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Whole genome sequencing, the relative ease of transcript profiling by the use of microar-
rays and latterly RNA sequencing approaches have facilitated the capture of vast amounts
of transcript data. However, despite the enormous progress made in gene annotation a
substantial proportion of genes remain to be annotated at the functional level. Consid-
erable progress has, however, been made by searching for transcriptional coordination
between genes of known function and non-annotated genes on the premise that such co-
expressed genes tend to be functionally related. Here we review progress made following
this approach as well as its expansion to include phenotypic information from other levels
of cellular organization such as proteomic and metabolomic data as well as physiological
and developmental phenotypes.
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INTRODUCTION
Despite the laudable aim of the Arabidopsis 2010 project we
remain a long way from knowing the function of every gene of
this plant, notwithstanding unprecedented research effort with
recent estimates suggesting in the region of 50% of genes are
functionally annotated by gene homology and between 10 and
15% have an experimentally verified biological function (Saito
et al., 2008; Tohge and Fernie, 2010; Mutwil et al., 2011). The
simplicity of homology searches means that at least for dicots
the number of genes annotated by homology in rice and soy-
bean or in the more recently published maize (Schnable et al.,
2009), poplar (Tuskan et al., 2006), or tomato (Tomato Genome
Consortium, 2012) genomes remains reasonable. However, the
proportion of genes for which function has been verified experi-
mentally is, at least in most of these species, negligible rendering
predictive gene annotation and subsequent validation thereof a
vital task for genomics both in model and crop species.

The development and widespread adoption of unbiased RNA
sequencing (RNAseq) approaches by plant researchers (Bao et al.,
2011; Matas et al., 2011; Hamilton and Buell, 2012; Lohse et al.,
2012) effectively increases the scale of this task since it circumvents
the need for in depth a priori knowledge that was a pre-requisite for
microarray hybridizations. Despite the fact that we have as yet not
reached satisfactory levels of gene annotation several approaches –
all of which are based on a common principal – have recently
greatly facilitated gene annotation. This is particularly in the case
of pathways under strict transcriptional regulation such as cell
wall associated genes and those involved in the various pathways
of secondary metabolism as well as leading to the classification
of process-associated gene including those linked to cold stress
and jasmonate signaling, operon-like genes and seed germina-
tion (Hannah et al., 2005; McGrath et al., 2005; Tohge et al., 2005;
Saito et al., 2008; Srinivasasainagendra et al., 2008; Mutwil et al.,
2009; Obayashi et al., 2009; Usadel et al., 2009; Ogata et al., 2010;
Tohge and Fernie, 2010; Bassel et al., 2011; Wada et al., 2012).

These approaches are based on the guilt-by-association approach
which assumes that if transcript levels of a gene of unknown func-
tion co-respond tightly with those of a gene of known function
then it is highly likely that the gene of unknown function plays
a role in the same biological process as the known gene. Whilst
by no means foolproof, providing a number of considerations
and caveats are taken into account, as pointed out in an excellent
review by many of the leading investigators in the field (Usadel
et al., 2009), then this strategy can prove very powerful. In this
mini-review we detail (i) how such approaches have been utilized
in a “stand-alone” fashion to successfully predict gene function in
Arabidopsis, (ii) how such approaches can be translated for gene
functional prediction in crop species for which suitable transcrip-
tomic datasets are publically available, and finally (iii) how other
phenotypic data can be incorporated into such studies to support
successful gene annotation.

PREDICTION OF THE FUNCTION OF ARABIDOPSIS GENES
In spite of the clear advantage of biological co-expression net-
work approaches based on gene expression, protein interaction,
and genetic interactions for microorganisms such as yeast (see an
example, Zhang et al., 2005), co-expression network approaches
in plant research have largely been developed solely on the basis of
microarray data. This has revealed clear correlations between genes
in multiple biosynthetic pathways (Tohge et al., 2007; Movahedi
et al., 2011; Mutwil et al., 2011). In addition, Arabidopsis thaliana
is currently the most useful model plant for integrative analy-
sis due to the availability of several resources such as knockout
mutants, cDNA library, tag counts of ESTs, microarray, data and
metabolite profiling data. Furthermore, several co-expression gene
network analyses and integrative analysis with metabolite pro-
files have been used to understand the transcriptional correlation
networks and discover novel gene functions in this species (Noji
et al., 2006; Saito et al., 2008; Mao et al., 2009; Tohge and Fernie,
2010; Mutwil et al., 2011). For this purpose, several web-based
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co-expression applications, for example ATTED-II (Obayashi
et al., 2009, 2011), AraNet (Hwang et al., 2011), Expression Angler
of the Bio-Array Resource (BAR; Toufighi et al., 2005), Cress-
Express (Srinivasasainagendra et al., 2008), CSB.DB (Steinhauser
et al., 2004), KappaViewer (Sakurai et al., 2011), GeneCAT (Mutwil
et al., 2008), Genevestigator (Zimmermann et al., 2004), OryzaEx-
press (Hamada et al., 2011), and VirtualPlant (Katari et al., 2010)
have been developed (Table 1).

One of the best examples of co-expression analysis in Ara-
bidopsis is cellulose synthase (CESA) genes in the secondary
cell wall metabolism (Brown et al., 2005; Persson et al., 2005b),
and the primary wall hemicellulose xyloglucan (Cocuron et al.,
2007). These studies used the three major secondary wall CESA
genes as the baits to construct networks and find novel func-
tional genes displaying similar expression patterns. The CESA
gene network has been in several publications (Persson et al.,
2005a; Mutwil et al., 2008, 2009, 2011; Ruprecht et al., 2011).
A second successful example of the co-expression approach is
that of plant secondary metabolism, since this is of the directly
regulated at the transcriptional level by a range of different tran-
scription factors including the MYB transcription factors. Since
a framework of flavonoid co-expression network was constructed
for identify the flavonol-3′-O-methyltransferase (AtOMT1; Tohge
et al., 2007), such co-expression network approaches have been
expanded to find other flavonoid biosynthetic genes such as
flavonol-7-O-rhamnosyltransferase (At1g06000) and flavonol-3-
O-arabinosyltrasnferase (At5g17030; Yonekura-Sakakibara et al.,
2007, 2008; Tohge and Fernie, 2010). In addition, this approach
was also utilized in the identification of glucosinolate MYB
regulators (AtMYB28 and AtMYB29; Hirai et al., 2007), mono-
lignol transporter (AtABCG29) involved in lignin biosynthesis
(Alejandro et al., 2012) and novel signaling related candidate genes
and transporters following the exposure of Arabidopsis to UV-B
(Tohge et al., 2011a).

In addition to its utility in understanding the regulation of
individual metabolic pathways or even metabolic networks co-
expression analysis has also been applied at a much broader level to
look at tissue-specific transcriptional networks (Song et al., 2010)
and at diverse biological processes including seed germination and
dark-induced senescence (Araújo et al., 2011; Bassel et al., 2011).
Studying gene sharing networks of Arabidopsis and rice Song
et al. (2010) discovered that tissues or cell types from the same
organ system tend to group together to form network modules.
The operon-like clusters in Arabidopsis using genome-based co-
expression network analysis has been found (Wada et al., 2012).
Furthermore, plant tissues in consecutive developmental stages
or sharing physiological functions are highly connected. Extend-
ing their comparisons to mouse and human gene expression data
they were able to observe common principles of gene-sharing
across the species and hypothesize that gene sharing evolved as
a fundamental organizing feature of gene expression in eukary-
otes. The co-expression approach was also successfully applied
to microarray data across the entire seed germination process
(Bassel et al., 2011). The output, which the authors termed Seed-
Net (http://vseed.nottingham.ac.uk), facilitated the definition of
two state-dependent interactions associated with either dormancy
or germination with an intermediate transition region between

Table 1 | Co-expression databases presented in this article.

Species Database URL

Cross species

PlaNet http://aranet.mpimp-golm.mpg.de/

Arabidopsis thaliana

ATTED-II http://atted.jp/

AraNet http://www.functionalnet.org/aranet/

BAR http://bar.utoronto.ca/welcome.htm

COP http://webs2.kazusa.or.jp/kagiana/cop

CORNet http://bioinformatics.psb.ugent.be/cornet

CSB.DB http://csbdb.mpimp-golm.mpg.de/csbdb/

dbcor/ath.html

CressExpress http://www.cressexpress.org/index

GeneCAT http://genecat.mpg.de/cgi-bin/Ainitiator.py

GeneVestigator https://www.genevestigator.com/gv/plant.jsp

KappaViewer4 http://kpv.kazusa.or.jp/en/

SeedNet http://bree.cs.nott.ac.uk/arabidopsis/

Oryza sativa

OryzaExpress http://bioinf.mind.meiji.ac.jp/Rice_network_

public/script/index.html

ATTED-II http://atted.jp/

Populus trichocarpa

COP http://webs2.kazusa.or.jp/kagiana/cop/

the two being characterized by an enrichment of genes involved
in cellular phase transitions. Moreover, the dormancy region
of the co-expression network was strongly associated to abiotic
stress response genes. The combined findings were thus taken
to suggest that seed dormancy is an adaptive trait that arose
evolutionarily late and evolved by coopting existing biosynthetic
pathways regulating cellular phase transitions and abiotic stress
response genes. During dark-induced senescence there is a dra-
matic switch from respiration of sugars to respiration of protein
which is underpinned by dramatic transcriptional reprogramming
of metabolism (Araújo et al., 2010; Araujo et al., 2011), including
the degradation of lysine and branched chain amino acids by as
yet undefined pathways. In this case the co-expression response
was able to provide a high number of candidate genes involved
in this process (Araújo et al., 2011), however these remain to be
functionally verified.

PREDICTION OF THE FUNCTION OF CROP GENES: WITHIN
SPECIES COMPARISONS
Although considerably fewer microarray experiments have been
reported for crop species, with the possible exceptions of rice,
several examples exist of the power of the approach in stand-
alone network analyses for rice and tomato (Ficklin et al., 2010;
Ozaki et al., 2010; Rohrmann et al., 2011; Sakurai et al., 2011;
Fukushima et al., 2012). We will here shortly review these stud-
ies and highlight the important knowledge inference for studies
in tomato and the grasses. In tomato the most comprehensive
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study was that performed by Fukushima et al. (2012) who con-
structed co-response networks from 327 tomato Affymetrix arrays.
Although this dataset was substantially smaller than that regularly
used for Arabidopsis a number of important conclusion could
be drawn including biologically relevant co-expression networks
including DNA endoreduplication, response to cold, jasmonate-
associated metabolic processes, and the ubiquitous photosynthetic
gene cluster. The study also revealed that duplicated genes often
displayed differential co-expression when tissue-type was studied
a fact highlighted by genes of lycopene and flavonoid biosyn-
thesis (Fukushima et al., 2012). In two more targeted analyses
co-expression analysis was also linked to metabolite levels in
tomato fruit (Rohrmann et al., 2011; Lee et al., 2012), however,
we will return to these studies later when discussing layering in
other phenotypes to aid annotation strategies.

In addition to these recent studies in tomato there have also
been studies in barley (Hordeum vulgare; Faccioli et al., 2005;
Mochida et al., 2011; Tohge et al., 2011b), wheat (Manickavelu
et al., 2012), rice (Fukushima et al., 2009; Lee et al., 2009; Ficklin
et al., 2010; Childs et al., 2011; Hamada et al., 2011), maize (Fick-
lin and Feltus, 2011), poplar (Populus spp.; Ogata et al., 2010), and
tobacco (Nicotiana tabacum; Edwards et al., 2010). Studies in rice
revealed that gene co-expression analysis facilitated elucidation of
gene function. With the study of Ficklin et al. (2010) returning
45 co-expressed gene modules and 76 cofunctional gene clusters
some of which were enriched for previously characterized mutant
phenotypes thus providing strong hints toward molecular func-
tions of unknown genes within the clusters with similar outcomes
being achieved for the other species mentioned above.

PREDICTION OF THE FUNCTION OF CROP GENES: BETWEEN
SPECIES COMPARISONS
Whilst the above described studies show that there is consider-
able benefit from co-expression analysis in species such as tomato
for which genome scale microarray platforms do not yet exist
another approach that has been demonstrated to be highly pow-
erful is combining comparisons of gene cluster networks and
sequence homology as a method of assigning gene function and
was recently published under the acronym PlaNet (Mutwil et al.,
2011). PlaNet builds on the concept first published in 2008 by the
same group which already described the search for barley gene
orthologs of annotated Arabidopsis genes (Mutwil et al., 2008).
PlaNet extended this to include the crop species barley, medicago,
poplar, rice, soybean, and wheat, and used a comparative network
algorithm to estimate similarities between network structures. The
algorithm was exemplified using the canonical the photosystem I
reaction center (PSA-D) family gene-related networks as well as
those related to chalcone synthase suggesting that the rapid trans-
fer of knowledge between species will be possible. That this is so
was recently also demonstrated by the same group in a study of
secondary wall cellulose biosynthesis (Ruprecht et al., 2011). In
this study, the authors compared co-expressed gene vicinity net-
works of primary and secondary wall CESAs in all species housed
in PlaNet to identify those genes consistently co-regulated with
cellulose biosynthesis. In addition to the expected polysaccharide
acting enzymes, they also found many gene families associated
with cytoskeleton, signaling, transcriptional regulation, oxidation,

and protein degradation. Based on these analyses, they selected
and biochemically analyzed T-DNA insertion lines correspond-
ing to approximately 20 genes from gene families that re-occur in
the co-expressed gene vicinity networks of secondary wall CESAs
across the seven species. One of the mutants, corresponding to a
pinoresinol reductase gene, was subsequently characterized as dis-
playing disturbed xylem morphology and containing lower levels
of lignin than the wild-type.

The very same seven species used for the PlaNet study were
used in an independent study to generate a pipeline within the
BAR software suite (Toufighi et al., 2005) to rank ortholog predic-
tions based on sequence and expression profile similarity with the
best fitting on this criteria being defined as the expressolog (Patel
et al., 2012). Interestingly, global analyses revealed that orthologs
with the highest sequence similarity do not necessarily exhibit
the highest expression pattern similarity. Moreover, other putative
orthologs show highly distinct expression patterns suggesting they
may need re-annotating or at best to be given a more specific anno-
tation. A similar comprehensive comparison between maize and
rice was additionally recently carried out using the IsoRank tool
(Ficklin and Feltus, 2011). It thus appears likely that both these
tools as well as PlaNet will likely greatly aid translational efforts
to translate the huge knowledge we have gained from Arabidopsis
studies into crop species.

LAYERING IN OTHER PHENOTYPES TO AID ANNOTATION
STRATEGIES
The above examples have by and large only relied on data
from transcript profiling and have neither harnessed informa-
tion derived from other molecular approaches, such as proteomics
and metabolomics, nor indeed of end-phenotypes such as total
yield and harvest indexes. Several recent studies have however
incorporated such data collected in order to complement tran-
scriptomic efforts of gene functional annotation (Hirai et al., 2007;
Horan et al., 2008; Yonekura-Sakakibara et al., 2008; Sulpice et al.,
2009; Allen et al., 2010; Tohge and Fernie, 2010; Araujo et al.,
2011; Rohrmann et al., 2011; Tohge et al., 2011a,b). Returning
to the tomato examples mentioned above, in order to exploit
the impact of tomato genetic diversity on carotenoids, Lee et al.
(2012) used Solanum pennellii introgression lines as a source of
defined natural variation and as a resource for the identifica-
tion of candidate regulatory genes. For this purpose ripe fruits
were analyzed for numerous fruit metabolites and transcriptome
profiles generated using a 12,000 unigene oligoarray. Correlation
analysis between carotenoid content and gene expression profiles
revealed 953 carotenoid-correlated genes. A subnetwork analysis
of carotenoid-correlated transcription narrowed this down to 38
candidates. One of which, Solanum lycopersicum ethylene response
factor 6 (SlERF6), was subsequently functionally characterized
revealing that it indeed influences carotenoid biosynthesis and
additional ripening phenotypes. In a similar approach Rohrmann
et al. (2011) developed a quantitative real-time PCR platform
allowing accurate quantification of the expression level of approx-
imately 1000 tomato transcription factors. In addition to utilizing
this novel approach, they performed cDNA microarray analysis
and metabolite profiling of primary and secondary metabolites
using gas chromatography–mass spectrometry (GC–MS) and
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liquid chromatography–mass spectrometry (LC–MS), respec-
tively. Applying these platforms to pericarp material harvested
throughout fruit development and studying both wild-type
Solanum lycopersicum cv. Ailsa Craig and the hp1 (high pigment)
mutant which is functionally deficient in the tomato homolog
of the negative regulator of the light signal transduction gene
UV-DAMAGED DNA BINDING PROTEIN 1 (DDB1) from Ara-
bidopsis. They chose this particular mutant since it had previously
been shown to harbor dramatic alterations in the content of sev-
eral important fruit metabolites but relatively little impact on other
ripening phenotypes. The combined dataset was extensively mined
searching for co-responsive metabolites and transcription fac-
tors, and, where possible, the respective transcriptional expression
network underlying this control. Two further studies in tomato
merit discussion here. Mounet et al. (2009), used a combination
of metabolite profiling and transcript profiling to identify can-
didate for the key factor of fruit composition and development.
More recently Osorio et al. (2011), used a combination of tran-
scriptomics, proteomics, and metabolomics alongside network
computation to assess ripening across a range of classical ripening
mutants and recently extended this analysis to compare ripening
in tomato with that in pepper (Osorio et al., 2012).

Staying with the integration of transcriptomic, proteomic, and
metabolomic data we recently combined data from all three plat-
forms to infer function within the tonoplast proteome (Tohge
et al., 2011b). In order to do so we performed metabolic pro-
filing of both primary and secondary metabolites in highly
purified vacuoles of barley or the protoplast preparations from
which they were isolated. This gave us quantitative data on 59
primary metabolites for which we knew the exact chemical struc-
ture and some 200 secondary metabolites for which we had
strong predicted chemical formulae. This data was then com-
pared to the 88 tonoplast proteins reported for barley (Endler
et al., 2006) and evaluating there co-expression using PlaNet.
This strategy allowed us to putatively assign transport function
for phenylpropanoids, flavonoids, storage proteins, and mugi-
neic acid, as well as a potential transport system for phy-
tosiderophores.

Proteomic data are also an important component of the interac-
tion networks that form part of the CORNET tools (De Bodt et al.,
2010, 2012) which combine co-expression analysis with protein–
protein interaction searches. The latter is similar to other tools
such as those in CressExpress, BAR, and VirtualPlant (Toufighi

et al., 2005; Srinivasasainagendra et al., 2008; Katari et al., 2010),
however, it presents microarray data with the corresponding
meta-data including sample information, protein–protein inter-
action data, localization data, and functional information within
a single central database. Developed CORNET 2.0 includes the
majority of interaction databases, six different protein–protein
interaction dataset, and three sets of regulatory interaction data,
thereby providing with consistently updated data sets for versa-
tile searches (De Bodt et al., 2012). The efficacy of computational
classification to enrich potential protein–protein interactions to
predict putative interactions of Arabidopsis membrane protein
has been applied (Chen et al., 2012). This method is also an
important to fill gaps to biological networks and suggest hypo-
thetical process and genes involving signal transduction and
transport.

CONCLUSION
It is hopefully clearly apparent from this mini-review that co-
expression analyses are a very powerful tool in gene annotation
not only in model systems such as Arabidopsis and rice but also
in less well characterized plant species. To date, it has found great
utility in improving our understanding of pathways which are
known to be regulated at the transcriptional level such as cell wall
biosynthesis and various pathways of secondary metabolism, how-
ever, recent examples also demonstrate its utility in elucidating
novel players in various developmental processes. The guilt-by-
association response is clearly powerful even in stand-alone single
species approaches. However, the increasing availability of data
from multiple species and at multiple different levels of the cel-
lular hierarchy will likely facilitate the adoption of integrative
genomics approaches by many more laboratories in the near
future. Even some 6−9 years ago the power of combining tran-
script and metabolite profiling for (candidate) gene discovery was
demonstrated for non-sequenced species (Urbanczyk-Wochniak
et al., 2003; Rischer et al., 2006). Recent developments in RNA
sequencing (Schneeberger and Weigel, 2011), will likely render
this considerably easier in the near future.
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