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The application of post-genomic techniques in plant respiration studies has greatly improved
our ability to assign functions to gene products. In addition it has also revealed previously
unappreciated interactions between distal elements of metabolism. Such results have
reinforced the need to consider plant respiratory metabolism as part of a complex network
and making sense of such interactions will ultimately require the construction of predictive
and mechanistic models. Transcriptomics, proteomics, metabolomics, and the quantifica-
tion of metabolic flux will be of great value in creating such models both by facilitating
the annotation of complex gene function, determining their structure and by furnishing the
quantitative data required to test them. In this review, we highlight how these experimental
approaches have contributed to our current understanding of plant respiratory metabolism
and its interplay with associated process (e.g., photosynthesis, photorespiration, and nitro-
gen metabolism). We also discuss how data from these techniques may be integrated, with
the ultimate aim of identifying mechanisms that control and regulate plant respiration and
discovering novel gene functions with potential biotechnological implications.
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INTRODUCTION
Metabolism represents one of the most important and most likely
the best characterized network within biological systems. From
pioneering studies defining key metabolic pathways, subsequent
decades of enzymology characterizing the catalytic and regulatory
properties of enzymes, through to more recent genetic stud-
ies of metabolism, there is an unprecedented density of both
mechanistic and descriptive data relating to metabolic behav-
ior. Advances in the understanding of metabolic regulation and
control, however, still suffer from insufficient research concern-
ing the mode of operation of metabolic networks, and plant
respiratory metabolism provides an illustrative example of this
problem. Due to the crucial roles of mitochondria in meeting the
energy demands of the cell whilst simultaneously being involved
in amino acid metabolism and photorespiration, precise control
of mitochondrial metabolism and function is crucial for cellular
homeostasis, and unsurprisingly mitochondrial dysfunction leads
to diverse metabolic and phenotypic consequences (Nunes-Nesi
et al., 2011). However, despite the fact that the major respira-
tory pathways in plants were elucidated decades ago (Beevers,
1961), our current knowledge about their regulation and con-
trol, and how this relates to whole plant physiology, is still limited
(Fernie et al., 2004). Unsurprisingly then, considerable research
effort is being devoted to elucidating the metabolic basis of the
regulation of the tricarboxylic acid (TCA) cycle and the mito-
chondrial electron transport chain (Sweetlove et al., 2007, 2010;
Fahnenstich et al., 2008; Fukushima et al., 2009; Araújo et al., 2010;
Tomaz et al., 2010; Zell et al., 2010) as well as their interactions

with photosynthesis (Nunes-Nesi et al., 2007, 2011), photores-
piration (Bauwe et al., 2010, 2012), and nitrate assimilation
(Foyer et al., 2011).

Given the complex patterns of regulation and the interactions
between respiratory metabolism and other processes uncovered
by such studies, it is likely that only through the use of model-
based approaches we will be able to understand how the individual
components of metabolism (e.g., enzymes and metabolites) work
together to produce a functioning system, and in this way truly
understand the function of individual components of that sys-
tem. In this context systems biology offers the promise of a better
understanding of respiratory metabolism and its role within the
metabolic network.

Systems biology aims to understand how populations of
molecules, cells, and organisms interact to give rise to complex
biological processes, including cell division, growth, development,
metabolism, and behavioral and ecological patterns (Karsenti,
2012). Although initially applied exclusively to mathematical
modeling strategies (Edwards and Palsson, 1999) systems biol-
ogy may now incorporate data from the functional genomics
tools of transcriptomics, proteomics, and metabolomics as well
as genomics (Somerville et al., 2004; Baginsky and Fernie, 2007),
and has become a truly interdisciplinary area of research, some
basic and applied aspects of which have been expertly reviewed
elsewhere (Ideker et al., 2001; Oltvai and Barabási, 2002; Kitano,
2004; Somerville et al., 2004; Breitling, 2010). Whilst an accu-
rate understanding of metabolism as a system requires far more
than enumeration of its components (Kleessen et al., 2012), it is
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nonetheless the case that the development of mathematical models
of plant metabolism in general will require accurate gene annota-
tions, functional characterization of enzymes, and the acquisition
and statistical analysis of quantitative data.

In the case of plant respiratory metabolism, whilst the core
components, including enzymes of the TCA cycle and compo-
nents of the mitochondrial electron transport chain, have been
identified and characterized in numerous species (Millar et al.,
2011; Araújo et al., 2012a), how they are regulated in response to
changing environmental conditions and developmental programs
remains less clear, and extent to which respiratory metabolism
interacts with other parts of the metabolic network is only now
beginning to emerge (Balmer et al., 2004; Sweetlove et al., 2006;
Timm et al., 2008, 2011; Fukushima et al., 2009; Tomaz et al., 2010;
Foyer et al., 2011). Moreover, the functions of more peripheral
components of plant respiratory metabolism remain to be inves-
tigated. Genes for many of the mitochondrial transporters that
are hypothesized to exist have yet to be identified, or have only
been assigned on the basis of homology with non-plant species
(Linka and Weber, 2010; Palmieri et al., 2011), whilst it is only
recently that several alternative electron donors to the mitochon-
drial electron transport chain have been characterized (Ishizaki
et al., 2005, 2006; Araújo et al., 2010). Although here we focus
mainly on function and interactions of respiratory enzymes, it is
important to note that the construction of predictive models of
mitochondrial metabolism will also require a better understanding
of electron transport processes. Thus, both structural biology and

measurements of electron transport rates remain exciting topics
for further study.

The availability of comprehensive plant genome information,
coupled with the integration of large-scale unbiased molecular
profiling technologies such as whole-genome microarrays, quan-
titative proteomics, and metabolite profiling (Table 1; Figure 1)
has increased our ability to annotate gene functions within plant
respiratory metabolism, obtain quantitative data and uncover
unanticipated relationships between respiration and other cellular
processes such as photosynthesis, photorespiration, redox regu-
lation, and signaling (Sweetlove et al., 2002; Heazlewood et al.,
2004; Dutilleul et al., 2005; Urbanczyk-Wochniak et al., 2006).
This information will ultimately facilitate the application of sys-
tems biology to plant respiratory metabolism (Fernie, 2012) and
progress in these areas as they relate to research on plant respira-
tion and the annotation of gene function will be discussed in the
following sections.

APPLYING TRANSCRIPTOMICS TO THE STUDY
OF MITOCHONDRIAL FUNCTION
Determining the complete transcriptional capability of the cell,
including large and small RNAs, novel transcripts from unanno-
tated genes, splicing isoforms, and gene-fusion transcripts, serves
as the foundation for a comprehensive study of the transcrip-
tome. Recent advances in DNA sequencing technology have greatly
increased both sequencing scale and throughput and led to the
development of RNA-Seq (Liu et al., 2011; Martin and Wang,

Table 1 | Omics fields associated with illustrative and available Arabidopsis resources on web.

Layers Instances Resources Web

Phenome Natural variations NASC http://arabidopsis.org.uk/home.html

ABRC http://abrc.osu.edu/

Mutant lines TILLING http://tilling.fhcrc.org/

T-DNA tag line http://signal.salk.edu/tabout.html

Metabolome Metabolite profiles Golm Metabolome Database http://gmd.mpimp-golm.mpg.de/

PRIMe http://prime.psc.riken.jp/

Metabolic maps Reactome http://www.reactome.org/ReactomeGWT/entrypoint.html

PMN AraCyc http://plantcyc.org/

Proteome Proteome RIPP-DB http://phosphoproteome.psc.database.riken.jp/

PPDB http://ppdb.tc.cornell.edu/

PhosPhAt http://phosphat.mpimp-golm.mpg.de/

Subcellular localization PODB2 http://podb.nibb.ac.jp/Organellome/

SUBAII http://suba.plantenergy.uwa.edu.au/

NASC proteome database http://proteomics.arabidopsis.info/

Transcriptome Full-length cDNA clones RAFL clones http://www.brc.riken.jp/lab/epd/catalog/cdnaclone.html

ESTs RARGE http://rarge.psc.riken.jp/

Expression profiles AtGenExpress http://www.arabidopsis.org/portals/expression/microarray/ATGenExpress.jsp

Genevestigator https://www.genevestigator.com/gv/

Co-expression network ATTEDII http://atted.jp/

Genome Sequence TAIR http://www.arabidopsis.org/

Annotation
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FIGURE 1 | Schematic representation of a synergetic integration of

multiple omics approaches. Within individual experiments, a range of
data is generated. This data can be associated with different levels of omics
and the possible interactions are illustrated. The usage of modeling
approaches linking the interactions between the results obtained using
different post-genomic techniques is expected. Additionally, the data
obtained can be deposited in specific database contributing to the
construction of general prediction databases (e.g. coexpression database).
This also allows the generation of further testable hypothesis and to adjust
such hypothesis for individual experiments.

2011), a technique capable of complementing microarray-based
transcriptomics. In recent years transcriptomic techniques have
been extensively used to reveal interactions between plant respi-
ratory metabolism and other important processes such as seed
germination (Howell et al., 2009), stress tolerance (Giraud et al.,
2008; Lehmann et al., 2009; Meyer et al., 2009), hypoxia (Narsai
et al., 2009), and the operation of the circadian clock (Fukushima
et al., 2009).

The combination of a comprehensive list of putatively mito-
chondrially expressed genes with a large number of publicly
available stress-related microarray datasets was used to define
the mitochondrial stress response in Arabidopsis (van Aken et al.,
2009). This complex analysis indicated that the mitochondrial
stress response extends far beyond the alternative electron trans-
port chain components, with, most prominently, mitochondrial
substrate carrier proteins and heat shock proteins also showing
extensive stress responsiveness. It is important to note, how-
ever, that many of the stress-responsive genes discovered by this
approach are of unknown function and this indicates an attrac-
tive avenue for research aiming to identify new mitochondrial
functions and targets for engineering of stress tolerance.

Transcriptomic studies can also provide details of expression
patterns during plant development. Recent work indicated that
BCS1, a likely AAA-ATPase, displayed similar levels of expression
throughout development (Duncan et al., 2011), despite the fact
that previous studies have shown that this gene responds to various
stresses (van Aken et al., 2009). Based on these patterns of expres-
sion the authors propose that the protein encoded by this gene may
be involved in protein repair in response to stress (Xu et al., 2011).

This study also indicated that the transcript abundance for genes
encoding outer and inner membrane mitochondrial proteins was
maximal during seed germination, and identified a subset of genes
that were highly expressed in root tissues (Duncan et al., 2011).

Responses to stress conditions, including the effect of absence
of alternative oxidase1a (aox1a) expression in Arabidopsis, has also
been investigated using transcriptomics. Such plants, when grown
in moderate light under drought conditions, displayed 10-fold
increases in leaf anthocyanin levels, together with alterations in
photosynthetic efficiency, increased superoxide radical produc-
tion, and reduced root growth (Giraud et al., 2008). Furthermore,
microarray and quantitative reverse transcription polymerase
chain reaction (qRT-PCR) analysis indicated that even under
normal growth conditions genes normally induced under stress
conditions were expressed (Giraud et al., 2008), including those
involved in defense against reactive oxygen species (ROS) and
in stress signaling. This study was incorporated into a recent
meta-analysis of transcriptomic studies that aimed to uncover tar-
gets of mitochondrial retrograde signaling (Schwarzländer et al.,
2012), and construct a model for how mitochondrial dysfunction
may affect nuclear gene expression. Transcripts encoding proteins
involved in photosynthesis, protein synthesis, and plant–pathogen
interactions were revealed as the major targets of retrograde
regulation.

A combination of transcript and metabolite profiling meth-
ods has been used to investigate the molecular and physiological
responses following root hypoxia caused by flooding in gray poplar
(Populus × canescens; Kreuzwieser et al., 2009). Interestingly,
changes in metabolite levels occurred in both roots and leaves,
whilst changes in transcript abundance were restricted to the roots,
the actual site of hypoxia. The general pattern of metabolite and
transcript abundance suggests that the response to hypoxia com-
prises both the repression of energy demanding processes such as
cell wall biosynthesis, and the reconfiguration of carbohydrate and
nitrogen metabolism to ensure sufficient substrate supply during
long periods of root hypoxia (Kreuzwieser et al., 2009).

PROTEOMIC APPROACHES FOR THE DISCOVERY
OF GENE FUNCTION IN PLANTS
Proteomic approaches have been used to generate great insights
into plant metabolism in general and into mitochondrial respira-
tory metabolism in particular. Recently, the utilization of multiple
fluorescent dyes in single gels (DIGE) has renewed the use of
2-D gels for quantitative comparisons of the mitochondrial pro-
teome. Studies using DIGE have investigated knockout mutants
for carbonic anhydrase-like proteins (Perales et al., 2005), com-
plex I (Meyer et al., 2009), and malate dehydrogenase (Tomaz et al.,
2010), as well as differences between tissues (Lee et al., 2008), the
impact of rotenone (Garmier et al., 2008), and changes associ-
ated with the diurnal cycle (Lee et al., 2010). Shotgun proteomic
techniques utilizing Liquid chromatography coupled tandem mass
spectrometry (LCMS/MS) of trypsin-digested samples, without
the use of gels, have also been used for in-depth studies of the
mitochondrial proteome in Arabidopsis (Brugiere et al., 2004; Hea-
zlewood et al., 2004) and rice (Heazlewood et al., 2003b; Huang
et al., 2009). These studies greatly increased the number of proteins
identified within plant mitochondrial isolates that are below the
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level of detection by techniques based on gel separation and
staining.

The mitochondrial proteome of Arabidopsis in particular has
been extensively analyzed by both gel-based and gel-free strategies
(Kruft et al., 2001; Millar et al., 2001; Heazlewood et al., 2004; Lee
et al., 2008, 2011), and may contain as many as 2000–3000 different
proteins, each of which may be subject to post-translational
modification (Millar et al., 2005; Taylor et al., 2011). Recent
proteomic studies have been able to identify more than 500 pro-
teins, including subunits of mitochondrial respiratory complexes,
supercomplexes, phosphorylated proteins, and oxidized proteins
(Millar et al., 2005; Klodmann and Braun, 2011). However, even
these identified proteins have not all been functionally character-
ized. Moreover, targeting prediction software tools assign more
than 1,500 proteins encoded by the Arabidopsis genome to this
subcellular compartment and it therefore seems likely that the
function of most mitochondrial proteins, especially those of low
abundance and/or high hydrophobicity (Klodmann and Braun,
2011), remains to be discovered.

In addition to analysis of the mitochondrial proteome as a
whole, proteomic approaches have been used extensively to dissect
mitochondrial protein complexes, in particular complex I of the
respiratory electron transport chain (Leterme and Boutry, 1993;
Herz et al., 1994; Klodmann and Braun, 2011), and the importance
of this characterization using different proteomic approaches has
recently been expertly reviewed (Klodmann and Braun, 2011).
These methods have revealed that the complex I in plants has an
extremely sophisticated configuration and although some of the
postulated functions of the characterized extra subunits remain
to be fully investigated, proteomic approaches have already con-
tributed significantly to our current understanding of this complex
(Heazlewood et al., 2003a; Cardol et al., 2004; Klodmann et al.,
2010, 2011). For example, recent work has revealed that plant com-
plex I is especially large and includes 15 extra unique subunits.
Five of these subunits represent proteins resembling carbonic
anhydrases and one represents a L-galactono-1,4-lactone dehy-
drogenase (GLDH), introducing side activities to plant complex
I, while all the remaining nine subunits are rather small (7–
12 kDa) and of so far unknown function (Klodmann et al., 2010;
Klodmann and Braun, 2011).

Many mitochondrial proteins in fact form part of protein
complexes and it has recently been shown that the formation of
supercomplexes, “complexes of complexes,” could have a regula-
tory function in guiding electrons through alternative respiratory
pathways, particularly under variations in oxygen levels (Ramírez-
Aguilar et al., 2011). The extent to which this phenomenon occurs
is currently unclear though as only the most abundant complexes
have so far been functionally characterized.

Proteomics may also help to provide details of the mechanisms
that regulate mitochondrial metabolism, and recent studies have
identified potential thioredoxin-linked proteins in mitochondria
isolated from autotrophic and heterotrophic plant tissues (Balmer
et al., 2004; Martí et al., 2009). Fifty mitochondrial thioredoxin-
linked proteins were identified including six TCA cycle enzymes
[aconitase, succinyl-CoA ligase, isocitrate, malate, pyruvate, and
succinate dehydrogenases (SDH); Balmer et al., 2004]. These
findings suggest mitochondrial enzymes as potential targets for

redox regulation through thioredoxins. However, despite the
fact that these studies, amongst others, indicate that by sensing
redox state thioredoxins enable mitochondria to communicate
with other organelles in photosynthetic tissues, considerable
experimental effort is still required to provide functional details.

INSIGHTS INTO PLANT RESPIRATORY METABOLISM
OBTAINED FROM METABOLITE PROFILING
The term metabolome can be defined as the total small-molecule
complement of a cell, and metabolomics is therefore the study
of all small molecules or metabolites presents in a cell or organ-
ism (Oliver et al., 1998; Tweeddale et al., 1998). Although no single
analytical system is ever likely to cover the whole metabolome tech-
nological developments have considerably extended our ability
to analyze complex biological systems, facilitating the simul-
taneous detection of different compound classes with diverse
chemical properties (Osorio et al., 2012). Gas chromatography
coupled to mass spectrometry (GC-MS) is a versatile and widely
applied technique in modern metabolomic studies and allows the
identification and quantification of a relatively broad range of
compounds, including organic and amino acids, sugars, sugar
alcohols, phosphorylated intermediates, and lipophilic com-
pounds (Fiehn et al., 2000; Roessner et al., 2001; Weckwerth, 2003;
Lisec et al., 2006; Schauer et al., 2006), resulting in fairly compre-
hensive coverage of the central pathways of primary metabolism.
Metabolite profiling using LC-MS and capillary electrophoresis-
MS can complement the analysis by GC-MS for certain classes
of metabolite. Of particular note, tandem MS methods for the
quantification of phosphorylated sugars (Lunn et al., 2006; Luo
et al., 2007; Hasunuma et al., 2010), Calvin–Benson cycle interme-
diates (Arrivault et al., 2009) and cell wall precursors (Alonso et al.,
2010), which are difficult to analyze by GC-MS, have recently been
developed.

Due in part to these technological advances application
of metabolite profiling to plant biology is becoming increas-
ingly common, including diagnostic and descriptive analyses of
metabolic responses to genetic and/or environmental perturba-
tions, the use in annotation of gene function and in systems
biology (Schauer and Fernie, 2006; Guy et al., 2008; Fernie and
Schauer, 2009). Recently, metabolite profiling has, in particular,
been used to generate significant insight into plant respiratory
metabolism and its interactions with photosynthesis. Despite
recognition of the importance of mitochondrial metabolism our
understanding of the complex pathways through which organic
acids are metabolized as well as how these pathways are regulated
in vivo remains far from complete (Fernie et al., 2004; Sweet-
love et al., 2007; Fait et al., 2008; Møller and Sweetlove, 2010).
As part of attempts to remedy this issue, the operation and
role of the TCA cycle in illuminated leaves has received partic-
ular interest (Krömer, 1995; Raghavendra and Padmasree, 2003;
Noguchi and Yoshida, 2008; Nunes-Nesi et al., 2011). The pre-
cise mode of operation of the TCA cycle in the light remains
somewhat obscure, in part because whilst TCA cycle flux in
the light is reduced through inhibition of pyruvate dehydroge-
nase carbon skeletons deriving from TCA cycle intermediates are
still required for nitrogen assimilation. In attempt to address
this apparent contradiction, a process of systematic suppression
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of TCA cycle enzymes through reverse genetics was undertaken.
Metabolite profiling of the transgenic lines generated through this
process indicated the importance of the TCA cycle in metabolism
in illuminated leaves (Nunes-Nesi et al., 2008, 2011). However,
these experiments have also revealed a surprising complexity in
the response to these manipulations, with suppression of some
enzymes leading to increased photosynthesis (Carrari et al., 2003;
Nunes-Nesi et al., 2005; Araújo et al., 2011b), others leading to
decreased photosynthesis (Nunes-Nesi et al., 2007) and yet others
having no effect (Studart-Guimarães et al., 2007; Sienkiewicz-
Porzucek et al., 2008, 2010; Sulpice et al., 2010a; Araújo et al.,
2012b). Several of the more recent studies from this investiga-
tion, highlighting the importance of information obtained from
metabolite profiling experiments, are discussed here.

Antisense inhibition of the 2-oxoglutarate dehydrogenase
(OGDH) complex in tomato led to alterations in whole plant
development that were linked to reductions in total amino acid
and nitrate pools despite unaltered photosynthesis (Araújo et al.,
2012b). These results clearly imply that OGDH plays an important
role in both the TCA cycle and nitrogen assimilation and suggest
a novel role for this enzyme in whole plant development and fruit
maturation. Furthermore, as was reported for succinyl-CoA lig-
ase antisense plants (Studart-Guimarães et al., 2007), the OGDH
antisense plants displayed increased GABA shunt flux, presum-
ably in compensation for decreased succinate production via the
TCA cycle (Araújo et al., 2012b). However, it is important to stress
that such a compensatory response also caused significant shifts
in cellular pools of amino acids and nitrate that were detected by
metabolite profiling.

Antisense inhibition of the iron–sulfur subunit of the SDH in
tomato plants, on the other hand, resulted in increased photosyn-
thesis and whole plant biomass via an organic acid-mediated effect
on stomatal aperture. These results contrast with those obtained
for antisense inhibition of fumarase, where decreased photosyn-
thesis and biomass were observed (Nunes-Nesi et al., 2007; Araújo
et al., 2011b). Furthermore, measurement of apoplastic organic
acid levels in SDH and fumarase antisense plants, revealed a
negative correlation between the levels of fumarate and stom-
atal conductance, though the influence of fumarate appears to
be weaker than that of malate (Araújo et al., 2011b). These results
provided strong evidence to support that modulation of malate
and fumarate concentration can greatly influence stomatal func-
tion. Thus, metabolite profiling has aided in the identification
of novel interactions between the TCA cycle and photosynthe-
sis, stomatal function and nitrogen metabolism. Further work is
clearly required in order to establish the regulatory mechanisms
involved in such responses.

Protein degradation during plant development and substrate
deficiency can be an important source of substrate for respiratory
metabolism, however, our current understanding of the regulation
of the classical and alternative pathways of respiration under these
conditions is still limited. The combination of genetic approaches
with GC-MS-based metabolite profiling has greatly improved our
understanding of the complex metabolic interactions observed
during dark-induced senescence (Ishizaki et al., 2005, 2006; Araújo
et al., 2010, 2011a). These studies have demonstrated that during
dark-induced senescence there is a significant accumulation of

amino acids and TCA cycle intermediates. Moreover, it has
also been demonstrated that both isovaleryl-CoA dehydroge-
nase and D-2-hydroxyglutarate dehydrogenase provide electrons
to the plant ubiquinol pool via the electron transfer flavo-
protein (ETF)-ETF:ubiquinone oxidoreductase (ETF/ETFQO)
complex (Engqvist et al., 2009; Araújo et al., 2010). Given that
the chlorophyll breakdown intermediate phytanoyl-CoA accumu-
lates dramatically both in knockout mutants of the ETF/ETFQO
complex and of isovaleryl-CoA dehydrogenase following growth
in extended dark periods it was suggested that chlorophyll break-
down could be important for the supply of carbon and electrons
during this process. However, metabolic analyses of phytanoyl-
CoA 2-hydroxylase knockout mutants under the same extended
darkness regime as previously used suggest that phytol and
phytanoyl-CoA enzyme does not primarily function as a sub-
strate of the ETF/ETFQO pathway (Araújo et al., 2011a). These
studies also showed that these mutants were not compromised
in their ability to withstand significant extension of the dark
period but do accumulate phytanoyl-CoA and to a lesser extent
2-hydroxyglutarate as well as sharing some of the other metabolic
features of mutants of the ETF/ETFQO complex following dark-
induced senescence treatment. In summary, the results obtained
through this work indicated that both isovaleryl-CoA dehydro-
genase and 2-hydroxyglutarate dehydrogenase essentially account
for the entire electron input via the ETF complex.

Plant metabolism is also reorganized under a range of differ-
ent stress conditions including salt, cold, drought, and oxidative
stress (Kaplan et al., 2004, 2007; Gong et al., 2005; Sanchez et al.,
2008, 2012; Alet et al., 2012; Siahpoosh et al., 2012), allowing plants
to continue to produce indispensable metabolites whilst prevent-
ing the accumulation of ROS. Metabolite profiling has proven
a powerful tool to gain an overview of such reorganizations in
response to stressful conditions (Shulaev et al., 2008). Menadione,
a quinone which causes ROS generation from both mitochondrial
and plastidal electron transport chains, has been used to study
metabolic and transcriptomic responses to ROS in Arabidopsis
roots (Lehmann et al., 2009). Detailed metabolic studies revealed
a down-regulation of glycolysis and TCA cycle and the redirection
of carbon from glycolysis to the oxidative pentose phosphate path-
way in menadione-treated roots suggesting a reorganization of
central carbon metabolism under oxidative stress conditions that
was undone rapidly after the removal of menadione (Lehmann
et al., 2012).

CONTRIBUTIONS OF METABOLIC FLUX ANALYSIS TO
OUR UNDERSTANDING OF PLANT RESPIRATION
Metabolic flux ultimately underpins both plant growth and devel-
opment and for this reason experiments that provide insight
into metabolic flux, as well as its regulation and control, can
be valuable tools to both improve our understanding of biolog-
ical systems and aid in the discovery of gene function. Feeding
experiments using both 13C- and 14C-labeled precursors have been
used extensively to delineate metabolic pathways, but may also be
used to investigate and quantify metabolic flux. Labeling experi-
ments with 14C offer high sensitivity and fractionation of labeled
metabolites and biomass components can readily indicate the fate
of metabolized radiolabel. Accordingly, feeding experiments with
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14CO2 demonstrated the effect of reduced malate dehydrogenase
activity on photosynthetic carbon assimilation in tomato leaves,
and revealed that ascorbate feeding led to increased photosyn-
thesis and altered assimilate partitioning in these transgenic lines
(Nunes-Nesi et al., 2005). Quantifying the release of 14CO2 from
the metabolism of different isotopomers of 14C-glucose can also
provide information about the relative activity of different pri-
mary metabolic pathways (Nunes-Nesi et al., 2005). This method
has been used extensively to identify changes in metabolic flux
in plants with altered TCA cycle enzyme activities; for exam-
ple, decreased carbon entry into the TCA cycle was identified in
tomato plants with decreased SDH and OGDH activity (Araújo
et al., 2011b, 2012b), which are in good agreement with mea-
surements of respiration and the results of metabolite profiling
experiments.

Labeling experiments with stable isotopes can be used for sim-
ilar ends, however since detection of label incorporation is in
these cases carried out by mass spectrometry or Nuclear Mag-
netic Resonance (NMR) spectroscopy it is possible to determine
both enrichment and location of incorporation of label in individ-
ual metabolites without laborious chemical cleavage. This method
was used to investigate the fate of 13C-labeled glutamate in leaves
of tomato plants with decreased succinyl-CoA ligase, and revealed
that TCA cycle flux was maintained in these plants by diversion of
carbon through the GABA shunt (Studart-Guimarães et al., 2007).
Additionally, in vivo NMR spectroscopy can be used to moni-
tor such labeling experiments in real-time. For example, tracing
the metabolism of 13C-pyruvate by mitochondria isolated from
Arabidopsis plants with reduced manganese superoxide dismutase
activity revealed decreased TCA cycle flux (Morgan et al., 2008),
most likely as a result of decreased TCA cycle enzyme activity
caused by oxidative damage.

Whilst the experiments described above may provide valu-
able qualitative information about metabolic flux, the number
of fluxes that can be quantified using these approaches is typically
quite limited. Steady state metabolic flux analysis (Wiechert, 2001;
Ratcliffe and Shachar-Hill, 2006) on the other hand allows the
absolute quantification of metabolic fluxes in medium size net-
works, permitting the degree to which a particular environmental
condition or gene product controls or regulates multiple fluxes
to be determined. In this way, steady state flux analysis has been
able to provide important insights into the relationship between
photosynthesis and respiration in developing seeds. Labeling
experiments and metabolic modeling indicated that developing
green embryos are able to decrease losses of fixed carbon dur-
ing oil synthesis by both refixing CO2 released by respiration
(Schwender et al., 2006), and reducing the need for TCA cycle flux
through the use of photosynthesis to meet energy demands (Allen
et al., 2009). Although these experiments effectively revealed a new
function for RuBisCO, steady state analysis can also be used to
reveal the effect of alterations in gene expression. This method
has been widely applied for the discovery of gene function in
microorganisms (Blank et al., 2005; Fischer and Sauer, 2005), and
its feasibility in plants was demonstrated by experiments using
Arabidopsis embryos (Lonien and Schwender, 2009) that revealed
how flux is rerouted in embryos deficient in two plastidic pyruvate
kinase isoforms.

The lack of wider adoption of steady state flux analysis as a tool
in plant systems biology is in part due to the strict requirements
for an experimental system that can obtain metabolic and isotopic
steady state, which limits such experiments to tissue culture and
isolated organs. Therefore, the so called instationary flux analysis
(Wiechert and Nöh, 2005; Young et al., 2008) has the potential
to allow quantification of metabolic flux in networks that do
not reach isotopic steady state, by incorporating measurements
of labeling dynamics and metabolite pool sizes into the model-
ing process. Recent work has demonstrated the feasibility of this
approach for flux quantification in photoautotrophic organisms
(Young et al., 2011), whilst the necessary technological approaches
for carrying out this work in plants have already been developed
(Arrivault et al., 2009; Hasunuma et al., 2010), suggesting that this
method may be used in the discovery of gene function in higher
plants in the relatively near future.

Whilst empirical determination of fluxes using labeling experi-
ments can generate important biological insight, constraints based
modeling (Price et al., 2003) can also be used to investigate the
behavior of metabolic networks. The construction of genome
scale metabolic models (Durot et al., 2009; Fell et al., 2010) and
their analysis using flux balance analysis, provides both a way
to exploit the information pertaining to metabolism contained
within a sequenced genome and models now exist for several
plant species including Arabidopsis (Poolman et al., 2009; Mintz-
Oron et al., 2012), maize (Saha et al., 2011), sugarcane (de Oliveira
Dal’Molin et al., 2010), and Brassica napus (Hay and Schwender,
2011). Recent work has highlighted the degree to which flux quan-
tification using constraints based modeling agrees with empirical
results (Williams et al., 2010; Beurton-Aimar et al., 2011; Chen
et al., 2011), but perhaps a more important role of genome scale
modeling is as a means to generate hypotheses regarding the
capacities of large metabolic networks.

In this regard, flux balance analysis has already provided inter-
esting insights into plant respiratory metabolism. For example,
work using a model of Arabidopsis carbon metabolism revealed
the large demand for energy made by cell maintenance processes
(Poolman et al., 2009), whilst a study of metabolism in barley seeds
(Grafahrend-Belau et al., 2009) indicated how fluxes in central car-
bon metabolism and the TCA cycle may be affected by the hypoxic
conditions that can occur within the developing seed. Such models
also provide an excellent means for the discovery of new functions
for previously annotated genes though the prediction of the con-
sequences of gene knockouts in silico. Such methods are expected
to form an important part of methods for metabolic engineer-
ing in species with biotechnological importance. Indeed, models
have already been created for the model algal species Chlamy-
domonas reinhardtii (Boyle and Morgan, 2009; Chang et al., 2011;
de Oliveira Dal’Molin et al., 2011) that can be further used to
explore the potential of microalgae for biofuel production.

INTEGRATION OF PROFILING DATA: FROM
DIAGNOSTICS TO SYSTEMS BIOLOGY
Whilst investigation of the transcriptome, proteome, and
metabolome alone may be highly informative, cellular physiology
and the regulation of plant respiratory metabolism is the result
of complex interactions between transcripts, proteins, and
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metabolites. Bearing that in mind straightforward relationships
between these components of the metabolic network are therefore
not to be expected. Thus, despite the apparent easy understanding
of simple relationships between changes in transcripts, proteins,
metabolite, and downstream biological functions, quite often there
is a major discordance. This apparent discrepancy can often be
explained by quantitative analysis of the data sets and information
about translational regulation and protein turnover. These inco-
herencies are not only due to technical issues but also related to
the complexity and structure of metabolic networks. Accordingly,
some priorities in metabolic research to reduce these problems
have recently been proposed (Fernie and Stitt, 2012). For this rea-
son recent research into plant metabolism has often included the
usage of modeling and correlation based approaches, and inter-
actions between the results obtained using different post-genomic
techniques (Figure 1 and Table 1) are expected.

Such studies have the ability to reveal previously unappre-
ciated and complex interactions between transcripts, proteins,
metabolites, and fluxes. In this way, a recent study was able
to uncover a potential signaling role for leucine; a combina-
tion of extensive metabolite profiling and transcript profiling
demonstrated a correlation between expression of a subset of tran-
scripts and the levels of this amino acid (Hannah et al., 2010). An
ability to simultaneously quantify components of the metabolic
network can also provide information about the relationship
between different components of central carbon metabolism and
resource allocation. For example, by exploiting the natural vari-
ation present in different accessions of Arabidopsis (Sulpice et al.,
2009,2010b), it was possible to detect correlations between enzyme
activities, metabolite abundances, and biomass. These studies
indicate the presence of a strong negative correlation between
starch and biomass, whilst the relative proportion of protein
invested in enzymes is positively correlated to biomass accumula-
tion. The relationship between transcripts, metabolites, and fluxes
in plant respiratory metabolism was investigated in Arabidopsis
cell suspension cultures subjected to menadione treatment (Bax-
ter et al., 2007). The combinatory analysis of these parameters
identified a transient reconfiguration of metabolism, involving
down-regulation of the TCA cycle and amino acid biosynthesis,
apparently working to avoid wasting energy under conditions
of oxidative stress. Such methods may also have biotechno-
logical applications. For example, metabolite:transcript correla-
tions identified in potato tubers have revealed target genes for
metabolic engineering of sucrose metabolism (Urbanczyk-
Wochniak et al., 2003).

Whilst the unbiased nature of such approaches makes them
excellent discovery tools, their capacity to improve our under-
standing of the regulation and control of respiratory metabolism
could be further improved by the use of a mechanistic framework
that can relate the components of respiratory metabolism and their
properties to the functions of this system. In this regard, a strat-
egy recently employed in yeast linking transcriptional regulation
to metabolic fluxes (Moxley et al., 2009) may facilitate the inte-
gration of data from multiple post-genomic platforms to improve
our understanding of plant respiratory metabolism. Whilst direct
mRNA measurements were only poorly correlated with metabolic
flux, the incorporation of a parameter representing regulation of

enzyme activity by metabolite abundance greatly improved this
correlation and the resulting model could be used successfully to
predict flux changes occurring in amino acid metabolism in yeast.
Genome scale metabolic models also provide a promising means
via which such integration can take place (Durot et al., 2009; Pool-
man et al., 2009; Fell et al., 2010; Mintz-Oron et al., 2012). Since
such models are based on annotated genome information, tran-
script profiling, and proteomic data which are already linked to
specific genes can potentially be incorporated and used to con-
strain the behavior of the network. Such an approach has been
shown to be useful in microorganisms (Covert and Palsson, 2002)
and might also be successfully applied in plants.

Integration may also take place through the use of kinetic mod-
els of metabolism (Schallau and Junker, 2010; Rohwer, 2012).
Such models are inevitably on a smaller scale than genome scale
models, but compensate by providing a mechanistic link between
the kinetic and regulatory properties of enzymes and the behav-
ior of the system under study. This approach was used to study
metabolism of the aspartate family of amino acids in Arabidopsis
(Curien et al., 2009), and revealed how the allosteric properties of
enzymes in this pathway permit fluxes in different branches to vary
independently of one another. An additional advantage of such
models is that once constructed they immediately allow the appli-
cation of metabolic control analysis, and this has been exploited to
investigate the distribution of control over sucrose cycling amongst
the enzymes of sucrose synthesis in sugarcane (Rohwer and Botha,
2001; Uys et al., 2007). Whilst the mitochondrial TCA cycle in
plants has been the subject of structural modeling (Steuer et al.,
2007) and included in models of wider scope (Leduc et al., 2006),
a detailed kinetic model based on experimental data has yet to
be produced. Profiling techniques could aid in the provision of
data for the construction of such a model, but more importantly,
a kinetic model of the plant TCA cycle would provide a medium
through which the results of profiling experiments could be better
understood.

Overall, whilst post-genomic technologies have already aided
our understanding of respiratory metabolism at a systems level
through additions to the “parts list” of the metabolic network
(Sweetlove and Fernie, 2005), they are poised to become more use-
ful still through the discovery of new interactions and the provision
of the quantitative data required for the construction of predictive
models of metabolism. The further development and combination
of many analytical techniques (Figure 1) will additionally allow a
fuller description of the metabolic status of a plant. When this is
achieved, global analyses of RNA, protein, and metabolites will
allow us to obtain a full picture of the complexity of the system
under study. Although the application of these techniques requires
substantial financial investment, it is likely to bring returns in the
form of an improved ability to carry out rational engineering of
the plant metabolic network.
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