycles of self-pollination was observed, and a number of stable fer-
tile lines in the “9E” cytoplasm were obtained. However, in test-crosses of these fertile
lines to CMS-lines with the “9E” cytoplasm restoration of male fertility was not observed,
except the progeny of one revertant that behaved as fertility-restorer line. These data sug-
gest that the functional state of fertility-restoring genes for the “9E” sorghum cytoplasm
is epigenetically regulated trait established by the influence of environmental factors and
is transmitted to sexual generations.
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INTRODUCTION
Interaction of plant genotype with environment is one of the cen-
tral problems of plant genetics. According to modern data, envi-
ronmental factors, such as, temperature, water availability, lighting
conditions, mineral nutrition regulate expression of plant genes
affecting diverse epigenetic processes – DNA methylation, his-
tone modification, micro-RNA formation (Grant-Downton and
Dickinson, 2005; Pfluger and Wagner, 2007; Phillips et al., 2007;
King et al., 2010; Fisher and Franklin, 2011; Wang et al., 2011).
These effects in certain cases, may be stable and are maintained
both in vegetative propagation and in sexual reproduction (Grant-
Downton and Dickinson, 2006; Takeda and Paszkowski, 2006;
Daxinger and Whitelaw, 2010; Hauser et al., 2011).

Nuclear and cytoplasmic (mitochondrial) genes involved in
genetic control of cytoplasmic male sterility (CMS) – mater-
nally heritable failure to develop fertile pollen – belong to
genetic systems, which are strongly sensitive to environmen-
tal factors. It is generally accepted that CMS is caused be
expression of specific mitochondrial genes originating from
high recombination activity peculiar to mitochondrial genome

(Chase and Gabay-Laughnan, 2004; Hanson and Bentolila, 2004;
Fujii and Toriyama, 2008). These genes encode proteins impair-
ing mitochondrial functions at the stage of microsporogenesis
and/or microgametogenesis. However, expression of these genes
takes place only in hybrid combinations, when they interact
with alien nuclear genomes. In fertile lines-donors of CMS-
inducing cytoplasms (euplasmic lines), functioning of CMS-
inducing genes is inhibited by nuclear fertility-restoring genes,
which suppress expression of these genes at the transcriptional
or post-transcriptional level. Such fertility-restoring genes usually
have dominant mode of expression.

Recently obtained experimental data also suggest CMS to be
caused by retrograde regulation from mitochondrial genome of
expression of nuclear genes involved in formation of fertile pollen
(Fujii and Toriyama, 2008;Yang et al., 2008). This hypothesis seems
to be true for those CMS types, which originate from interaction of
genetically remote nuclear and cytoplasmic genomes. Such CMS
types were obtained, in particular, in sorghum [Sorghum bicolor
(L.) Moench], which presents great number of subspecies and
races that can be crossed giving rise to progeny that combines
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nuclear and cytoplasmic genomes of genetically remote parents.
These types of CMS differ by mechanisms of pollen degeneration,
phenotypes of sterile anthers, reaction to fertility-restorer lines,
mode of action of fertility-restoring genes, types of mitochon-
drial, and chloroplast DNAs etc. (Pring et al., 1995). Assuming
significant role of retrograde signaling from chloroplasts (Fernan-
dez and Strand, 2008; Chan et al., 2010) and mitochondria (Atkin
and Macherel, 2009), such genetically remote nuclear-cytoplasmic
combinations may disturb cross-talk between nuclear and cyto-
plasmic genomes that may result in sensitivity to biotic and abiotic
stresses, in particular, in drought stress response. In this connec-
tion, one may suggest that such impacts of environmental factors
could down-regulate specific nuclear gene(s) involved in genetic
control of pollen development.

In our investigations on genetics of male fertility restoration
in some types of CMS-inducing cytoplasms of sorghum (9E, A4,
M35-1A) we found an unusual inheritance pattern: the Rf-genes
function in the self-pollinated progenies of F1 hybrids but are not
expressed or poorly expressed in backcrosses of these hybrids to
parental CMS-lines or in test-crosses to CMS-lines with the same
cytoplasm type (Elkonin et al., 1998, 2005). Similar phenomenon
was also described for the A3 cytoplasm and it was explained by
paramutation of the Rf-genes caused by sterility-maintaining alle-
les (Tang et al., 2007). In our experiments, we observed that the
level of male fertility of the F1 hybrids in the 9E and M35-1A
cytoplasms correlates with the level of plant water availability dur-
ing panicle development stage (Elkonin et al., 2005). On the basis
of these data we suggested hypothesis on epigenetic regulation
of fertility-restoring genes for the 9E cytoplasm (Elkonin et al.,
2006).

In this paper, we report experimental results on heritable “acti-
vation” of fertility-restoring genes by “inductive” environmental
conditions (plant water availability conditions) and expression of
“activated” genes in self-pollinated progenies of fertile hybrids and
in test-crosses with CMS-lines in “non-inductive” conditions that
support hypothesis on epigenetic regulation of a dominant status
of fertility-restoring alleles for the “9E” CMS-inducing cytoplasm
of sorghum.

MATERIALS AND METHODS
The CMS-lines used in this study were [9E] Tx398, [9E] Milo-
10, and [9E] Volzhskoe-615 (V-615). These lines contain CMS-
inducing cytoplasm “9E” (Webster and Singh, 1964). The lines
[9E] Milo-10 and [9E] V-615 were obtained by backcrossing of
the line [9E] Tx398 with the lines Milo-10 and Volzhskoe-615.
The seeds of the line [9E] Tx398 were generously provided by
the late Dr K. F. Schertz (Texas Agricultural Experimental Sta-
tion, USA). Grain sorghum cv. Perspectivnoe-1 (Pers-1) and fertile
(euplasmic) line in the “9E” cytoplasm, KVV-263, were used as
lines-fertility restorers. KVV-263 was obtained by self-pollination
of the fertile F1 hybrids, [9E] Tx398/KVV-112 grown in green-
house. The F2 progeny and subsequent generations were grown in
field conditions.

To test the hypothesis of heritable activation of fertility-
restoring genes by plant water availability conditions one and the
same F1, F2, and BC1 hybrids (i.e., the hybrids obtained by pol-
lination of maternal CMS-lines with the pollen of F1 hybrids)

were grown in “dry plot,” which has a roof from translucent
polycarbonate to prevent irrigation of plants by rain precipi-
tation (the roof was put on the plot at the booting stage of
plant development), and in “irrigated plot,” which was artifi-
cially irrigated starting from the same developmental stage (the
total amount of watering was 70 l/m2). In addition, sterile hybrids
from F1 and F2 families grown in the “dry plot” and in the “irri-
gated plot” were transferred into greenhouse and were grown
with regular irrigation. The progenies of fertile F1 hybrids and
of fertile panicles developed on sterile plants, transferred to the
greenhouse, were grown in the “dry plot” and in experimental
field.

To evaluate level of male fertility the first panicle of each plant
was bagged before anthesis. The level of male fertility was esti-
mated at anthesis by cytological analysis of pollen and at maturity
by determining the percent seed set. On the basis of the per-
cent seed set on the panicles the plants were classified as sterile
(s) (0% seed setting or a few, no more than 1% seeds), par-
tially sterile (ps; <50%; usually 5–20% in the basal part of the
panicle), or fertile (f; >50%; usually 90–100%). For cytological
analysis of pollen fertility the spikelets from different parts of the
panicle were fixed in acetic alcohol (1:3), and stored in 75% alco-
hol. For pollen analysis the anthers from 10 to 15 spikelets were
placed on a glass slide and macerated. Pollen grains (PGs) were
stained with 1% iodine–potassium iodide stain for the estimation
of starch accumulation. A minimum of 400 PGs per plant were
analyzed.

The χ2-test and exact binomial test (McDonald, 2009) were
used to determine the fit of observed ratios of sterile and fertile
plants to the expected segregation ratio. The number of fertile
and ps-plants in different progenies was also compared by the
Fisher method using F-criteria (Zaitsev, 1984). All experiments
were replicated.

RESULTS
EXPERIMENTS ON PARALLEL GROWTH OF HYBRID POPULATIONS IN
“DRY PLOT” AND IN “IRRIGATED PLOT”
Results of experiments on parallel growth of hybrid populations
in the “dry plot” and in the “irrigated plot” clearly demonstrate
that water availability strongly affects the male fertility level of
sorghum hybrids with the “9E” cytoplasm (Table 1). In the major-
ity of the combinations analyzed sterile plants appeared in the
F1 and BC1 generations in the “dry plot” ([9E] Rannee-7/KVV-
263; [9E] Milo-10/Pers-1; [9E] P-614/Pers-1), whereas only fertile
([9E] Milo-10/Pers-1) or fertile and ps-plants were observed in the
“irrigated plot” ([9E] Rannee-7/KVV-263; [9E] P-614/Pers-1). In
other hybrid combinations the frequency of ps-plants significantly
increased in the “irrigated plot” in contrast to complete or almost
complete male sterility of the “dry plot.” In this connection, the
most significant results were obtained in the hybrid combination
[9E] Milo-10/KVV-263, in which F1 plants have almost completely
sterile phenotype in drought conditions. However, after artificial
watering ps-plants appeared among these hybrids. In the [9E]
Tx398/KVV-263, the F1 hybrids were completely fertile in the“irri-
gated plot,” while both fertile and ps-plants were found in the “dry
plot.” Remarkably, fertile line in the “9E” cytoplasm, KVV-263,
which was one of the sources of fertility-restoring genes was fertile
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both in the “irrigated plot” and in the “dry plot.” Similar results
were observed in different seasons (2007–2009; Table 1). These
data demonstrate that fertility-restoring genes, in homozygous
state, can function in drought conditions, however, in heterozy-
gous state, these genes need in higher level of water availability for
their expression.

Cytological analysis of pollen of F1 hybrids from the “dry
plot” and from the “irrigated plot” revealed a number of distur-
bances in starch accumulation, developmental delay at the stages
of one- or two-nuclear gametophyte, and PGs with completely
degenerated content (Figures 1B,C). The frequency of fertile
PGs did not exceed 44% and in most cases varied from 13 to
22% in plants with completely restored seed fertility (Table 2).
These data demonstrate that fertility-restoring genes did not
normalize pollen development completely. No significant dif-
ferences were observed in percent of fertile PGs between the
“dry plot” and “irrigated plot” except ps-plants from the [9E]
Tx398/KVV-263, but such differences have been found between
plants with different seed set level within the same plot. Remark-
ably, sterile plants also contained some portion of fertile PGs,

as well as plants of original stable CMS-lines ([9E] Milo-10:
7.17 ± 2.17%; [9E] Tx398: 15.26 ± 5.74%; Figure 1A), that is
characteristic feature of the “9E” cytoplasm (Pring et al., 1995).
However, they did not set seed as a result of anther indehis-
cence. It is noteworthy that in the [9E] Tx398/KVV-263, in
2009 season, the plants with different seed set level grown in
the “dry plot,” did not differed significantly by proportion of
fertile PGs (Table 2). Such failure of seed set in the presence
of fertile PGs was resulted from anther indehiscence. There-
fore, sterilization of F1 hybrids in the “dry plot” is due not
only to disturbances of pollen formation but also to anther
indehiscence.

In majority of F2 families obtained from the F1 hybrids devel-
oped in “irrigated plot,” the proportion of fertile and sterile
plants in conditions of “dry” and “irrigated plot” did not dif-
fer significantly (Table 1), except [9E] Rannee-7/KVV-263, in
which the percent of sterile plants in the “dry plot” was sig-
nificantly higher than in the “irrigated plot.” Predominance of
fertile plants in F2 families analyzed, both in the “irrigated
plot” and in the field (Table 3) points to a dominant nature

Table 1 | Effect of plant water availability at panicle development stage on level of male fertility of sorghum hybrids in the “9E” type of

CMS-inducing cytoplasm.

Hybrid combination Year Generation Dry plot Irrigated plot

Total number

of plants

Percent of plant Total number

of plants

Percent of plant

f ps s f ps s

[9E] Rannee-7/KVV-263 2007 F1 18 – 94 6 23 78** 22 –

2007 F2 17 20 20 60 18 67 22 11*

2008 F1 22 – 32 68 27 33** 67 –

2008 F2 25 40 28 32 25 72* 12 16

[9E] Tx398/KVV-263 2008 F1 12 58 42 – 16 100** – –

2008 F2 28 86 7 7 25 60 20 20

2009 F1 13 15 62 23 27 74*** 26 –

2009 F2 25 24 20 56 27 55 30 15

[9E] Milo-10/KVV-263 2007 F1 19 – – 100 18 – 6 94

2007 F2 17 53 23.5 23.5 27 52 22 26

2008 F1 30 – – 100 24 – 30*** 70

2009 F2 17 18 29 53 29 38 31 31

[9E] Milo-10/Pers-1 2008 F1 25 76 16 8* 23 96 4 –

2008 F2 33 76 21 3 33 76 18 6

2009 F1 19 21 74 15*** 24 96*** 4 –

2009 F2 27 48 22 30 26 65 12 23

[9E] Milo-10/([9E] Milo-10/Pers-1) 2007 BC1 18 28 44 28 19 68* 16 16

2008 BC1 14 21 14 64 35 37 37 26*

[9E] Tx398/Pers-1 2007 F1 10 100 – – 16 100 – –

2006 F2 19 63 37 – 20 75 25 –

[9E] Milo-10/([9E] Tx398/Pers-1) 2006 BC1 14 7 93 – 19 42* 58 –

2007 BC1 15 33.3 33.3 33.3* 18 83 17 –

[9E] KVV-263 2006 F1 19 84 16 – 24 100 – –

f, fertile (seed set > 50%); ps, partially sterile (<50%); s, sterile (0%); *, **, ***, p < 0.05, p < 0.01, and p < 0.001, respectively, in comparison with the same fertility

group from the family in another plot, in accordance to F-criterion. F2 families were obtained from F1 hybrids grown in the “irrigated plot.”
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FIGURE 1 | Pollen of male-sterile and fertility restored plants in the

“9E” cytoplasm: (A) [9E] Milo-10, (B) F1 [9E] Milo-10/Perspectivnoe-1,

(C) F1 [9E] Milo-10/KVV-263/. Bar: 50 mkm.

Table 2 | Pollen fertility of plants from different F1 hybrid combinations

in the “9E” CMS-inducing cytoplasm of sorghum.

Hybrid

combination

Year Seed seta Fertile pollen grains, %b

“Dry plot” “Irrigated plot”

[9E] Milo-

10/Persp-1

2007 f 22.86 ± 1.78 19.00 ± 3.23
2009 f 13.13 ± 1.23 a 15.78 ± 1.83 a

ps 12.75 ± 1.77 a –

s 5.00 ± 0.87 b –

[9E] Milo-10/

KVV-263

2007 ps – 7.80 ± 1.77
s 6.51 ± 1.77 5.60 ± 0.54

2009 s 5.41 ± 0.68 4.27 ± 0.9

[9E] Tx-398/

KVV-263

2007 f 42.55 ± 3.94 a 44.17 ± 4.91 a
ps 20.08 ± 4.22 c 33.17 ± 3.63 b

2009 f 9.00 ± 1.97 13.57 ± 0.98

ps – 13.83 ± 1.45

s 8.75 ± 1.01 –

af, fertile (seed set > 50%); ps, partially sterile (<50%); s, sterile (0%); bdata for

each hybrid combination, for each year, followed by different letters significantly

differed at p < 0.05 according to Student’s t-test.

of fertility-restoring genes for the “9E” CMS-inducing cyto-
plasm of sorghum. Analysis of segregation pattern in large F2

populations grown in field conditions revealed that both lines-
fertility restorers used in our experiments (Persp-1 and KVV-263)
have two fertility-restoring genes, Rf 9E

1 and Rf 9E
2, however

in different hybrid combinations function either one or two
genes, depending on genotype of CMS-lines. Remarkably, in the
same hybrid combination, in the wet seasons (2003, 2008), two
nuclear genes participated in restoration of male fertility, while
in the drought seasons (2001, 2009) – one fertility-restorer gene
(Table 3).

REVERSIONS TO MALE FERTILITY IN MALE-STERILE HYBRIDS IN
GREENHOUSE CONDITIONS
To test the hypothesis on an environmental effect on “switching
on”fertility-restoring genes for the“9E”CMS-inducing cytoplasm,
male-sterile plants from different F1 and F2 hybrid populations
that were grown both in the “dry plot” and in the “irrigated

plot,” were transferred to the greenhouse and were grown under
artificial watering (“inductive” conditions). In such conditions,
the majority of the transferred male-sterile plants produced fer-
tile panicles with high seed set (Table 4). For example, sterile
F1 hybrid [9E] Tx398/KVV-263, which in the “dry plot” had
8.3% fertile PGs in greenhouse conditions had 54.7% fertile
PGs and set seeds; the sterile F1 hybrid [9E] Milo-10/KVV-263
from the “dry plot,” which was characterized by 7.3% fertile PGs,
in greenhouse conditions had 31.7% fertile PGs and also set
seeds.

Remarkably, reversion to male fertility was observed not only
in the F1 hybrids, which were heterozygous for fertility-restoring
genes but also in the male-sterile plants segregating-out in the
F2 families as recessives, presumably devoid of dominant fertility-
restoring genes. Few sterile plants from the F2 families grown in the
“irrigated plot” were stable and did not reverted to male fertility;
in some F2 plants in greenhouse conditions both fertile and sterile
panicles developed.

HERITABILITY OF REVERSION TO MALE FERTILITY INDUCED BY
ENVIRONMENTAL CONDITIONS
To study the inheritance of “switched on” fertility-restoring genes,
seeds from ps-plants from the “irrigated plot” (“inductive” con-
ditions) from those combinations, which were completely sterile
in the “dry plot,” were sown in the field and in the “dry plot” (in
“non-inductive” conditions). In addition, the seeds from fertile
tillers developed in the greenhouse (“inductive” conditions) were
also sown in the field (in “non-inductive” conditions).

Few semi-sterile plants, appeared in the “irrigated plot” in the
F1 [9E] Milo-10/KVV-263 yielded in their progeny (F2) fertile,
ps, and sterile plants, “induced” fertility manifesting both in the
“irrigated plot” and in the “dry plot” (Figure 2A). Similarly, male
fertility induced in F1 plants from hybrid combination [9E] V-
615/KVV-263, which were grown in the “irrigated plot” inherited
for three cycles of self-pollination (Figure 2B). In F2 generation,
segregation pattern in the “irrigated plot” and in the “dry plot”
differed significantly in the progeny of plant no 1: in the “irrigated
plot” predominated fertile plants while in the “dry plot” – ster-
ile plants. No differences were recorded in the progeny of plant
no 13. In the progeny (F3) of fertile plants from both “irrigated
plot” and from the “dry plot” homozygous fertile families were
found. In the F4 families grown in the “dry plot” conditions
male fertility manifested in 100% plants. However, test-crosses of
these plants to CMS-line [9E] Milo-10 expressed complete male
sterility.

Similarly, fertile panicles developed on male-sterile F1 hybrids
[9E] Milo-10/KVV-263 transferred from the “dry plot” to the
greenhouse also yielded fertile plants in their progeny grown in
field conditions (Figure 3). “Induced” male fertility inherited for
two cycles of self-pollination. Remarkably, sterile plants from self-
pollinated progenies of fertile revertants, i.e., from the F2 and
F3 generations, being transferred into greenhouse conditions also
reverted to male fertility, and such “induced” fertility also stably
inherited in the progeny of revertants. However, test-crosses with
CMS-line [9E] Milo-10 were male-sterile.

Thus, growing of the F1 hybrids in conditions of increased
water availability allowed to obtain fertile lines in different hybrid
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Table 3 | Segregation in F2 families from crosses of different CMS-lines in the “9E” cytoplasm with fertility-restoring lines.

Hybrid combination Year Amount of

precipitationb, mm

Number of

plantsa

Ratio χ2 p

f ps s

[9E] Tx398/KVV-263 2006 57.1 54 19 4 15 (f + ps):1 s 0.146 0.50–0.75

2008 176.8 48 7 2 15 (f + ps):1 s – 0.445*

[9E] Tx398/Pers-1 2001 37.9 11 18 9 3 (f + ps):1 s 0.035 0.75–0.90

2008 176.8 51 4 – 15 f:1 ps 0.098 0.75–0.90

[9E] Milo-10/Pers-1 2003 151.8 65 1 4 15 (f + ps):1 s 0.034 0.75–0.90

2008 176.8 52 7 5 15 (f + ps):1 s 0.267 0.50–0.75

2009 33.3 30 9 14 3 (f + ps):1 s 0.057 0.75–0.90

af, fertile (seed set > 50%); ps, partially sterile (<50%); s, sterile (0%); bduring panicle and pollen development stages and flowering (from the third decade of June

to the end of July); *p-level was calculated using exact binomial test (McDonald, 2009).

Table 4 | Examples of reversions to male fertility in male-sterile plants, which were transferred to the greenhouse.

Hybrid combination Generation Growing conditions of

original male-sterile plant

Original male-sterile

plant

Panicle fertility in

greenhousea

[9E] Milo-10/Pers-1 F1 “Dry plot” No 207-19/08-s F

No 210-10/09-s F

F2 “Dry plot” No 188-15/07-s F

No 188-8/07-s F

No 208-20/08-s F

“Irrigated plot” No 211-55/09-s F

No 211-41/09-s S

No 211-59/09-s S

[9E] Milo-10/KVV-263 F1 “Dry plot” No 212-11/08-s F

No 212-18/08-s F

No 201-3/09-s S; F

No 201-5/09-s S; F

No 201-8/09-s S; Ps

“Irrigated plot” No 212-19/08-s F

F2 “Dry plot” No 213-1/08-s F

“Irrigated plot” No 213-5/08-s S

No 202-7/09-s S

No 202-12/09-s F

No 202-13/09-s F

[9E] Tx398/KVV-263 F1 “Dry plot” No 213-1/09-s F

No 213-2/09-s F

F2 “Dry plot” No 217-10/08-s F

“Irrigated plot” No 217-19/08-s F

No 214-53/09-s F

No 214-58/09-s F

[9E] Rannee-7/KVV-263 F2 “Dry plot” No 220-17/08-s F

[9E] V-615/Pers-1 F1 “Dry plot” No 228-9/08-s F

No 228-5/08-s Ps

[9E] V-615/KVV-263 F1 “Dry plot” No 208-14/09-s F

No 208-27/09-s F

No 208-9/09-s S

F2 “Dry plot” No 209-57/09-s F; S

No 209-2/09-s F

No 209-66/09-s Ps

aF, Fertile; Ps, partially sterile; S, sterile panicles.
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FIGURE 2 | Inheritance of reversion to male fertility induced in “irrigated

plot” in F1 hybrids (A) [9E] Milo-10/KVV-263 and (B) [9E]

Volzhskoe-615/KVV-263. f, fertile (seed set > 50%); ps, partially sterile
(<50%); s, sterile (0%). The crossed circles mean self-pollinated progenies.

combinations, [9E] V-615/KVV-263 and [9E] Milo-10/KVV-263,
that would be impossible if the F1 hybrids were grown in drought
conditions: in both combinations, in the “dry plot,” complete male
sterility was observed in the F1 plants. However, these fertile lines
were unable to restore male fertility of CMS-lines with their own
cytoplasm type.

The seeds set on fertile tillers that developed on sterile plants
from the F2 families in greenhouse conditions, also gave fertile
progeny. For example, the F2 families of the [9E] Milo-10/Persp-1
hybrid combination grown in the “dry plot” segregated-out
the sterile plants, their ratio to plants with restored male fer-
tility corresponded to monogenic segregation 3 (f + ps):1 s
(χ2 = 0.899; 0.50 > p > 0.25; Figure 4A). Similar segregation, 3:1,
was observed in this family also in the “irrigated plot” (χ2 = 0.545;

0.50 > p > 0.25). In sterile plants from the “dry plot,” no 188-8 and
no 188-15, after their transfer to the greenhouse developed fertile
panicles. In the progeny of these panicles, which were grown in
field conditions, fertile and sterile individuals were noticed. After
two cycles of self-pollination of fertile individuals from the prog-
eny of 188-15 plant, the line no 21/10 was obtained. This line
manifested complete male fertility in conditions of both “irrigated
plot” and “dry plot” (Figure 4A). However, backcross hybrids of
this line to maternal CMS-line [9E] Milo-10 were characterized by
complete male sterility.

Inheritance of reversion to male fertility in the progeny of fertile
panicles developed on another male-sterile plant from this family,
no 188-8 is of special interest (Figure 4B). In the self-pollinated
progeny of fertile panicles (F3), segregation for plant male fertility
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FIGURE 3 | Inheritance of reversion to male fertility induced in

greenhouse in male-sterile plants of F1 hybrids [9E] Milo-10/KVV-263

and in their progeny.

was observed. Fertile plants from this progeny were either homozy-
gous or produced families with few sterile or ps-plants. Sterile
plants, being transferred to greenhouse, again developed fertile
panicles, in their progeny (F4) grown in field conditions segre-
gation was observed again. The progeny obtained from sterile
plants from this family after their transfer to greenhouse (F5) was
not homozygous but segregated again for male fertility; the self-
pollinated progeny of fertile plants consisted almost completely
from fertile individuals, while sterile plants again reverted in the
greenhouse to male fertility. It should be noted that in the self-
pollinated progeny of ps-plants, as well as in the progeny of fertile
plants, either only fertile, or fertile and few ps or sterile indi-
viduals were found that point on identity of genotype of fertile
and ps-plants. Remarkably, revertant panicles that produced fer-
tile progeny after self-pollination, did not restore male fertility of
test-cross hybrids with CMS-line [9E] Tx398.

Principally different result was noticed in test-crosses of fer-
tile line no 14/10 that was obtained after self-pollination of fer-
tile panicles developed in male-sterile plant from F2 family of
[9E] Tx398/Persp-1 transferred from the “dry plot” to greenhouse
(Figure 5). This line was able to restore male fertility of test-cross
hybrids with the CMS-line [9E] Milo-10. Fertility of the line 14/10
and its test-cross hybrids expressed both in the “irrigated plot” and
in the “dry plot.” Thus, in this case, after reversion in greenhouse
conditions the line-fertility restorer was obtained on the basis of
CMS-plant.

DISCUSSION
Experimental data presented above clearly demonstrate that envi-
ronmental conditions, such as water availability during pani-
cle and pollen developmental stages, affect functioning of the
fertility-restoring genes for the “9E” CMS-inducing cytoplasm of
sorghum. Its influence most strongly affects male fertility of F1 and
test-cross hybrid populations, in which fertility-restoring genes
were in heterozygote state. In some hybrid combinations ([9E]
Milo-10/KVV-263, [9E] V-615/KVV-263), water-dependence of

fertility-restoring genes is extremely strong, so that in drought con-
ditions the F1 heterozygous plants were completely male-sterile.
Growing in conditions of high level of water availability or trans-
ferring into greenhouse conditions allowed obtaining male-fertile
F1 hybrids in these combinations, and, on their base, fertile lines.
However, male fertility “induced” by this way, as a rule, did not
transmit through the pollen in test-crosses with CMS-lines in the
“9E” cytoplasm, with the only exception of revertant from the
male-sterile plant from the F2 [9E] Tx398/Persp-1 family.

Such absence of fertility transmission through the pollen can
not be explained by cytoplasmic nature of fertility reversions
because previously we have found that the reciprocal hybrids,
KVV-263/Tx398, obtained by pollination of emasculated panicle
of fertile line KVV-263, which derived from the F1 hybrid [9E]
Tx398/KVV-112 grown in greenhouse conditions, with the pollen
of the line-sterility maintainer of the “9E” type CMS – Tx398 –
were male-sterile in drought conditions as well as direct hybrids,
[9E] Tx398/KVV-263 (Elkonin et al., 2005).

The following hypotheses can be suggested to explain the
above-described phenomena.

Perhaps, fertility-restoring genes are sensitive to water avail-
ability of plants during panicle development stage, and in het-
erozygous state produce small amount of product in drought
conditions. Therefore, F1 or BC1 plants in drought conditions
are sterile. In wet conditions, fertility-restoring genes function
more effectively, and heterozygous plants produce fertile pollen.
After self-pollination and recombination, the homozygous plants
for fertility-restoring genes would appear in the progeny of such
heterozygotes, and these plants may be fertile in drought con-
ditions if expression level in homozygous state is sufficient for
restoration of male fertility. In other words, according to this
hypothesis, water availability conditions change dominance in the
nuclear loci governing fertility restoration: in drought conditions
sterility-maintaining alleles are dominant, while in wet condi-
tions fertility-restoring alleles are dominant. As follows from this
hypothesis, in the F2 families grown in the “irrigated plot,” plants
with restored male fertility (f- and ps-phenotypes) should be
homozygous and heterozygous, while sterile plants (s-phenotype)
should be only homozygous. In the“dry plot,”controversially, ster-
ile plants should be heterozygous and homozygous, while plants
with restored male fertility should be homozygous. Segregation
observed in the F2 progeny of ps-plant no 1 [9E] V-615/KVV-
263 (Figure 2B) grown in the “irrigated plot” [17 (f + ps):9 s;
χ2

3:1 = 0.167; 0.50 > p > 0.25] and in the “dry” plot [8 (f + ps):19
s; χ2

1:3 = 0.309; 0.75 > p > 0.50] confirmed this hypothesis.
However, in the F2 progeny of ps-plant no 13 from the same

hybrid combination no differences were observed between the
“irrigated plot” and the “dry plot” (Figure 2B). In both cases, the
frequency of plants with restored male fertility prevailed over ster-
ile plants; the ratio fitted monogenic segregation 3:1 (χ2 = 0.051;
0.90 > p > 0.75 and χ2 = 1.301; 0.50 > p > 0.25; respectively). In
addition, this hypothesis can not explain reversion to male fer-
tility of male-sterile individuals segregating in the F2 families as
recessives.

Therefore, more likely is another hypothesis that assumes
epigenetic activation of fertility-restoring alleles by high water-
availability conditions. The sensitivity of epigenetic events (such as
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FIGURE 4 | Inheritance of reversion to male fertility induced in greenhouse in male-sterile plants 188-15 (A) and 188–8 (B) from F2 family of [9E]

Milo-10/Perspectivnoe-1.

DNA methylation, histone modifications) to plant water availabil-
ity conditions, is well-documented (Lukens and Zhan, 2007; Chin-
nusamy and Zhu, 2009; Verhoeven et al., 2010). Perhaps, increased
water availability conditions cause modification of histone pro-
teins – such a modification (dimethylation of H3 at lysine 4) asso-
ciated with active gene expression was found to be high during the
wet season in perennial desert plant Zygophyllum dumosum Boiss.
(Granot et al., 2009), or prevent methylation of fertility-restoring
gene sequences that may take place in drought conditions (Wang
et al., 2011) and this methylation state is transmitted to the next

sexual generations. Such transgenerational inheritance of methy-
lation state is well-known phenomenon (Kakutani, 2002; Takeda
and Paszkowski, 2006; Daxinger and Whitelaw, 2010; Hauser et
al., 2011). According to this hypothesis fertility-restoring genes
are “activated” in wet conditions (Rf/rf → Rf∗/rf; rf/rf → rf∗/rf,
where the asterisk means activated allele) and then are trans-
mitted to the progeny in their active state. However, taking into
account complete male sterility of test-cross plants one should
suppose that activated state of fertility-restoring genes inherited
only under self-pollination, whereas in “new” genetic background
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FIGURE 5 | Inheritance of reversion to male fertility induced in

greenhouse in male-sterile plant from F2 family of [9E]

Tx398/Perspectivnoe-1.

(F1 hybrid genome) the epigenetic marks caused activation of
fertility-restoring genes are erased and the test-cross plants become
male-sterile. Such inheritance is typical for epigenetically deter-
mined traits, which are caused, in particular, by changes of DNA
methylation pattern. Data on remodeling of the parental methyla-
tion patterns in the F1 hybrids are well-documented (Xiong et al.,
1999; Shaked et al., 2001; Zhang et al., 2007; Zhao et al., 2007).

It should be stressed that after such activation the fertility-
restoring genes become expressive not only in wet conditions but
also under drought stress (Figures 2A, 4A, and 5).

Segregation in the progeny of fertility revertants may be due
to their heterozygosity. To explain these segregation patterns,
one should take into account the data from Table 3. As follows
from these data, both fertility-restorers, which were used in our
experiments, KVV-263 and Persp-1, possess two pairs of fertility-
restoring genes. In hybrid combinations with Persp-1, in the wet
seasons (2003, 2008) both genes functioned and segregation corre-
sponded to 15:1 ratio, whereas in the dry seasons (2001, 2009) only
one fertility-restorer gene expressed, and segregation ratio corre-
sponded to 3:1 ratio. Therefore, sterile plants which were taken
from F2 families from the“dry plot”may have genotype rf1rf1rf2rf2
or rf1rf1Rf2−. After activation in the greenhouse conditions, the
heterozygotes for two pairs of fertility-restoring alleles may appear
(rf1∗rf1Rf2rf2 and/or rf1∗rf1rf2 ∗rf2). Therefore, segregation in
the progeny of such fertility revertants should correspond to
digenic ratio. Indeed, segregation in the progeny of fertility rever-
tant from sterile plants 188-15 (F2 [9E] M-10/Persp-1; Figure 4A)
and 16-4 (F2 [9E] M-10/KVV-263; Figure 3) presumably corre-
sponds to 9 (f + ps):7 s ratio (χ2 = 0.241; 0.75 > p > 0.50; and
χ2 = 0.042; 0.90 > p > 0.75; respectively). In the self-pollinated
progenies of fertile plants from these families male fertility inher-
ited as a dominant trait, and segregation fitted to either 3:1 (fam-
ilies 59/11, 60/11, Figure 3: χ2 = 0.659; 0.50 > p > 0.25, for total
data) or 9:7 (family 27/10, Figure 4A: χ2 = 0.039; 0.90 > p > 0.75)
ratios, perhaps, depending on genotype of self-pollinated plants
(mono- or di-heterozygotes).

Ratio of fertile and male-sterile individuals in the progeny of
fertility revertants from another sterile plant from this hybrid
combination, 188-8 (Figure 4B), also resembled segregation for
two pairs of genes, although in this case activated fertility-
restoring alleles behaved as recessives and segregation fitted to
7 (f + ps):9 s ratio (χ2 = 0.001; 0.99 > p > 0.95). This type of
segregation means that sterility should be caused by two com-
plementary dominant sterility-maintaining genes. In this case,
self-pollinated progeny of fertile plants should be also fertile.
Indeed, self-pollinated progeny of fertile plants were either fer-
tile or contained only few sterile or ps individuals. These sterile
individuals could be reverted again to fertile plants in green-
house conditions. But contrary to “primary” revertants (fam-
ilies no 120/08, 27/09, 43/10, Figure 4B) the revertants from
sterile individuals from the progeny of self-pollinated fertile
plants produced predominantly fertile off-spring (family no 23/11,
Figure 4B) as it was observed in self-pollinated progenies of fertile
plants.

Thus, the functional state of fertility-restoring genes in the “9E”
CMS-inducing cytoplasm of sorghum is conditioned by epigenetic
changes appearing by the influence of sufficient level of water avail-
ability. This state is transmitted to self-pollination progenies but
in the “new” genetic background – in F1 or BC1 hybrid genome –
it might be established de novo and only under sufficient level of
water availability.

At present time we can only speculate about the molecular
mechanisms involved in suppression of fertility-restoring genes
for the “9E” cytoplasm in drought conditions. Recent studies
on retrograde signaling from chloroplast, which are the primary
targets of drought stress (Chan et al., 2010) suggest that any mol-
ecules accumulating within these organelles under water deficit,
such as reactive oxygen species, ROS (Suzuki et al., 2011), or
3′-phosphoadenosine 5′-phosphate, PAP (Estavillo et al., 2011),
may down-regulate nuclear gene(s) involved in pollen matura-
tion and/or anther dehiscence. In addition to chloroplasts, mito-
chondria play also an important role in drought response by
supplying chloroplasts with ATP, controlling the ROS accumu-
lation and regulating proline concentration (Atkin and Macherel,
2009). Perhaps, withdrawal of water deficit in plants grown in
the “irrigated plot” or in greenhouse conditions prevents accu-
mulation of ROS molecules within chloroplasts and by mecha-
nism of retrograde signaling activate expression of nuclear genes
restoring male fertility. However, such activation would not be
inherited in subsequent sexual generation, unless inherent changes
would occur in nuclear loci controlling pollen development,
taking into account that heritable restoration of male fertil-
ity did not result from cytoplasmic mutation(s) (Elkonin et al.,
2005).

Therefore, to test the outlined hypothesis on activation of
fertility-restoring genes by high water availability conditions it
is crucially important to study the nature of molecular changes
that may occur in the nuclear loci controlling fertility restora-
tion in the “9E” cytoplasm. Future investigations, therefore,
should be conducted with identification of nucleotide sequences
of genes located in these loci, and investigation of epigenetic
changes occurring in these loci in different plant water availabil-
ity conditions. Assuming that almost all of the fertility-restoring
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nuclear genes studied up to date encode proteins with PPR
motif (Fujii and Toriyama, 2008), and that the PPR proteins
involved in post-transcriptional regulation of gene expression in
chloroplasts and mitochondria, were also found to be involved
in abiotic stress response (Zsigmond et al., 2008; Liu et al.,
2010; Yuan and Liu, 2012), one should suppose that “environ-
mentally sensitive” fertility-restoring genes in our revertants also
encode a protein(s) belonging to PPR family. Therefore, another
approach that would be helpful in investigation of hypothesis
on activation of fertility-restoring genes by high water avail-
ability is to study chloroplast and mitochondria proteome in
water-stressed and irrigated plants, with special attention to PPR
proteins.

Summarizing, the F1 hybrids in the “9E” cytoplasm represent
a model systems for studying regulation of plant response to
drought stress. Further investigation of this system as well as the
molecular bases of epigenetic events in the fertility-restoring loci
occurring under high water-availability conditions are needed to
shed light on fundamental genetic problems, such as anterograde
and retrograde signaling, gene dominance and interaction of genes
with their nuclear background, and on possible application of
these findings in sorghum genetic improvement.
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