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The Arabidopsis cellulose synthase-like D (CSLD) 2 and 3 genes are known to function in
root hair development. Here, we show that these genes also play a role in female gameto-
phyte development because csld2 csld3 double mutants were observed to have low seed
set that could be traced to defects in female transmission efficiency. Cell biological studies
of csld2 csld3 ovules showed synergid cell degeneration during megagametogenesis and
reduced pollen tube penetration during fertilization. Although CSLD2 and CSLD3 function
redundantly in female gametophyte development, detailed analyses of root hair pheno-
types of progeny from genetic crosses between csld2 and csld3, suggest that CSLD3
might play a more prominent role than CSLD2 in root hair development. Phylogenetic and
gene duplication studies of CSLD2 and CSLD3 homologs in Arabidopsis lyrata, Populus,
Medicago, maize, and Physcomitrella were further performed to investigate the course of
evolution for these genes. Our analyses indicate that the ancestor of land plants possibly
contained two copies of CSLD genes, one of which developed into the CSLD5 lineage in
flowering plants, and the other formed the CSLD1/2/3/4 clade. In addition, CSLD2 and
CSLD3 likely originated from a recent genome-wide duplication event explaining their
redundancy. Moreover, sliding-window dN /dS analysis showed that most of the coding
regions of CSLD2 and CSLD3 have been under strong purifying selection pressure. How-
ever, the region that encodes the N-terminus of CSLD3 has been under relatively relaxed
selection pressure as indicated by its high dN /dS value, suggesting that CSLD3 might have
gained additional functions through more frequent non-synonymous sequence changes at
the N-terminus, which could partly explain the more prominent role of CSLD3 during root
hair development compared to CSLD2.
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INTRODUCTION
Cellulose, the major polysaccharide component of plant cell walls,
consists of unbranched polymers of β-1,4-linked glucan residues
that are connected by extensive hydrogen bonds to form cellulose
microfibrils (Taylor, 2008). Cellulose is synthesized by a group
of glycosyltransferases called cellulose synthases. In Arabidopsis,
10 cellulose synthase A (CesA) genes encode cellulose synthases
that assemble into plasma membrane resident multimeric pro-
tein complexes, which catalyze the formation of individual glucan
chains in developing primary and secondary walls (Endler and
Persson, 2011). Although cellulose microfibrils form the core of
the plant cell wall, a suite of other polysaccharides with a β-
1,4-linked backbone collectively called hemicelluloses is essential
for reinforcing its structural integrity. Hemicellulose is synthe-
sized by Golgi-localized glycosyltransferases and is then secreted
to the plasma membrane where they cross-link cellulose microfib-
rils to increase cell wall tensile strength (Scheller and Ulvskov,
2010). A third polysaccharide component of the cell wall is pectin.
Compared to cellulose and hemicellulose, pectin is more struc-
turally complex, and consists of a family of galacturonic-rich

polysaccharides that require more than 60 transferase enzymes
for its biosynthesis (Mohnen, 2008).

Some of the most significant advances toward understanding
the importance of cell wall biosynthetic enzymes in plant develop-
ment have come from genetic studies in Arabidopsis. For example,
it was shown by mutant analyses that CESA1, CESA3, and CESA6
comprise the primary cell wall cellulose synthase complex and
that this complex is essential for pollen development. One mem-
ber of the primary cell wall cellulose synthase complex (CESA6)
was partially redundant with other CESA isoforms such as CESA2
and CESA9 (Persson et al., 2007). In a parallel set of studies, it was
demonstrated by bimolecular fluorescence complementation that
CESA1, CESA3, and CESA6 indeed interact in vivo and through
mutant analyses it was further shown that CESA5 and CESA2 were
functionally redundant with CESA6. This led to the proposal that
several CESA isoforms compete for the third position on the pri-
mary wall cellulose synthase complex that might be significant
for fine tuning microfibril deposition during plant development
(Desprez et al., 2007). Because the CESA2 protein can homod-
imerize in vitro, it was also proposed that CESA2 might form a
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complex with itself and contribute to cellulose synthase rosette
assembly that regulates cell expansion during hypocotyl growth
(Chu et al., 2007). Moreover, forward genetic screens have led to
the isolation of the irx (for irregular xylem) set of mutants that
were instrumental in identifying CESA4, CESA7, and CESA8 as
components of the cellulose synthase complex responsible for cel-
lulose biosynthesis in developing secondary cell walls (Taylor et al.,
2003; Szyjanowicz et al., 2004).

Complete sequencing of the Arabidopsis genome led to the dis-
covery of a large family of cellulose synthase-like (CSL) genes that
encode proteins sharing various degrees of sequence similarity
to CESA. The Arabidopsis CSL gene family can be divided into
six groups namely CSLA, CSLB, CSLC, CSLD, CSLE, and CSLG
(Richmond and Somerville, 2000). Two additional groups (CSLF
and CSLH ) have been found exclusively in grasses (Lerouxel et al.,
2006) and a third group (CSLJ ) is present in grasses and some
dicot genomes (Dwivany et al., 2009; Yin et al., 2009). These CSL
genes were predicted to encode processive glycosyl transferases that
might be involved in the biosynthesis of the hemicellulose back-
bone of the cell wall (Richmond and Somerville, 2000). Indeed,
activity for some CSLs in the synthesis of non-cellulosic polysac-
charides has been reported. For instance, heterologous expression
of recombinant Arabidopsis CSLA proteins in insect cells produced
β-linked mannan polymers indicating that CSLAs encode mannan
synthases (Liepman et al., 2005). These studies were reinforced by
the observation that triple csla2 csla3 csla9 mutants lacked gluco-
mannans and overexpression of CSLA9 enhanced glucomannan
levels in Arabidopsis stems (Goubet et al., 2009). A Golgi-localized
β-mannan synthase in guar seeds that is closely related to the
CLSA genes in Arabidopsis and rice was also identified using het-
erologous expression in soybean somatic embryos (Dhugga et al.,
2004) whereas expression of nasturtium and Arabidopsis CSLC
in yeast provided evidence that CSLCs are β-1,4 glucan synthases
that are involved in xyloglucan biosynthesis (Cocuron et al., 2007).
In this regard, activities of some non-cellulosic polysaccharide
synthesizing enzymes in grasses have been demonstrated using
Arabidopsis as a heterologous system. Arabidopsis has been a use-
ful model for elucidating function of grass cell wall synthesizing
enzymes because it lacks some of the mixed polysaccharide back-
bones typically found in grasses. For example, the grass cell wall
contains (1,3;1,4)-β-d-glucan, which is not present in Arabidop-
sis. Arabidopsis plants expressing rice CSLF (OsCSLF) and barley
(HvCSLH ) genes were able to produce (1,3;1,4)-β-d-glucans in
their cell walls providing direct gain of function evidence that
CSLF and CSLH are involved in (1,3;1,4)-β-d-glucan biosynthesis
(Burton et al., 2006; Doblin et al., 2009).

Like CESA, the significance of CSL genes for various aspects
of plant development has been demonstrated through mutant
studies. For instance, it was found that Arabidopsis csla7 mutants
are defective in pollen tube growth and embryogenesis indicating
that mannan hemicellulosic polysaccharides that are synthesized
by CSLAs are important for cell wall function needed to sup-
port these developmental processes (Goubet et al., 2003, 2009).
In rice, mutants with altered leaf morphology and plant architec-
ture were disrupted in OsCSLD1 and OsCSLD4 (Li et al., 2009; Hu
et al., 2010; Wu et al., 2010; Luan et al., 2011). OsCSLD1 was also
shown to be necessary for root hair development (Kim et al., 2007).

More recently, the narrow-organ and warty leaf phenotype of the
maize csld1 mutant was attributed to defects in cell division and
expansion (Hunter et al., 2012). The Arabidopsis genome contains
six CSLD genes and mutations to five of these genes have been
reported to cause distinct phenotypes. csld5 mutants, for example,
have stem growth defects (Bernal et al., 2007) whereas csld2 and
csld3 have root hairs that rupture at the tip (Favery et al., 2001;
Wang et al., 2001; Bernal et al., 2008; Galway et al., 2011; Park
et al., 2011). Furthermore, CSLD1 and CSLD4 were shown to be
essential for maintaining growth of pollen tubes for efficient trans-
mission of male gametes (Bernal et al., 2008; Wang et al., 2011)
indicating that the latter four CSLD genes encode proteins that
synthesize important components of the cell wall of tip growing
cells. However, recent double and triple mutant studies indicate
that CSLD2 and CSLD3 may function cooperatively with CSLD5
in plant developmental processes besides tip growth (Yin et al.,
2011).

In this paper, we present new data showing an additional
function for CSLD2 and CSLD3. We observed that csld2 csld3
double mutants had reduced seed set, which we found was due
to defects in female transmission. Cell biological analyses of
the ovules of csld2 csld3 indicate that synergid cells degenerated
during megagametogenesis resulting in the compromised abil-
ity of pollen tubes to efficiently fertilize ovules. Interestingly,
while the above results suggest that CSLD2 and CSLD3 func-
tion redundantly during female gametophyte development, they
might have evolved divergent roles in root hair development with
CSLD3 playing a more prominent role. These conclusions are
supported by phylogenetic and gene duplication studies showing
that CSLD3 may have undergone more relaxed selection result-
ing in its having a divergent role in root hair growth compared to
CSLD2.

MATERIALS AND METHODS
GENETIC CROSSES AND ANALYSIS OF GENETIC TRANSMISSION
All of the Arabidopsis lines used in this study are of the Col-
0 ecotype. Homozygous knockout lines of csld2 (SALK_119808,
a T-DNA mutant of At5g16910) and csld3 (SALK_112105, a T-
DNA mutant of At3g03050) were obtained from the Arabidopsis
Biological Resource Center, and then backcrossed to the wild-
type at least two times. The segregation of the progeny derived
from the crosses was examined based on their root hair phe-
notypes (Bernal et al., 2008), and genotypes of these progeny
were confirmed by polymerase chain reaction (PCR) following
the standard protocol from the Salk Institute Genomic Analysis
Laboratory1. For csld2, D2-LP (CACAAATGGCTGGCTCTAAAG)
and D2-RP (AAAAAGGAACCCAAATGTTGG), for csld3, D3-
LP (GGGAGATCAGATTTCCCAGTC) and D3-RP (TGTTCAC-
CTCTTGATGATTTGG) were used as gene specific primers. The
LBb1.3 (ATTTTGCCGATTTCGGAAC) primer from the left bor-
der of T-DNA was used either with D2-RP or D3-RP for the csld2
or csld3 T-DNA insertion mutants, respectively.

To determine gametophytic transmission of the csld2 and
csld3 mutant alleles, reciprocal crosses were performed between

1http://signal.salk.edu/
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wild-type and plants with only one functional copy of CSLD3
(i.e., csld2/csld2 CSLD3/csld3). The F1 seeds were harvested and
pooled separately for the progeny that was generated by the
crosses between the male mutant (i.e., csld2/csld2 CSLD3/csld3)
and the female wild-type or of male wild-type to the female
mutant. After sterilization and germination on plates, DNA was
extracted. Progeny was genotyped for the presence of csld2 and
csld3 T-DNA insertions by PCR. χ2 Values are indicated. P values
were calculated using GraphPad QuickCalcs (available online at
http://www.GraphPad.com/).

GROWTH CONDITIONS AND EVALUATION OF ROOT HAIR PHENOTYPES
Arabidopsis seeds were surface sterilized and planted as detailed in
Dyachok et al. (2009). To evaluate root hair phenotypes, 4- or 5-
day-old seedlings were examined with an inverted Nikon Eclipse
TE300 compound microscope and photographed with a Nikon
DXM1200 digital camera (Nikon Corporation,Melville,NY,USA).
Root hair length from digital images was measured using ImageJ
ver. 1.42q software2.

COMPLEMENTATION OF csld 2 csld 3 DOUBLE MUTANT
The full length genomic DNA of CSLD3 was amplified using
primers D3-KpnI-F (CTGGTACCTGAAAGTCTCTGAAGAA-
CAACG) and D3-XbaI-R (AGTCTAGAATCTGTTGCCATTA-
GAAATCTC). The resulting 5.8 kb DNA fragment that contained
1.6 kb of the 5′ upstream from the start codon and 450 bp of the
downstream sequence from the stop codon of CSLD3 was sub-
cloned into a pCAMBIA2300. Sequencing analysis detected no
PCR errors in the construct. The csld2 csld3 mutant seedlings were
transformed by using Agrobacterium tumefaciens strain LBA4404
as previously described (Clough and Bent, 1998) and 14 inde-
pendent lines were analyzed. The presence of the transgene was
confirmed by PCR genotyping using the primers of D2-RP, D3-RP,
and LBb1.3 as described earlier, and D3-IN (GAAAAGCCGTGT-
GCCAGAAG), D3-UTR (ACATTTCTGAGCCATTATTC), CAM-
BIA (TCACGACGTTGTAAAACGAC).

HISTOCHEMICAL STAINING FOR β-GLUCURONIDASE (GUS) ACTIVITY IN
POLLEN TUBES
Histochemical staining of the flowers to monitor GUS activ-
ity in pollen was performed as previously described (Jefferson
et al., 1987). The LAT52:GUS pollen (Johnson et al., 2004) was
transferred onto wild-type and csld2 csld3 mutant stigma. Six-
teen hours after pollination, flowers were vacuum-infiltrated for
15 min in a GUS substrate solution of 100 mM sodium phosphate,
pH 7.2, 0.2% (v/v) Triton X-100, 2 mM potassium ferricyanide,
2 mM potassium ferrocyanide, and 2 mM 5-bromo-4-chloro-3-
indolyl-β-D-glucuronide, and then incubated for an additional
12 h at 37˚C. Samples were then transferred into a mixture of 1:1
ethanol:acetic acid to remove chlorophyll pigmentation. Finally,
the tissues were cleared by Hoyer’s solution (7.5 g Arabic gum,
100 g chloral hydrate, 5 ml glycerol, and 60 ml deionized water)
prior to photography.

2http://rsbweb.nih.gov/

EVALUATION OF SYNERGID CELLS IN WILD-TYPE AND MUTANT
OVULES
Processing of ovules for microscopic analysis was as previously
described (Christensen et al., 1997) with minor modifications.
Briefly, wild-type and csld2 csld3 mutants flowers were emascu-
lated at the 12b stage (Smyth et al., 1990), and then incubated in
a growth chamber (22–23˚C, 16 h light and 8 h dark cycle) for 2–
3 days to ensure that the pistils proceeded into the FG7 stage in the
absence of fertilization (Christensen et al., 1997). The pistils were
then cut and fixed in a solution of 4% glutaraldehyde in cacody-
late (pH 6.9) for 2 h at room temperature. Following fixation, the
tissues were dehydrated in a graded ethanol series followed by
clearing in a mixture of 2:1 benzyl benzoate:benzyl alcohol. The
pistils were mounted in immersion oil and sealed with coverslips
using nail polish.

A Leica TCS SP2 AOBS confocal laser scanning microscope
(Leica Microsystems, Exton, PA, USA) was used to examine the
female gametophytes within the pistils. The 595 nm laser line of
the HeNe laser was used to observe ovule autofluorescence. Fif-
teen optical sections at 1.34 μm interval were collected with a 63×
water immersion objective. Optical sections were compiled into
a single image using the maximum projection command of the
Leica confocal software.

CSLD GENE AND PROTEIN SEQUENCE RETRIEVAL
Sequences of Arabidopsis thaliana CSLD genes were obtained from
TAIR-www.arabidopsis.org excluding CSLD6 and its orthologs
because CSLD6 in Arabidopsis appears to be a pseudogene (Ver-
hertbruggen et al., 2011). Sequences from Arabidopsis lyrata, Pop-
ulus trichocarpa, Medicago truncatula, maize, and Physcomitrella
patens were retrieved using Arabidopsis thaliana CSLD protein
sequences to search against the respective proteome database in
Phytozome V8.0 at JGI (Goodstein et al., 2011). The resulting pro-
tein and cDNA sequences in Medicago were further curated to
find proper intron locations based on the GT/AG rule by com-
paring with other CSLD proteins (Breathnach et al., 1978). A
few Medicago sequences were not included in the phylogenetic
analysis because these sequences showed clear sequencing errors
or alternative intron starting/ending sites could not be located (i.e.,
Medtr1g047090).

SEQUENCE AND EVOLUTIONARY ANALYSES
The full length protein sequences from all species in this study
were aligned by the MAFFT Version 6.0 program with minor
manual adjustments (Katoh et al., 2009). Phylogenetic analysis
by the Bayesian statistical method (BEAST) was completed using
BEAST v1.7.1 software package (Drummond et al., 2012). To
further evaluate the evolution of CSLD family, the Maximum-
Parsimony (MP) method was performed using MEGA 4.0 with
1000 replicates (Tamura et al., 2007). The Bayesian posterior sup-
port values were found to be comparable at most nodes with
the MP bootstrap values. The changes of dN /dS ratios between
taxa were estimated by MEGA 4.0 (Tamura et al., 2007) and
K-Estimator 6.0 (Comeron, 1999). The ancestral sequence of Ara-
bidopsis thaliana CSLD2 and CSLD3 was predicted by Diverge
2.0 (Gu and Vander, 2002). To check for patterns of segmental
duplication, the DotPlot function of the PipMaker program at
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http://pipmaker.bx.psu.edu/pipmaker was used (Schwartz et al.,
2000). The gene structure was displayed by the GSDS program at
http://gsds.cbi.pku.edu.cn/ (Guo et al., 2007).

RESULTS
CSLD2 CSLD3 DOUBLE MUTANTS ARE DEFECTIVE IN FEMALE GENETIC
TRANSMISSION
The Arabidopsis CSLD2 and CSLD3 genes are highly expressed in
root tissues, and they have been shown to play important roles
in root hair development (Favery et al., 2001; Wang et al., 2001;
Bernal et al., 2008; Galway et al., 2011; Park et al., 2011). More-
over, they were shown to be expressed in a variety of other tissues
(Zimmermann et al., 2004; Bernal et al., 2008), suggesting that
these two genes may participate in the development of organs or
tissues other than root hairs. However, the lack of distinct phe-
notypes in other plant organs might be due to functional redun-
dancy between these two homologous CSLD genes. We specifically
selected the non-functional mutant alleles of csld2 (SALK_16910)
and csld3 (SALK_03050) for our studies as described previously
(Bernal et al., 2008), in contrast to the partially functional alle-
les of csld3 (Favery et al., 2001; Wang et al., 2001; Galway et al.,
2011).

Interestingly, we found that siliques of csld2 csld3 dou-
ble mutants contained a significant number of aborted seeds,
while those of wild-type or single csld2 or csld3 mutants did
not (Figure 1). To determine whether seed abortion in csld2
csld3 double mutants was due to abnormal genetic transmis-
sion, 142 seedlings of the F2 progeny were genotyped by PCR
(Table 1). We found that the number of double homozygote
(csld2/csld2 csld3/csld3) and double heterozygote (CSLD2/csld2
CSLD3/csld3) individuals in the F2 population was less than
expected suggesting inefficient genetic transmission during csld2
csld3 reproduction.

Like csld3 single mutants, csld2 csld3 double mutants lacked
root hairs due to very early rupturing of the tip (Bernal et al.,
2008). To determine whether the lack of root hairs and low seed
set phenotype of the csld2 csld3 double mutant was indeed due to
the combined reduced expression of CSLD2 and CSLD3, csld2 csld3
was transformed with a wild-type CSLD3 gene under the control
of its native promoter (Figure A1 in Appendix). The root hairs of
the resulting transgenic plants were noticeably longer and swollen
at their bases, and ruptured at their tips much later than csld3
single or csld2 csld3 double mutants. Such root hairs defects were
reminiscent of the root hair phenotypes of csld2 single mutants
(Figures A2A–D in Appendix; Bernal et al., 2008). Moreover, the
csld2 csld3 complemented lines also showed normal seed set similar
to csld2 single mutants and wild-type providing definitive proof
that reduced seed set in csld2 csld3 double mutant was due to
the disruption of both CSLD2 and CSLD3 (Figures A2E–G in
Appendix).

To determine whether the reduced seed set of csld2 csld3 dou-
ble mutants was due to male or female transmission defects,
we performed reciprocal crosses between individuals with only
one copy of CSLD3 (csld2/csld2 CSLD3/csld3) and wild-type
plants (CSLD2/CSLD2 CSLD3/CSLD3). As outlined in Table 2,
if genetic transmission is normal, the F1 population would
be expected to have 50% double heterozygotes (CSLD2/csld2

FIGURE 1 | csld2 csld3 double mutants have siliques with fewer seeds.

Whole-mount images of the mature siliques cleared with 0.2N NaOH and
1% SDS solution. (A) Siliques from wild-type, csld2 and csld3 single
mutants, and the csld2 csld3 double mutant. (B) Siliques from the
wild-type, csld2/csld2 CSLD3/csld3 individuals and siliques resulting from
reciprocal crosses between wild-type and csld2/csld2 CSLD3/csld3.
Bars = 5 mm.

CSLD3/csld3) and 50% as single heterozygotes of CSLD2
(CSLD2/csld2 CSLD3/CSLD3). When csld2/csld2 CSLD3/csld3
pollen was used to fertilize wild-type plants, the distribution
of CSLD2/csld2 CSLD3/csld3 and CSLD2/csld2 CSLD3/CSLD3
progeny were observed at the expected ratio of 1:1 (Table 2).
However, when wild-type pollen was used to fertilize csld2/csld2
CSLD3/csld3 plants, the number of CSLD2/csld2 CSLD3/csld3
individuals declined significantly suggesting that csld2 csld3 trans-
mission through female gametophytes is the primary cause of
reduced seed set in csld2 csld3 double mutants. All of the ovules of
csld2 csld3 double mutants that developed into seeds germinated
normally and developed into normal plants (data not shown).
No deformed seeds in siliques of the double mutant were found
(Figure 2C). These results indicate that reduced seed set in csld2
csld3 plants can be attributed to events prior to embryogenesis and
such defects are likely occurring in female reproductive structures.
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Table 1 | Summary of the infertility of csld2 and csld3 mutant progeny.

Genotype No. Expected (%) Observed (%)

CSLD2/CSLD2 CSLD3/CSLD3 9 6.25 6.24

CSLD2/csld2 CSLD3/CSLD3 26 12.5 18.3

CSLD2/CSLD2 CSLD3/csld3 22 12.5 15.5

csld2/csld2 CSLD3/CSLD3 11 6.25 7.75

CSLD2/CSLD2 csld3/csld3 11 6.25 7.75

CSLD2/csld2 CSLD3/csld3 25 25.0 17.6

csld2/csld2 CSLD3/csld3 16 12.5 11.3

CSLD2/csld2 csld3/csld3 8 12.5 12.7

csld2/csld2 csld3/csld3 4 6.25 2.82

Total 142 100 100

Percentage of genotypes (by PCR) observed in the F2 population following the genetic cross of csld2 × csld3. The percentage of the expected genotypes following

the genetic cross of csld2 × csld3 in F2 is listed.

Table 2 | Genetic analysis of csld2/csld2 CSLD3/csld3 indicates defects in female transmission.

Class Expected Observed

BACKCROSS OF WILD-TYPE (FEMALE) × csld2/ csld2 CSLD3/ csld3 (MALE)a

CSLD2/csld2 CSLD3/csld3 50% (96) 54.7% (105)

CSLD2/csld2 CSLD3/CSLD3 50% (96) 45.3% (87)

BACKCROSS OF csld2/ csld2 CSLD3/ csld3 (FEMALE) ×WILD-TYPE (MALE)b

CSLD2/csld2 CSLD3/csld3 50% (91.5) 17.5% (32)

CSLD2/csld2 CSLD3/CSLD3 50% (91.5) 82.5% (151)

an = 192, χ2 = 1.688, P < 0.1939. bn = 183, χ2 = 77.38, P < 0.0001.

Individuals inheriting the csld2 or the csld3 mutation were scored by PCR and then subjected to a χ2 test. P, statistical significance; n, sample size.

SYNERGID CELLS OF CSLD2 CSLD3 DEGENERATE DURING FEMALE
GAMETOPHYTE DEVELOPMENT
To investigate the nature of the defect in female genetic transmis-
sion, we fertilized csld2 csld3 double mutants and wild-type with
pollen from a wild-type plant expressing the pollen tube marker,
LAT52:GUS (Johnson et al., 2004). We found successful penetra-
tion of pollen tubes in most of the ovules of wild-type. In contrast,
pollen failed to penetrate some of the ovules of csld2 csld3 double
mutants (Figures 2A,B).

The observation that pollen tubes failed to penetrate some
ovules of csld2 csld3 double mutants led us to hypothesize that the
developmental and structural integrity of the female gametophyte
might be compromised. To test this hypothesis, we emasculated
csld2 csld3 flowers at stage 12 (Smyth et al., 1990) and waited
for 48–72 h to ensure that the female gametophytes were suf-
ficiently developed, and then we examined ovule structure by
confocal microscopy. Christensen et al. (1997) demonstrated that
flowers at the FG7 stage, a stage when medial stamens become
stalked (Smyth et al., 1990), the female gametophyte consists of
four cells: one central cell, one egg cell, and two synergid cells.
They documented that synergid cell degeneration occurs only after
pollen tubes penetrated the ovule. In our experience, the ability
to clearly image synergid cells in isolated Arabidopsis ovules with
the confocal microscope depended on their correct orientation
when mounted on glass slides. This prevented us from correlating

the percentage of non-degenerated synergid cells in csld2 csld3
mutants with seed set. However, in ovules where synergid cells were
clearly visible, 100% of wild-type ovules had non-degenerated syn-
ergid cells (Figure 3A). On the other hand, from a total of 100
ovules examined, 30% of csld2 csld3 ovules contained degenerated
synergid cells (Figures 3B,C). This result suggests that the loss of
CSLD2 and CSLD3 triggered the synergid cells to degenerate dur-
ing megagametogenesis, and this degeneration could be the cause
of the partial infertility of the double mutant.

CSLD2 AND CSLD3 SHOW DOSAGE-DEPENDENT EFFECTS DURING
ROOT HAIR DEVELOPMENT
In a previous study, we showed that single csld2 mutants had
shorter root hairs compared to wild-type due to rupturing of
the root hair tip (Bernal et al., 2008). Surprisingly, we found that
double heterozygous plants (CSLD2 csld2/CSLD3 csld3) at the F1
generation, showed ruptured root hair tips, indicating that a com-
plete set of both CSLD genes is required for normal root hair
development (Figures 4A,B). This notion is supported by the
observation that the extent of root hair rupturing depended on
the number of functional copies of CSLD2 or CSLD3. For exam-
ple, CSLD2/csld2 CSLD3/CSLD3 and CSLD2/CSLD2 CSLD3/csld3
had a higher percentage of shorter root hairs than the wild-type.
Furthermore, csld2 single mutants with two copies of CSLD3
(csld2/csld2 CSLD3/CSLD3) had a larger percentage of root hairs
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FIGURE 2 | Defective seed set in csld2 csld3 double mutants is the

result of a failure in fertilization. (A,B) Whole-mount images of GUS
stained ovules. LAT52:GUS pollen was used to pollinate wild-type (A) and
the csld2 csld3 double mutant (B) stigmas. Note that pollen tubes have
not penetrated some ovules of csld2 csld3 mutants (black arrows). On the

other hand, all of the wild-type ovules show pollen penetration.
(C) Dissected view of mature siliques. Note that siliques of the csld2 csld3
double mutant contained unfertilized and desiccated ovules (white
arrowheads), while the wild-type produces a complete set of seeds.
Bars = 100 μm (A,B).

FIGURE 3 | Synergid cells of csld2 csld3 degenerate before

fertilization. (A) Secondary endosperm nucleus (SEN), egg cell
nucleus (EN), and the two synergid cell nuclei (SN) in the wild-type.
(B,C) Show images at the same stage of female gametophyte
development (FG7) in csld2 csld3 double mutant. Note that csld2 csld3

has degenerated synergid nucleus (dSN) as evident by increased
autofluorescence and absence of a distinct synergid cell nuclei. Thirty
percent of ovules of csld2 csld3 contained degenerated synergid cells.
Images shown are a projection of fifteen 1.34 μm confocal optical
sections. Bars = 20 μm.

that were longer compared to csld2/csld2 CSLD3/csld3 (Figure 4C).
Altogether, these results suggest that CSLD2 and CSLD3 have
dosage-dependent effects on root hair development.

CSLD2 AND CSLD3 EXERT DIFFERENT IMPACTS ON ROOT HAIR
GROWTH
As noted above, double heterozygous plants (CSLD2/csld2
CSLD3/csld3) already exhibited ruptured root hairs that mirrored
the phenotype of csld2 (Figure 4B). However, as reported previ-
ously, root hairs of csld2 would typically swell at the base after
tip rupturing but then are able to resume tip growth if tip rup-
turing is mild (Bernal et al., 2008). Because of this cycle of mild
tip rupturing and tip growth resumption, root hairs of csld2 sin-
gle mutants were characterized by uneven swelling along their
length, and in some cases root hairs developed two growing tips
before eventually rupturing (Figure 5A). In contrast, double het-
erozygous plants did not show the unusual root hair growth
behavior exhibited by csld2 single mutants. Instead, root hairs of
CSLD2/csld2 CSLD3/csld3 would first elongate like wild-type but

eventually rupture later during root hair development (Figure 5B).
Because root hairs of CSLD2/csld2 CSLD3/csld3 ruptured later,
they were longer than those of csld2 single mutants. Likewise,
CSLD2/CSLD2 CSLD3/csld3 plants had longer root hairs than
CSLD2/csld2 CSLD3/CSLD3 plants (Figure 4C).

On the other hand, having only a single copy of CSLD3 gene
(csld2/csld2 CSLD3/csld3), was sufficient for many root hairs to
elongate to lengths of 200 μm or more, whereas having two copies
of CSLD2 (CSLD2/CSLD2 csld3/csld3) was not sufficient for root
hairs to proceed beyond initiation (Figure 4C). Taken together,
these results suggest that CSLD3 is critical during both the onset
of root hair initiation and sustained root hair elongation whereas
CSLD2 is more important for sustained root hair elongation.

EXPRESSION OF CSLD3 IS MODULATED BY A LARGER ARRAY OF
TRANSCRIPTIONAL REGULATORY ELEMENTS THAN CSLD2
On the basis of the above studies, CSLD2 and CSLD3 might have
overlapping functions during both root hair and female gameto-
phyte development. However, because csld3 and csld2 mutants are
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FIGURE 4 | Dosage-dependent effects of CSLD2 (D2) and CSLD3 (D3) on

root hair development. (A) T-DNA PCR verifying the genotype of the
mutants. (B) Representative images of root hairs. Note that the root hair
phenotype differs among individuals depending on the number of functional

copies of the CSLD genes. Bars = 250 μm. (C) Quantification of root hair
length from individuals with different copies of the CSLD2 or CSLD3 genes.
One hundred and fifty to 200 mature root hairs were measured from 4- to
5-day-old seedlings.

different with regard to the severity of their root hair phenotype
(Figure 4; Bernal et al., 2008), it is possible that functional dif-
ferences might exist between the two genes. To understand the
partial conservation and divergence between these two closely
related CSLD homologs, the upstream regions of CSLD2 and
CLSD3 were examined and compared. cis-Regulatory elements
of CSLD2 and CSLD3 were analyzed by the AtcisDB program at
AGRIS (Arabidopsis Gene Regulatory Information Server; Davu-
luri et al., 2003; Yilmaz et al., 2011). We found that the upstream
region of CSLD3 contained 64 predicted binding sites for various
transcriptional regulators while that of CSLD2 contained only 35
sites. Twenty three of these binding sites were shared by both genes,
suggesting that the regulation of transcription between CSLD2
and CSLD3 might be similar during certain developmental stages.
However, because 40 of the predicted binding sites are only present
in the upstream region of CSLD3, it appears that expression of
CSLD3 is controlled by a more diversified group of regulators.
This implies that CSLD3 may play a more divergent role than
CSLD2.

SEQUENCE AND EVOLUTIONARY ANALYSES OF CSLD GENES
To further elucidate the similarity and divergence between CSLD2
and CSLD3 genes, sequence comparison, and evolutionary analy-
sis of CSLD2/3 and their close homologs in other plant species
were performed. All Arabidopsis CSLD sequences were found to be
very similar. In particular, the Arabidopsis CSLD2 and CSLD3 were
identified to be the most closely related homologous pair (Bernal
et al., 2008) and they showed very similar intron/exon organi-
zation (Figure 6 and Figure A1 in Appendix). Due to the high
sequence homology of the CSLD genes, we investigated their evo-
lutionary relationship. CSLD and selected CESA protein sequences
were collected from several species including Arabidopsis thaliana,
A. lyrata, poplar, Medicago, maize, and Physcomitrella (Figure 6).
These sequences were used to construct a phylogenetic tree while
using selected CESA genes as an out group but excluding CSLD6
and its orthologs because CSLD6 appears to be a pseudogene by
virtue of having a truncated transcript and extremely low expres-
sion in most tissues (Bernal et al., 2008; Verhertbruggen et al.,
2011).
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FIGURE 5 |Tip rupture and re-growth of csld2 single mutants (A) and

csld2 csld3 dihybrids (B). The arrows indicate the points of tip growth
rupture and growth resumption. The asterisk indicates a branched root hair.
Bars = 100 μm.

Topology of this tree indicates that before the separation of
vascular plants and non-vascular plants, there might have been
two copies of CSLD ancestral genes. It appears that each of these
two ancestral genes evolved separately, forming two branches that
led to the development of the CSLD5 branch and other CSLD
gene branch. It also appears that the CSLD5 gene became lost
in non-vascular plants and was only retained in flowering plants,
suggesting that its function may be different from its paralogs in
Arabidopsis.

Moreover, since the split of vascular and non-vascular plants,
CSLD genes in the CLSD1/2/3/4 branch had experienced multiple
duplication events, resulting in the formation of multiple copies
of the CSLD genes. The ancestor of flowering plants could have
experienced more than one duplication event, forming multiple
copies of the CSLD genes that evolved independently. Further-
more, it seems that the duplication event that generated CSLD2
and CSLD3 could have happened after the separation of the rosid
II clade (Arabidopsis) from the rosid I clade (poplar and Medicago)
83∼107 Million Years Ago (MYA; Wang et al., 2009), but before the
split of Arabidopsis thaliana and A. lyrata about 5 MYA (Kuittinen
et al., 2004). It has been proposed that Arabidopsis thaliana could
have experienced three genome-wide duplication events with the
most recent one (the third genome-wide duplication) happen-
ing 24–40 MYA (Simillion et al., 2002; Blanc et al., 2003; Jansson
and Douglas, 2007). This suggested that the formation of CSLD2
and CSLD3 might have occurred during the third genome-wide
duplication event in Arabidopsis. Such conclusions are supported
by two other phylogenetic methods namely the Neighbor-Joining
and Maximum-likelihood methods (data not shown).

To further explore the differences among CSLD genes, their
intron arrangements were compared. As shown in Figure 6, exons
of most CSLD gene are separated by two introns. Taking a closer
look at the exon/intron distribution in the CSLD2/3 subfamilies,
introns of CSLD genes in rosid II lineage appear to be much shorter
than those in the rosid I lineage, indicating that they probably had
experienced different courses of evolution since their separation.
The high similarity in intron arrangement between CSLD2 and
CSLD3 in Arabidopsis thaliana additionally suggests that these two
genes may have been produced more recently.

To support the above hypotheses, dot-matrix analyses were
done by comparing the 50-kb genomic sequences upstream and

downstream of the target Arabidopsis CSLD genes. A comparison
between CSLD2 and CSLD3 and adjacent regions showed a pat-
tern of segmental duplication (Figure 7A). It was also found that
the synonymous nucleotide change (dS) value can be used as an
estimate of the duplication age (Kong et al., 2007) and the dS
value between the CSLD2 and CSLD3 pair is 0.81, equal to the
mean dS value of the chromosomal blocks that resulted from the
third genome-wide duplication (Blanc et al., 2003). Therefore, it
can be concluded that CSLD2 and CSLD3 resulted from the most
recent genome-wide duplication event in Arabidopsis. Since the
formation of CSLD2 and CSLD3 was more recent, they could be
more functionally redundant, but could also have developed novel
functions during the course of recent evolution.

Lastly, to further understand the functional conservation and
divergence between CSLD2 and CSLD3, an investigation of the
evolutionary pressure on this pair by a dN /dS sliding-window
analysis was performed to compare the CDS sequences of CSLD2
and CSLD3 with the sequence of their estimated common ances-
tor. As shown in Figure 7B, it is clear that the evolution of
CSLD2 and CSLD3 was under purifying selection, especially,
the regions that encode the C-terminus of these proteins. How-
ever, the regions that encode the N-terminus of both proteins
appeared to be under relaxed selection pressure as shown by mild
dN /dS values (Figure 7B). These mild values suggested more
frequent non-synonymous substitutions, which could potentially
allow functional divergence. Additionally, the region encoding the
N-terminus of CSLD3 showed much higher dN /dS values. This
would suggest that CSLD3 may have gained additional functions
during evolution compared to CSLD2, which could be recognized
by its more predominant function in root hair development.

DISCUSSION
The possibility that CSLDs synthesize a β-1,4 glucan polysaccha-
ride that assembles into cellulose-like microfibrils at the apex
of growing root hairs was elegantly demonstrated by Park et al.
(2011). They showed that replacing CSLD3 catalytic activity with
the CESA6 catalytic domain could rescue the root hair defects of
the csld3 mutant while retaining its apical plasma membrane local-
ization. Given their broad expression patterns, CSLD function is
likely not limited to tip growing cells (Zimmermann et al., 2004;
Bernal et al., 2008). For instance, there is recent genetic evidence
showing that CSLD5 in cooperation with CSLD2 and CSLD3 is
pivotal for Arabidopsis development by impacting diffuse growing
cells of the stem (Yin et al., 2011). Here, double mutant studies
uncovered a role for CSLD2 and CSLD3 in female gametophyte
development, consistent with previous genetic subtraction and
cell-type specific transcript profiling experiments demonstrating
that CSLD2 and CSLD3 are expressed in various cells and tis-
sues within the ovule (Johnston et al., 2007; Wuest et al., 2010).
Interestingly, a gene trap insertional mutagenesis screen identified
an Arabidopsis mutant called astlik, which had multiple inser-
tions and deletions within the genome including a deletion in
the CSLD3 gene. Astlik had siliques containing a mixture of nor-
mal seeds and infertile ovules that was reminiscent of the csld2
csld3 phenotype reported here. However, it was not shown con-
clusively, whether the CSLD3 gene was responsible for the partial
infertility of the astlik mutant because of the complex genomic
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FIGURE 6 | Phylogenetic tree and intron-exon distribution of CSLDs from Arabidopsis thaliana, A. lyrata, Populus, Medicago, maize, and

Physcomitrella. Bootstrap support values using MP method and Bayesian posterior values were labeled at each node respectively.

rearrangement induced by the gene trap mutagenesis strategy
(Brukhin et al., 2011). Nonetheless, the fact that the partial infer-
tility phenotype of csld2 csld3 can be rescued with the CSLD3

genomic DNA driven by its own promoter indicates that both
CSLD2 and CSLD3 function redundantly in female gametophyte
development.
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FIGURE 7 | Sequence analyses of CSLD genes. (A) Dot-matrix analysis comparing the flanking genomic regions (50 kb on both sides) of CSLD2 and CSLD3.
(B) dN /dS sliding-window (window size 180, movement 90) analysis of CSLD2 (dash line) and CSLD3 (solid line) with their predicted common ancestor.

Light microscopic studies indicate that the defects in female
transmission we observed in csld2 csld3 double mutants could be
explained in part by altered function of the synergid cells. During
female gametophyte development in Arabidopsis, the megaspore
undergoes three rounds of mitosis to produce an eight-nucleated
cell. After nuclear migration and cellularization, the megagameto-
phyte forms a seven-celled structure consisting of three antipo-
dal cells, two synergid cells, one central cell, and one egg cell
(Schneitz et al., 1995; Christensen et al., 1997; Drews et al., 1998).
During fertilization, the pollen tube penetrates one of the two
synergid cells. This synergid cell undergoes cell death (Chris-
tensen et al., 1997; Punwani and Drews, 2008), which then induces
the pollen tube to stop growing, and discharge one sperm to
the egg cell and one sperm to the central cell to initiate double
fertilization (Faure et al., 2002; Berger et al., 2008). In Arabidop-
sis, synergid cell degeneration is only triggered several minutes
after the pollen tube makes contact (Sandaklie-Nikolova et al.,

2007). On the other hand, synergid cell death in Nicotiana has
been reported to occur before pollination indicating that syn-
ergid degeneration in some plant species is an important com-
ponent of female gametophyte development (Huang and Rus-
sell, 1992). Studies of mutants that fail to undergo synergid cell
death after pollen tube contact have implicated a mitochondria-
localized DnaJ chaperonin and a FERONIA receptor-like kinase
in the synergid cell death program in Arabidopsis (Christensen
et al., 2002; Rotman et al., 2003). Here, we found that several
ovules in csld2 csld3 double mutants had apparently dead synergid
cells even before fertilization (Figure 3). Because synergid cells
are known to secrete attractants that guide pollen tubes to the
female gametophyte, their death in ovules of csld2 csld3 could
be detrimental to pollen attraction (Higashiyama et al., 2001;
Kasahara et al., 2005; Okuda et al., 2009). This notion is sup-
ported by the observation that several ovules in the csld2 csld3
pistils were not penetrated by pollen tubes and therefore explains
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the large percentage of undeveloped ovules in csld2 csld3 siliques
(Figure 2).

It is unclear how the lack of CSLD2 and CSLD3 contribute
to synergid cell death. Previous studies have shown that syn-
ergid cells have unique structural features that could likely be
impacted by the absence of the specific cell wall polysaccharide
synthesized by CSLD2 and CSLD3. Most notable is the synergid
cell wall adjacent to the micropylar pole of the embryo sac. This
region of the synergid cell called the filiform apparatus is typ-
ically thickened and contains numerous finger-like projections
that extend into the synergid cytoplasm (Weterings and Russell,
2004). Several functions have been proposed for the filiform appa-
ratus one of which is to facilitate the secretion of a pollen tube
attractant (Punwani and Drews, 2008). Although we have not
examined the ultrastructure of csld2 csld3 synergid cells, other
female gametophytic mutants with defects in the filiform appara-
tus exhibit female transmission abnormalities that mirror csld2
csld3. For example, mutants in the synergid-expressed MYB98
transcription factor, which is a member of the R2R3-MYB gene
family, had desiccated ovules, reduced transmission through the
female gametophyte, and defective pollen tube guidance (Kasahara
et al., 2005). Interestingly, downstream targets of MYB98 include
filiform apparatus-localized secreted proteins with predicted sig-
naling roles (Punwani et al., 2007). The defective cell walls of csld2
csld3 synergids could compromise the timely secretion of signal
peptides needed for pollen tube attraction. Detailed studies of
pollen tube growth patterns are needed to determine the specific
stage of pollen tube guidance that is affected by the polysaccharide
product of CSLDs.

Recent complementation studies showed that expressing a 35S:
YFP-CSLD2 construct can fully restore root hairs of csld3 to the
wild-type phenotype (Yin et al., 2011). This indicates that like
in the female gametophyte, CSLD2 and CSLD3 might function
redundantly during root hair development. However, the fact that
csld3 single mutants had more severe root hair defects than csld2
(Bernal et al., 2008), suggests only partial redundancy with CSLD3
having a more prominent role than CSLD2 in root hair growth.
This notion is reinforced by the observation that seedlings with
only a single copy of CSLD3 (csld2/csld2 CSLD3/csld3) had a high
percentage of root hairs that were able to elongate to lengths of
up 200 μm or more (Figure 4C). This raises the possibility that
CSLD2 and CSLD3 deposit their respective polysaccharide prod-
ucts in different regions of the root hair cell. Early ultrastructural
studies have shown that the inner cell wall surface of elongating
root hairs at the extreme apex contain cellulose microfibrils that are
deposited randomly, forming a thin primary wall layer, while the
sub-apex develops a secondary cell wall layer at the inner surface
with cellulose microfibrils deposited longitudinally. These longi-
tudinal bundles of microfibrils were shown to extend to the base
of the root hair (Sassen et al., 1985). Such a pattern of wall organi-
zation could be significant for root hair growth because randomly
organized microfibrils at the tip can be more readily extended by
the action of expansins without disruption of the covalent bonds
(McQueen-Mason and Cosgrove, 1995; Cho and Cosgrove, 2002).
It is tempting to speculate that CSLD3 might contribute more
to cell wall structure at the tip apex, which is consistent with
its localization at the extreme root hair apex (Park et al., 2011).

CSLD2 on the other hand could have a more prominent role in the
synthesis of parallel microfibril bundles that thicken and mechan-
ically strengthen the basal cell wall of the root hair. If this is the
case, it could explain why csld2 root hairs swell at the base and
are able to resume tip growth after rupturing, whereas csld3 root
hairs are never able to elongate beyond initiation (Bernal et al.,
2008). This could also explain why root hairs of dihybrid seedlings
(CSLD2/csld2 CSLD3/csld3) grow with a confined diameter and
eventually rupture at the tip before maturation. Previously, we
showed by promoter-reporter fusions that CSLD3 expression in
seedling roots extended from trichoblasts to rapidly elongating
root hairs while CSLD2 expression was more prominent in more
mature root hairs (Bernal et al., 2008). Thus, the dosage-dependent
effects of CSLD2 and CSLD3 on root hair development could also
be explained by differences in their expression levels in seedling
roots.

In addition to having high coding sequence homology, redun-
dancy in CSLD2 and CSLD3 function can also be inferred from
bioinformatic studies of their upstream regions. For instance,
according to AGRIS, upstream regions of CSLD2 and CSLD3 were
predicted to contain a variety of transcriptional regulatory binding
sites with 23 of these sites common to both CSLD2 and CSLD3.
These include binding motifs for the WRKY, MYB, homeobox, and
Auxin Response Factor (ARF) transcription factors. Some of the
functions of the aforementioned transcription factors are consis-
tent with the phenotypes reported here. For example, it was shown
that WRKY75 plays a role during root development and specifies
root hair number (Devaiah et al., 2007; Rushton et al., 2010) while
an Endoplasmic Reticulum (ER)-tethered R2R3-MYB transcrip-
tion factor was recently implicated in controlling root hair length
in part through auxin signaling pathways (Slabaugh et al., 2011).
In addition, overexpressing a rice WRKY protein resulted in ster-
ile plants that were likely caused by defective female reproductive
organs (Ramamoorthy et al., 2008). Moreover, as noted earlier, the
Arabidopsis MYB98 protein was found to be required for the guid-
ance of pollen tubes and the formation of the filiform apparatus
in synergid cells (Punwani et al., 2007).

The common binding motifs for transcriptional regulatory ele-
ments in the upstream regions of CSLD2 and CSLD3 could partly
explain their redundancy. However, the fact that CSLD3 contains
41 additional binding motifs in its upstream region compared
to CSLD2 indicates that CSLD3 expression could be controlled
by a larger group of transcription factors. This might explain
why csld2 and csld3 single mutants exhibit root hair defects with
different levels of severity. For example, the upstream region of
CSLD3 contains three sites for basic helix-loop-helix (bHLH)-
type transcription factors not present in CSLD2. The presence
of bHLH sites has significant implications for root hair devel-
opment because GLABRA3 (GL3), a bHLH transcription factor,
forms a complex with WEREWOLF (WER) and a WD40 protein,
to positively regulate GL2, which in turn inhibits the generation of
root hairs, and promotes cells to differentiate into non-hair cells
(Ishida et al., 2007, 2008; Seo et al., 2011). More recently, large
scale comparative transcriptional profiling of root epidermal cell
mutants, including csld3, and auxin/ethylene treatment uncovered
three distinct types of bHLH proteins that participate in root hair
development in a stage-specific manner (Bruex et al., 2012). Given
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that the CSLD3 upstream region contains three predicted bHLH
binding sites, it is likely that bHLH transcription factors could
be involved in regulating CSLD3 expression during early stages
of root hair development. It is possible that this additional level
of regulation would enable CSLD3 to have a more pronounced
impact on root hair formation than CSLD2. The more prominent
role of CSLD3 in root hair development compared to CSLD2 is
also supported by our previous experiments showing that induc-
tion of CSLD3 expression by low temperature treatment could
reverse the defective root hairs of csld2 single mutants whereas
cold induction of CSLD2 expression caused only partial rescue of
csld3 defects (Bernal et al., 2008).

The partial redundancy and partial divergence between CSLD2
and CSLD3 during root hair development provide a good exam-
ple of functional evolution of duplicated gene pairs. Duplicated
genes may have experienced rapid subfunctionalization after their
formation, accompanied by prolonged and substantial neofunc-
tionalization (He and Zhang, 2005). CSLD2 and CSLD3 seem to
function jointly to execute their ancestor’s function in root hair
and female gametophyte development, which is known as sub-
functionalization. However, CSLD3’s more prominent role in root
hairs indicates that it might have been neofunctionalized during
evolution starting from the duplication event. A similar scenario
was previously observed in Arabidopsis as shown by studies of
the kinesin 14 (KIN14) genes during reproductive development
(Quan et al., 2008). KIN14a and KIN14b genes share extensive
functional similarity during male and female reproductive devel-
opment. However, KIN14a was shown to play a more prominent
role in male meiotic spindle organization than KIN14b because
homozygote of the KIN14a mutation displayed abnormal chro-
mosome segregation and severe sterility, whereas a homozygous
mutant of KIN14b looked like wild-type plants (Quan et al.,
2008). KIN14a and KIN14b were also found to have resulted
from the third genome-wide duplication event in Arabidopsis,
suggesting that this partial functional redundancy and partial
divergence between duplicate genes may be common for many

genes that originated during the same period. Moreover, the par-
tial divergence of functions could be explained by considerable
neofunctionalization on one of the duplicate pair. Even though
neofunctionalization suggested in this study does not appear to be
significant, more detailed characterization of both genes, partic-
ularly with regard to differences in their biochemical properties,
may reveal additional divergence between this pair of genes, and
allow a deeper understanding of the evolution of this duplicated
gene pair.

In summary, we showed that the double mutation of Arabidop-
sis CSLD2 and CSLD3 causes partial infertility, which can be traced
to synergid cell death before the pollen tube penetrates the ovules.
Single mutants did not show any female gametophyte defects
indicating a redundant role of CSLD2 and CSLD3 in megagame-
togenesis. On the other hand, the genetic and phenotypic analyses
of root hair development of double mutants demonstrated that
CSLD2 and CSLD3 have overlapping but not fully redundant
functions. An attempt to explain their functional divergence and
redundancy from a phylogenetic point of view indicated that
CSLD2 and CSLD3 might have evolved from a recent genome-wide
duplication event and that they have undergone purifying selec-
tion pressure. The two genes share high sequence similarity with
each other, but have notable variance in sequences particularly
within the N-terminal region, which eventually allowed CSLD3 to
acquire more prominent function in root hair development.
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APPENDIX

Table A1 | Nomenclature of CSLD genes and their corresponding accession numbers inTAIR and Phytozome.

AtCSLD1 AT2G33100 AlCSLD1 482247 MtCSLD2 Medtr4g107300.1

AtCSLD2 AT5G16910 AlCSLD2 488554 MtCSLD3 Medtr5g029050.1

AtCSLD3 AT3G03050 AlCSLD3 477551 MtCSLD4a Medtr1g047090.1

AtCSLD4 AT4G38190 AlCSLD4 490578 MtCSLD4b Medtr1g047100.1

AtCSLD5 AT1G02730 AlCSLD5 918929 MtCSLD5 Medtr7g132520.1

PtCSLD1a POPTR_0001s14460.1 PpCSLD1 Phypa_150074 ZmCSLD1 GRMZM2G061764_T01

PtCSLD1b POPTR_0003s17630.1 PpCSLD2 Phypa_182443 ZmCSLD2 GRMZMZm2G436299_T01

PtCSLD2 POPTR_0013s07900.1 PpCSLD3 Phypa_233946 ZmCSLD3 GRMZMZm5G870176_T01

PtCSLD3 POPTR_0019s07620.1 PpCSLD4 Phypa_195601 ZmCSLD4 GRMZMZm2G044269_T01

PtCSLD4a POPTR_0004s21860.1 PpCSLD5 Phypa_233950 ZmCSLD5 GRMZMZm2G015886_T01

PtCSLD4b POPTR_0009s17100.1 PpCSLD6 Phypa_146426

PtCSLD2a POPTR_0001s01880.1 PpCSLD7 Phypa_108447

PtCSLD3a POPTR_0003s09580.1 PpCSLD8 Phypa_183810

PtCSLD5a POPTR_0014s12000.1

PtCSLD5b POPTR_0002s20130.1
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FIGURE A1 | Generation of csld2 csld3 complemented lines.

(A) Genome organization of CSLD2 and CSLD3. Boxes indicate
exons, and lines indicate introns. csld2 and csld3 are the T-DNA
mutants, which have hits on their first exon. A wild-type full length
CSLD3 was subcloned into a pCAMBIA2300 as indicated by blue

lines. The arrows indicate the position of the primers used for
genotyping. (B) Genotyping by PCR using different sets of primers
indicated in (A). The complemented line does not have the native
CSLD3 but has the transgenic CSLD3 in the background of csld2
csld3 double homozygote.
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FIGURE A2 | Complementation of csld2 csld3 double mutants. (A,E) Are
wild-type, (B,F) are csld2 csld3, and (C,G) are the complemented line (csld2
csld3 w/CSLD3) as validated by the genotyping experiments shown in
Figure A1B. (D) Root hairs of csld2 single mutants (d2/d2 D3/D3) and

seedlings with one copy of CSLD3 (d2/d2 D3/d3). The complemented csld2
csld3 line showed CSLD2-like single mutant root hair phenotypes [arrows in
(C)] and wild-type-like siliques (G). Bars = 100 μm [for (A–D)]. Bars = 5 mm
[for (E–G)].
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