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Comparison of gene silencing in tissues and 
whole organisms shows intriguing similari-
ties between plants and animals (Cohen 
and Xiong, 2011; Hyun et al., 2011; Jose 
et al., 2011; Melnyk et al., 2011; Molnar 
et al., 2011) despite that they are very dif-
ferent from each other in many aspects 
related to the cell-to-cell communications 
(Ritzenthaler, 2011). Interestingly, one of 
the shared mechanisms is the reprogram-
ming of intracellular silencing pathways 
and intercellular communications during 
development of virus infections. As a part 
of their counter-defensive strategy, viruses 
encode silencing suppressors to inhibit var-
ious stages of the silencing process. These 
suppressors are diverse in sequence and 
structure and act via different molecular 
mechanisms including, particularly, block-
age of intercellular and systemic spread 
of mobile small interfering RNAs (siR-
NAs; Li and Ding, 2006; Bivalkar-Mehla 
et al., 2011; Burgyán and Havelda, 2011; 
Shimura and Pantaleo, 2011; Song et al., 
2011). Importantly, plant, insect, and ani-
mal virus suppressors can substitute for 
each other in different eukaryotic model 
systems (Schnettler et al., 2008; Jing et al., 
2011; Maliogka et al., 2012; Zhu et al., 
2012). Many viral proteins that in the past 
were characterized as proteins involved in 
systemic plant invasion are now known 
to be suppressors of gene silencing. For 
example, tombusvirus P19 blocks the inter-
cellular movement of the silencing signal 
by binding DCL4-dependent 21-nt siRNA. 
Cucumovirus 2b protein inhibits the sys-
temic movement of RNA silencing by either 
binding dsRNA/siRNA or inhibiting the 
slicer activity of AGO1. Potato virus X P25 
protein also inhibits the systemic move-
ment of RNA silencing (Li and Ding, 2006; 
Burgyán and Havelda, 2011; Shimura and 

Pantaleo, 2011). Direct link between the 
viral suppressor activity and the ability of 
virus to move cell-to-cell and long-distance 
is further strengthened by the discovery of 
plant movement proteins (MPs) acting also 
as silencing suppressors (Bayne et al., 1995; 
Voinnet et al., 1999; Yaegashi et al., 2007; 
Powers et al., 2008; Lim et al., 2010; Wu 
et al., 2010; Senshu et al., 2011; Renovell 
et al., 2012). On the other hand, it has been 
shown that the MPs of certain viruses act 
as viral enhancers of RNA silencing by pro-
moting the propagation of RNA silencing 
from cell to cell (Vogler et al., 2008; Zhou 
et al., 2008; Lacombe et al., 2010; Amari 
et al., 2012).

Unlike Tobacco mosaic virus and many 
other viruses having a single MP gene, the 
genomes of a number plant virus genera 
encode a triple gene block (TGB), a special-
ized evolutionarily conserved gene module 
involved in the movement of viruses. The 
TGB-based transport system exploits the 
co-ordinated action of three polypeptides 
to deliver viral genomes to plasmodesmata 
(PD) and to accomplish virus entry into 
neighboring cells. TGB-encoded proteins 
are referred to as TGB1, TGB2, and TGB3 
(Morozov and Solovyev, 2003; Verchot-
Lubicz et al., 2010). We present here a 
hypothetical model of how interaction of 
plant viruses with the silencing machin-
ery may contribute to the TGB origin and 
evolution during adaptation of viruses 
to land plant hosts. The hypothesis was 
stimulated by the previous evidence indi-
cating that the suppression of silencing 
by TGB1 protein encoded by potex- and 
carlaviruses is not sufficient to allow virus 
movement between cells, and there must 
be another function of this protein inde-
pendent of silencing but required for cell-
to-cell movement (Bayne et al., 1995; Lim 

et al., 2010; Senshu et al., 2011). Similarly 
to TGB-containing viruses, suppression 
of local RNA silencing is not sufficient to 
promote cell-to-cell movement of Turnip 
crinkle virus (Shi et al., 2009).

In principle, there are three distinct sce-
narios for the evolution of viruses: first, 
evolution from a common ancestral virus 
accompanying the divergence of host taxo-
nomic groups; second, horizontal trans-
fer of viruses and their genomic elements; 
third, parallel origin from related genetic 
elements (Dolja and Koonin, 2011). If 
we take first principle as the main evolu-
tionary flow for plant plus-RNA viruses, 
algae (especially those included into the 
kingdom Viridiplantae) should be consid-
ered as hosts for precursors of land plant 
viruses. It is currently well documented 
that green algae possess many components 
that are assumed to be involved in RNA 
silencing mechanisms in other better stud-
ied eukaryotes (Ahn et al., 2010; Cerutti 
et al., 2011). Correspondingly, algal viruses 
should have evolved to acquire silencing 
suppressors making possible establish-
ing successful infection. However, most 
green algae-infecting viruses sequenced 
so far (classified in the virus family 
Phycodnaviridae) are among the largest 
known DNA viruses (Weynberg et al., 
2011; Van Etten and Dunigan, 2012). We 
are still in an initial phase of understanding 
in algal RNA virology and, as new genomic 
technologies become more widely used in 
this field, we will see an exponential rise 
in number of sequenced plus-RNA algal 
virus genomes. Metagenomics provide a 
way to bypass the difficulty of obtaining 
genomic information about viruses that 
are hard to retrieve in pure culture. There 
are large datasets of metaviriomes, and 
they often can be assembled into nearly 
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It is known that plant virus RNA repli-
cases may significantly contribute to virus 
silencing suppressor activity (Ding et al., 
2004; Mine et al., 2010), and RNA helicase 
domain (Koonin and Dolja, 1993) may 
play important separate role in this activ-
ity (Wang et al., 2012). Similarly, replicative 
DNA helicases of single-stranded plant DNA 
viruses may be involved in silencing sup-
pression (Nawaz-Ul-Rehman et al., 2010). 
The TGB is found in viruses of the “alpha-
like” supergroup only (families Virgaviridae, 
Alphaflexiviridae, Betaflexiviridae, and 
genus Benyvirus; Koonin and Dolja, 1993; 
Adams et al., 2009; Verchot-Lubicz et al., 
2010), suggesting a specific co-adaptation 
between replication and movement genes. 
TGB1 contains an NTPase/helicase sequence 
domain that is related to the replicative heli-
cases of alpha-like viruses and belongs to 

in cell-to-cell movement in addition to 
replication (Wei et al., 2010). Emergence 
by CAV genome a second SF-II helicase 
in addition to unrelated replicative SF-I 
helicase is intriguing assuming the newly 
discovered role of cell SF-II helicases in 
the RNA interference and antiviral host 
defense (Ulvila et al., 2010). Organization 
of multicellular charophytes is rather close 
to land plants and they contain PD which 
are morphologically similar to higher plant 
PD (Brecknock et al., 2011). Thus we can 
propose that plus-RNA viruses of unicellu-
lar algae in the course of transition of hosts 
to multicellularity may evolve additional 
RNA helicase genes (either by shuffling 
with distantly related viruses or by dupli-
cation of helicase domain in own replicase) 
required for virus genome spread over the 
plant organism (Figure 1).

complete genomic RNAs to study the enor-
mous diversity of the genes of viruses and 
to help in the annotation of viral ORFs 
(Kristensen et al., 2010).

Until now we have only single example 
of well-characterized plus-RNA virus from 
algae closely related to land plants. This is 
Chara australis virus (CAV; Gibbs et al., 
2011), the largest encoded protein of which 
shows the relationship with RNA polymer-
ases of benyviruses, while the coat protein 
– with the coat protein of tobamoviruses, 
thus reflecting the ancient sister relation-
ship between hosts of these viruses, charo-
phytes and land plants. Two additional CAV 
ORFs code for non-replicative RNA heli-
case and a protein of unknown function. 
Importantly, this CAV helicase is related to 
CI helicase (SF-II) of Ipomoviruses (family 
Potyviridae; Figure 1), which is involved 

Figure 1 | Organization of triple gene block (TgB)-encoded proteins of 
some plant viruses. Boxes schematically represent open reading frames. It 
should be noted that in fact the TGB2 coding sequence overlaps the 3′ end of 
TGB1 gene, and the TGB3 ORF overlaps the 3′ end of TGB2 gene (Morozov 
and Solovyev, 2003). Helicase domains are indicated in the green boxes (SF-I) 
and dark green box (SF-II). Blue boxes represent the hydrophobic segments 
found in TGB proteins. Conserved sequence signatures in hydrophilic 
segments of TGB2 and TGB3 proteins are indicated by different shading within 
the boxes. In all studied TGBs, the TGB2 proteins have a highly conserved 
signature in the central part of their sequence. Note that the Hibiscus green 
spot virus TGB2 protein includes a shortened version of the TGB2 conserved 
signature. The TGB3 proteins are diverse in different virus groups. In Potato 

virus X and Sugarcane striate mosaic virus TGB3 proteins, a common 
signature is located downstream of their single transmembrane domain. This 
signature is characteristic for the TGB3 proteins in viruses of genera 
Potexvirus, Allexivirus, Mandarivirus, Carlavirus, and Foveavirus. In the 
Barley stripe mosaic virus, TGB3 has two unique signatures typical for 
viruses of the genera Hordeivirus and Pomovirus located in the N-terminal 
and central hydrophilic sequence segments. In the Beet necrotic yellow vein 
virus (BNYVV) TGB3, two transmembrane domains are located close to the 
protein termini, and there is a conserved signature characteristic of the genus 
Benyvirus only, which is located in the central protein part. The Hibiscus 
green spot virus TGB3 protein contains extremely short central hydrophilic 
region.
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of HGSV contains two long hydrophobic 
segments and shows no significant similar-
ity to any of three known groups of TGB3 
proteins (hordei-, beny-, and potex-like 
TGB3’s; Figure 1). Interestingly, despite the 
fact that TGB2 is most conserved among 
proteins of hordei-, beny-, and potex-like 
TGB’s (Morozov and Solovyev, 2003), the 
HGSV protein has the central hydrophilic 
segment which is only distantly related to 
other TGB2’s (Figure 1).

In conclusion, new data on interrela-
tion of RNA silencing and virus movement 
and, on the other hand, recently published 
sequences of new TGB-containing viruses 
allowed us to put forward the hypothesis 
of a three-step TGB origin in virus evolu-
tion. These steps include autonomization of 
a second virus RNA helicase initially pos-
sessing the function of silencing suppres-
sion, gaining the virus movement function 
by this protein, and acquisition of accessory 
membrane proteins.
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