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With the advent of high-throughput technologies for data acquisition from different com-
ponents (i.e., genes, proteins, and metabolites) of a given biological system, generation of
hypotheses, and biological interpretations based on multivariate data sets become increas-
ingly important. These technologies allow for simultaneous gathering of data from the
same biological components under different perturbations, including genotypic variation
and/or changes in conditions, resulting in so-called multiple data tables. Moreover, these
data tables are obtained over a well-chosen time domain to capture the dynamics of the
response of the biological system to the perturbation. The computational problem we
address in this study is twofold: (1) derive a single data table, referred to as a compro-
mise, which captures information common to the investigated set of multiple tables and
(2) identify biological components which contribute most to the determined compromise.
Here we argue that recent extensions to principle component analysis called STATIS and
dual-STATIS can be used to determine the compromise on which classical techniques for
data analysis, such as clustering and term over-enrichment, can be subsequently applied.
In addition, we illustrate that STATIS and dual-STATIS facilitate interpretations of a publi-
cally available transcriptomics data set capturing the time-resolved response of Arabidopsis
thaliana to changing light and/or temperature conditions. We demonstrate that STATIS and
dual-STATIS can be used not only to identify the components of a biological system whose
behavior is similarly affected due to the perturbation (e.g., in time or condition), but also
to specify the extent to which each dimension of the data tables reflect the perturbation.
These findings ultimately provide insights in the components and pathways which could
be under tight control in plant systems.
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INTRODUCTION
High-throughput technologies are routinely applied to obtain a
snapshot of plant systems operating under a given environmental
condition. The resulting multivariate data sets gathered from the
same set of biological entities (e.g., genes) under various con-
ditions require the development of methods for simultaneous
analysis of multiple data sets (or data tables). The investigated
environmental conditions are usually not independent in the sense
that some, but not necessarily all, of the controlled parameters are
varied in the process of generating a pair of data tables. Therefore,
there is an increasing need for development and application of
multivariate statistical techniques which account for the inherent
dependence between data tables while capturing what is common,
i.e., preserved, across them.

The goal of this study is to introduce STATIS and dual-STATIS
in the analysis and interpretation of transcriptomics data over
the same set of genes under varying but not necessarily inde-
pendent environmental conditions sampled at same time points
starting from a well-defined reference. The idea of STATIS and
dual-STATIS is based on integrating a given set of data tables into

an optimum weighted average, called a compromise, which cap-
tures what is common to all or a subset of analyzed tables. The
compromise is obtained based on principal component analysis
(PCA) of a specially constructed matrix. Since we consider the
case where no supervised information is available about the gene
labels, it is then possible to apply classical unsupervised learning
techniques to the resulting compromise. The approach presented
in this study may be regarded as an instance of the multi-way
unsupervised learning problem which requires decomposition of
a multidimensional table (Geladi, 1989).

The classical way of investigating two-way data is by perform-
ing PCA on the two-dimensional matrix which is equivalent to
singular value decomposition (SVD) of data matrix and the eigen-
value decomposition of the corresponding covariance matrix.
Since their early application to analyses microarray gene expres-
sion data (Alter et al., 2000; Yeung and Ruzzo, 2001), PCA and
SVD are routinely applied to reduce the dimensionality and posit
biological hypotheses. The simplest extension of this method
to multi-way data is application of PCA on the unfolded two-
way data. The more advanced multi-way data analysis can be
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traced back to Hitchcock (1927), who investigated the three-mode
PCA, generalized to N-mode PCA, which is commonly referred
to as Tucker decomposition (Kroonenberg, 1983). A constrained
version of Tucker decomposition is Canonical Polyadic Decom-
position (CPD), known as PARAFAC (Harshman, 1970). Like
PCA, PARAFAC, and Tucker decompose the multi-way data into
sets of scores, known as loadings which potentially describe the
data in a form closest to the original. In addition, Generalized
Procrustes Analysis (GPA) and Simultaneous Components Analy-
sis (SCA) can also be applied to integrate multiple data tables
(Gower and Dijksterhuis, 2004). However, PARAFAC, GPA, and
SCA are based on the alternating least squares algorithm which
may result in a local optimum, and the problem formulation may
have alternative optima (ten Berge, 1993; Kiers, 1998). Moreover,
as more dimensions (i.e., ways) are included in the data set, it
becomes more difficult to provide interpretation of the findings
(Bro, 1997). Interestingly, STATIS and dual-STATIS construct the
compromise space from the similarity structure of the considered
tables and require application of generalized eigenvalue decom-
position which overcomes the aforementioned drawbacks (Lavit,
1988). We would like to stress that STATIS does not operate on
the actual tables but on the corresponding covariance matrices,
and employs the extracted principal components to project the
analyzed tables, variables, and observations.

Therefore, STATIS and dual-STATIS, when applied on tran-
scriptomics data, directly relate to the problem of empirically
estimating the covariance matrices in the case where the num-
ber of samples is small and the number of biochemical entities
(i.e., genes) is large – typically arising in systems biology stud-
ies. In such a setting, the classical methods for covariance matrix
estimation are highly unstable since the covariance matrix is likely
singular. However, recent theoretical advances, some of which take
advantage of the special types of data (e.g., time-series), facili-
tate more reliable estimates and allow their usage in conjunction
with the methods applied in this study (Andrews and Monahan,
1992; Schaefer and Strimmer, 2005; Rudelson and Vershynin, 2010;
Vershynin, 2012).

MATERIALS AND METHODS
DATA
We consider a recently obtained transcriptomics data set from
Arabidopsis thaliana plants exposed to eight environmental con-
ditions differing in light intensity and/or temperature (Caldana
et al., 2011). The response to each condition was followed over 23
time points (including the zero time point) in 20 min intervals up
to 360 min starting from the same reference. In addition, samples
were taken after 5, 10, 640, and 1280 min. We note that the same set
of time points, covering both a linear and a logarithmic scale, was
used in all conditions. Arabidopsis thaliana plants, grown in soil
at 21˚C and 150 µEm−2s−1, were either kept at this condition or
transferred to seven different environments reflecting a light gra-
dient ranging from darkness to high-light stress and a temperature
gradient from 4˚C over 21 to 32˚C. To identify similarities and dif-
ferences between these data sets, either one (light or temperature)
or both environmental parameters were changed. This resulted in
the following seven (combinations of) environmental conditions:
(i) 4˚C and darkness (abbreviated as 4-D), (ii) 21˚C and darkness

(21-D), (iii) 32˚C and darkness (32-D), (iv) 4˚C and 85 µEm−2s−1

(light; 4-L), (v) 21˚C and 75 µEm−2s−1 (low-light; 21-LL), (vi)
21˚C and 300 µEm−2s−1 (high-light; 21-HL), and (vii) 32˚C and
150 µEm−2s−1 (light; 32-L). Together with the set of plants kept
at the original conditions (21˚C and 150 µEm−2s−1, abbreviated
as 21-L and referred to as control), eight different conditions were
considered, as illustrated in Figure 1. Single RNA sample isolated
from a pool of the six independent plants per condition and time
point was used for transcript profiling with the Affymetrix ATH1
array, resulting in eight data tables including the time-resolved
gene expression (Caldana et al., 2011).

As a starting point, we used the 15,089 genes analyzed in the
original study after normalization and filtering of the microar-
ray data using standard methods. The data set was subsequently
filtered for genes which exhibit fold-change of at least two with
respect to the first time point (0 min corresponding to the con-
trol condition) in at least two time points for any condition and
a coefficient of variation within the considered time domain of at
least one. These are reasonable criteria to remove less informative,
and possibly non-differentially expressed, genes. This strategy was
used as there is only one replicate for each time point, preclud-
ing application of more rigorous statistics. The preprocessing step
resulted in identification of 2,276 genes which were used in the
analysis based on STATIS and dual-STATIS.

OVERVIEW OF STATIS AND DUAL-STATIS
Suppose that we are given K data tables X 1, . . ., X K corresponding
to the investigated conditions, and let they be gathered as blocks of

FIGURE 1 | Overview of the experimental conditions of the
Arabidopsis thaliana data set. Both light intensity (D=0 µE, LL=75 µE,
L=150 µE, and HL=300 µE; *4-L=80 µE) and temperature (4, 21, and
32˚C) were varied, resulting in eight distinct environmental conditions
including the control, denoted by 21-L.
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a matrix X = [X 1| . . . |XK]. Moreover, let each one of these tables
include observations on n genes, corresponding to the rows, over
t time points, given by the columns. Furthermore, we will use x l

ij

denote the expression of the ith gene in the j th time point of the
l th condition. In addition, each data table is preprocessed, i.e., cen-
tered and normalized according to the recommendation of Abdi
et al. (2012) and Smilde et al. (2003). Each of the rows is assigned
a non-negative mass m, so that the masses over all rows sum up
to one. Here we used uniform values for the masses, resulting in a
vector of masses m is of unit length.

In the first step of STATIS, the cross-product matrix Si = XiX T
i

is calculated for every table Xi, 1≤ i ≤K. Each of the resulting
cross-product matrices captures the relationship between the rows,
also known as within-table structure, as seen by the corresponding
table. To investigate the between-table structure, one then deter-
mines the matrix C in which the entry cij equals the inner product
of the cross-product matrices Si and Sj, 1≤ i,j ≤K. More con-

cretely, cij =
t∑

p=1

t∑
q=1

Si
p,qS

j
p,q . The optimum weights for combining

the data tables are then obtained from the first eigenvector of C, u1,
which corresponds to the eigenvalue of largest weight. The entry
u1

i of the first eigenvector captures to the similarity between the ith

table, 1≤ i ≤K, and all other investigated data tables. Therefore,
the quantity αi = u1

i / ‖ u1 ‖ corresponds to the weights for the ith

table, so that
K∑

i=1
αi = 1. The compromise cross-product matrix is

then given by S =
K∑

i=1
αiSi .

In the second step, generalized eigen value decomposition of
the compromise S is performed, so that S= PΛPT under the
constraint PTMP = I, where I is the identity matrix. It is easy
to show that the eigenvalue decomposition of S is equivalent to
generalized SVD of X, since S= PAPT with A= diag(a), where
a= [α11T|. . .|αK1T]. The loadings can then be computed as

Q = X T MP∆−1,

where Λ=∆2. The compromise factor scores, F, can be computed
from S as

F = SMP∆−1.

The loadings of the variables from table i, 1≤ i ≤K, are
obtained as

Q = X T
i MP∆−1,

while the factor scores, F, for table i, 1≤ i ≤K, are given by

Fi = SiMP∆−1.

In addition, similar to PCA, in STATIS one can determine the
contribution of rows, columns, and tables to the principal compo-
nents. The contribution of the ith row to the component b is given
by

ct ri,b =
mi f 2

i,b

λb
,

where λb is the l th largest eigenvalue from the decomposition
of the compromise S and fi,b denotes the factor score of the ith

observation for the bth dimension. Since λb =
∑

i
mi f 2

i,b , all con-

tributions take values between 0 and 1. The larger the contribution,
the more the row contributes to the component. In order to base
the interpretation of a given component on the rows that have
significant contributions, a bootstrap procedure can be applied.
Briefly, a bootstrap sample (i.e., a uniform random sample with
replacement) is performed on the set of tables. By repeatedly con-
ducting STATIS analyses on random samples of tables bootstrap
contributions ctr∗i,b are obtained. Finally, these bootstrap estimates
of contribution are transformed in bootstrap ratios, that can be
interpreted in a similar way as a t -statistic (Abdi et al., 2012).
Significantly contributing rows whose factor scores have different
sign can then be contrasted to interpret the component. Similarly,
based on the loading of the j th variable for the bth dimension,
qj,b, the contribution of j th column to the bth component can be
determined as

ct rj ,b = aj q
2
j ,b .

Likewise, the contribution of the l th table can then be simply
defined as the sum of the contributions of its variables:

ct rl ,b =
∑

j

ct rj ,b .

The contribution of all tables of often referred to as the inter-
structure or inner product map (Lavit et al., 1994; Abdi et al.,
2012). The contributions of columns and tables to a component
have the same properties as the contributions of rows, described
above; hence, they can be used in interpretation in a similar way.
It is also important to identify tables that represent well the overall
similarity with respect to all considered tables, i.e., to quantify their
contribution to the compromise S. To this end, the investigation
of table weights αi as well as the RV coefficient have been con-
sidered (Thioulouse et al., 1997). The RV coefficient is a measure
of similarity of two cross-product matrices Sk and Sk ′ both n× n
matrices, defined as the inner product (Horn and Johnson, 2006).

RV (Sk , Sk ′) =

t∑
i

t∑
j

Si,j ,k Si,j ,k ′ ,

which takes values between 0 and 1 as both matrices are positive
semidefinite and normalized, thus, being equal to the cosine of the
two matrices (Abdi et al., 2012).

The analysis based on dual-STATIS can be carried our analo-
gously on the transposed data table. In other words, in the first
step of dual-STATIS, the cross-product matrix is calculated for
every table Xi, 1≤ i ≤K, as Si = X T

i Xi . Each of the resulting
cross-product matrices in the dual-STATIS setting thus captures
the relationships between the columns of the original data tables,
referred to as within-table structure. The subsequent steps of dual-
STATIS are identical to the STATIS analysis, finally providing a
compromise, S′, for the variables rather than the observations of
the original data tables.
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A reference implementation, on which our analysis is based
on, is available in the ade4 package for the open source statistical
software R (Gentleman and Rober, 1996; Thioulouse et al., 1997).

ALTERNATIVE DATA NORMALIZATION STRATEGY
Following considerations by Caldana et al. (2011) we consider
a second normalization strategy for the whole time-course data
set. Here, all transcript expression levels at every time point over
all experimental conditions are normalized with respect to the
corresponding control time point by subtracting the obtained
fold-changes. This does not affect the control condition; however,
it allows better assessment of the stress similarities and specificities
by further eliminating circadian and diurnal responses as mea-
sured under control condition. We note that based on this normal-
ization strategy, the previously outlined procedure for identifying
informative genes now resulted in 3025 genes. We repeatedly apply
both STATIS and dual-STATIS analysis to reveal and emphasize
findings pertaining to diurnal changes.

RESULTS
THE CONTRIBUTIONS OF CONDITIONS IN THE STATIS ANALYSIS
REVEAL THE INFLUENCE OF BOTH TEMPERATURE AND LIGHT
CONDITIONS ON TRANSCRIPT LEVELS
Similar to the classical PCA, analysis based on STATIS allows
describing the contributions of tables, variables, and observations.
Here, the K = 8 tables correspond to the eight environmental con-
ditions obtained from the Arabidopsis experiment described in
Section “Materials and Methods,” where the variables denote the
23 time points measured for each condition and the observations

correspond to the 2,276 genes which are obtained using the afore-
mentioned filtering strategy. An analysis of the contributions of
the individual data tables to the compromise S then renders it
possible to determine the condition which has the strongest influ-
ence on the determined principal components and further reflects
good overall similarity to the other data tables from the remain-
ing conditions. Figure 2A displays the obtained table weights αi

for all conditions (x-axis), as well as the similarity quantified by
the R2

V coefficient of the compromise and the individual tables
(y-axis). One can observe that the low-light condition, 21-LL, as
well as the 21-D, both at control temperature, have the strongest
effect in the derivation of the compromise. This indicates that the
transcriptomics changes under normal temperature regimes cou-
pled with darkness/low-light conditions are characteristic for the
entire data set, thus, superimposing the changes in the remaining
combinations of conditions. Moreover, the light stress (21-HL)
and cold stress condition (4-L) have the lowest influence within
the complete dataset reflected by the low R2

V coefficient and table
weight.

Subsequent investigations of the table interstructure, i.e., the
contribution of the tables to the first, second, and third principal
components (Figure 2B, left and right) further corroborates this
finding: With exception of the aforementioned light stress condi-
tion (21-HL), the remaining light regimes at control temperature
conditions, namely, 21-LL, 21-D, and 21-L, exhibit strong contri-
butions to the first principal component. Changes in ambient tem-
perature, e.g., cold and heat, contribute reciprocally to the second
principal component. Additionally, the second principal compo-
nent separates the light conditions at control temperatures (21-D

FIGURE 2 | STATIS analysis of the importance of tables, i.e.,
conditions. (A) Table weights and RV coefficient allow assessing the
influence of tables on the resulting compromise; the eigenvalues
correspond to the variance captured by the principal components. (B)

The interstructure is the projection of the individual condition on the
principal components (PC1 and PC2 on the left, PC1 and PC3 on the
right) allowing characterization of the effects governing the separation
of conditions.
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and 21-L). Finally, the effect of the diurnal rhythm is captured
in the third principal component. Here, the darkness conditions,
namely, 4-D, 21-D, and 32-D, contribute positively, while the high-
light condition, 21-HL, does so negatively. Interestingly, the data
table corresponding to the combination of cold stress and light,
i.e., 4-L, exhibits a similar contribution to the third principal com-
ponent as the other darkness conditions. This observation could
be partially attributed to the fact that the light intensity at 4˚C is
lower (85 µE) than the others “L” controls (150 µE) as an attempt
to avoid light stress. Furthermore, this might be related to the
attenuating effect of the low temperature as previously reported
by Caldana et al. (2011) as well as a general stress response, since
both extended dark and cold conditions have been widely reported
to affect plant growth.

Furthermore, the first principal component in the interstruc-
ture characterizes the dominant transcriptional response within
the complete dataset as it corresponds to the largest eigenvalue
which is proportional to the variance explained. The strong effect
on the covariance structure of transcripts in all datasets under
the control temperature condition can be attributed to the experi-
mental design; namely,out of eight environmental conditions, four
were conducted at different light regimes and the same tempera-
ture of 21˚C. Moreover, the second strongest effect, corresponding
to the contributions to the second principal component is the con-
trast of cold and heat stress, while the third strongest influence is
ascribed to the diurnal cycle.

Apart from the contributions of individual tables to the com-
promise, the pairwise cosine similarity, i.e., the RV coefficient,
can be used to further assess the similarities between the tables.
Figure 3 illustrates the similarity between conditions as a heatmap
(based on the function heatmap.2() in the gqplot R pack-
age). It becomes apparent that the type of conditions, in all
considered combinations of perturbations, has an effect on the
clustering: Primarily, similar temperature conditions (4, 21, and
32˚C) cluster together (as derived by the cluster dendrogram) in
comparison to conditions in the same light regime (4-D and 4-L

FIGURE 3 | Heatmap and hierarchical clustering illustrating the
similarity of the eight environmental conditions. The pairwise similarity
is derived using the RV coefficient of the corresponding cross-product
matrices obtained for each condition. The hierarchical clustering was
obtained using average linkage on the pairwise distances obtained using
1−RV.

and 32-D and 32-L, respectively). Under control, the secondary
effect of light intensity can be seen by the co-clustering of the
low-light/dark (21-LL, 21-D) and high-light/normal light (21-HL,
21-L) conditions.

In summary, these results demonstrate the advantages of the
multi-table analysis based of STATIS as compared to classical PCA.
In the classical PCA, distinct dimensions, corresponding to exper-
imental factors, of the investigated data tables cannot be separately
investigated. The reason is that individual table structure gets lost,
since a combination of environmental conditions and time points,
e.g., 21-L 60 min, serves as variables (often referred to as loadings)
in a PCA. The analysis by STATIS however, allows the characteri-
zation of each of the eight experimental conditions independently
of the time-factor. A similar consideration of the same dataset
by classical PCA – as conducted in Figure 2A in Caldana et al.
(2011) – displays each condition by all of its measured time points
resulting in 184 variables in the loadings plot.

ANALYSIS OF TIME POINTS SUGGESTS PRESENCE OF
CIRCADIAN/DIURNAL EFFECTS IN LIGHT CONDITIONS AND
STARVATION RESPONSE IN DARK CONDITIONS
The analysis of the contributions of variables reflects the influence
of the particular time point with respect to the overall transcrip-
tional adjustments of the Arabidopsis in response to the applied
stresses. Figure 4 shows the contributions of each time point per
condition on the first (x-axis) and second (y-axis) principal com-
ponent. Arrows between two successive time points illustrate the
sequential progression of the contributions over time with the
compromise space defined by the first two principal components.
While all the trajectories of time points >0 min show substantial
contribution to either the first or second principal component –
clearly illustrating the ongoing transcriptional adjustments of
Arabidopsis’ transcriptome – three observations are of particular
interest:

(1) Even under the control condition, 21-L, we observed strong
changes and varying influence on the compromise of the
similarity structure in expression levels. One example is the
expression of the central oscillator gene TOC1 (At5g61380;
Strayer et al., 2000) that showed over fivefold – increase in the
course of the control condition (Caldana et al., 2011) which
reflects diurnal regulations as the time-series consider 22 h
(the last time point is 1280 min).

(2) Within all light conditions, 21-L, 21-HL, 21-LL, and 32-L,
except for cold, 4-L, the contribution of the late time points
(especially 1280 min) is similar to the early time points indi-
cating a conserved covariance structure of Arabidopsis’ tran-
script profiles in the beginning and final measurements. As the
last time point almost comprises a complete diurnal cycle, this
could be explained by circadian rhythm which is self-sustained
despite the continuous light (McClung, 2006; Espinoza et al.,
2010). Moreover, this effect persists in an alleviated form
even at low and high temperatures (4 and 32˚C) accounting
for the temperature compensation of the circadian rhythm
(McClung, 2008).

(3) In contrast, all three darkness conditions, 21-D, 4-D, and 32-
D, do not exhibit this behavior; the later time points do not
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FIGURE 4 | Contributions of variables (i.e., time points 0–1280 min) by
projection of the corresponding columns on the first and second
principal components for each condition (panel 1–8) obtained by using

the analysis based on STATIS. As the first time point (0 min) is the same
across conditions, it resides at the origin. Arrows/trajectories illustrate to
temporal progression of contributions of the variables.

converge toward the early time points explained by a strong
starvation effect due to the absence of light. Furthermore, the
temperature (dominance on the second principal component;
here, y-axis) has an effect on the early-mid time points of all
three darkness conditions: the higher the temperature, the
faster early-mid time points exhibit positive contribution on
the second principal component. Particularly the 1280 min
time point in cold, 4-D, is the only time point exhibiting a
positive contribution, which again can be attributed to the
previously mentioned attenuation effect of low temperature,
whereas the exclusive positive contribution of time points in
heat stress and darkness, 32-D, display the effects of a syner-
gistic stress response. Finally, control temperature at darkness,
21-D,displays an intermediate profile. These observations cor-
roborate the previous findings that darkness clearly leads to
dramatic differences in the responses to temperature but these
are not as striking as the effect of temperature on the response
to darkness (Vershynin, 2012).

INVESTIGATION OF GENES BY STATIS REVEALS KEY PATHWAYS
AFFECTED BY THE APPLIED CONDITIONS
Characterization of observations is a pivotal step of any descrip-
tive statistical method. We note that in our setting, the observation
correspond to the 2,276 genes. To this end, STATIS allows not
only the investigation of the contribution of tables (i.e., con-
ditions) and variables (i.e., time points), but also the analysis
of the contributions of observations to the principal compo-
nents. In particular, for the purpose of visualization, contributions
of individual observations, rows in matrix X, are obtained by
projection onto the principal components of the compromise.
Figure 5 displays the contribution of genes to the first two princi-
pal components. Based on the projection of observation on the
compromise, one can notice that the sign of the contribution
of genes to the first principal component accounts either for the
repression (red points) or the induction (blue) of the respective
transcripts.

FIGURE 5 | Visualization of the compromise. Each point represents one
of the 2,276 genes, i.e., observations, projected on the first and second
principal component. Red (repression) and blue (induction) color
corresponds to the direction average fold-change of expression levels (main
panel); the color intensity correspond to the magnitude of change. Genes
that exhibit a significant contribution, as determined by bootstrapping
procedures, are colored in dark, non-significantly contribution genes in light
gray (lower panel).

In order to determine which key pathways are associated with
the genome-wide adjustments of gene expression, a gene set
enrichment analysis (GSEA; Subramanian et al., 2005) of ontology
terms is typically performed. However, an important intermediate
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step is to identify the observations (i.e., genes) which contribute
significantly to either principal component. Here, bootstrap ratios
(cf. Materials and Methods) are used to identify significant con-
tributions at a significance level of 1%. Those genes (1371 in
total) which are found to be significantly contributing to either
the first or second principal component (illustrated as dark points
in the small panel in Figure 5) are subjected to a GSEA by
using MapMan terms (Thimm et al., 2004). Table 1 gives an
overview of the MapMan terms (Version 1.1, January 20101)

1http://mapman.gabipd.org/

found to be over-represented at a significance level of 1% [enrich-
ment determined by hypergeometric distribution (Rivals et al.,
2007) and a FDR corrected p-value ≤0.01 cutoff (Benjamini and
Hochberg, 1995)]. By carefully inspecting Table 1, it is becomes
apparent that when plants sense changes in the environment
(i.e., light and temperature), several signal transduction pathways
are triggered to adjust to the “new” condition as illustrated by
the over-enrichment of MapMan bins such as “hormone metab-
olism” – brassinosteroid, ethylene, and ABA, “receptor kinases,”
“DNA synthesis/chromatine structure. histone,” “RNA regulation of
transcription” and “micro RNA.”

Table 1 | Overview of over-represented MapMan bins determined by an enrichment analysis using significantly contributing observations (i.e.,

genes) in the STATIS analysis at a significance level of 1%.

MapMan bin Description

1.1.1 PS.lightreaction.photosystem II

1.1.30 PS.lightreaction.state transition

1.2.4.1 PS.photorespiration.glycinecleavage.P subunit

2.1.2 Major CHO metabolism.synthesis.starch

2.2.2.1 Major CHO metabolism.degradation.starch.starch cleavage

3.2.3 Minor CHO metabolism.trehalose.potential TPS/TPP

3.4.3 Minor CHO metabolism.myo-inositol.InsP Synthases

10.6.2 Cell wall.degradation.mannan-xylose-arabinose-fucose

10.7 Cell wall.modification

13.1.4.1.4 Amino acid metabolism.synthesis.branched-chain group.common.branched-chain amino acid aminotransferase

13.1.6.3.1 Amino acid metabolism.synthesis.aromaticaa.phenylalanine.arogenatedehydratase/prephenatedehydratase

14.15 S-assimilation.AKN

14.2 S-assimilation.APR

16.2.1 Secondary metabolism.phenylpropanoids.lignin biosynthesis

16.5.1.1.1 Secondary metabolism.sulfur-containing.glucosinolates.synthesis.aliphatic

16.5.1.1.4 Secondary metabolism.sulfur-containing.glucosinolates.synthesis.shared

16.5.1.2.1 Secondary metabolism.sulfur-containing.glucosinolates.regulation.aliphatic

16.8.1 Secondary metabolism.flavonoids.anthocyanins

16.8.2 Secondary metabolism.flavonoids.chalcones

16.8.3 Secondary metabolism.flavonoids.dihydroflavonols

17.1.1.1.10 Hormone metabolism.abscisic acid.synthesis-degradation.synthesis.9-cis-epoxycarotenoid dioxygenase

17.3.1.2.2 Hormone metabolism.brassinosteroid.synthesis-degradation.sterols.SMT2

17.5.2 Hormone metabolism.ethylene.signal transduction

18.4.1 Co-factor and vitaminemetabolism.pantothenate.branched-chain amino acid aminotransferase

26.21 Misc.protease inhibitor/seed storage/lipid transfer protein (LTP) family protein

26.25 Misc.sulfotransferase

26.3.2 Misc.gluco-, galacto- and mannosidases.beta-galactosidase

26.4.1 Misc.beta 1,3 glucanhydrolases.glucan endo-1,3-beta-glucosidase

26.8 Misc.nitrilases, *nitrile lyases, berberine bridge enzymes, reticuline oxidases, troponinereductases

26.9 Misc.glutathione S transferases

27.3.50 RNA.regulation of transcription.General Transcription

27.3.6 RNA.regulation of transcription.bHLH,Basic Helix-Loop-Helix family

27.3.80 RNA.regulation of transcription.zf-HD

28.1.3 DNA.synthesis/chromatin structure.histone

29.5.4 Protein.degradation.aspartate protease

30.2.17 Signaling.receptorkinases.DUF 26

32 Micro RNA, natural antisense etc

34.13 Transport.peptides and oligopeptides

MapMan bins are sorted based on their bin number.
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Following this response, as a result of both diurnal changes
and light/dark contrasts, the carbon/nitrogen (C/N) metabolism is
clearly affected. This response is reflected by the over-enrichment
of MapMan bins associated to photosynthesis-related processes
such and “PS light reactions” (darkness; bins 1.1.1; 1.1.30) fol-
lowed by an over-enrichment of bins involved in sugar metab-
olism. For instance, starch synthesis (high and normal light)
and degradation (darkness) as a result of nutrient limitation,
e.g., bin 2.1.2 “major CHO metabolism.synthesis.starch” and 2.2.2
“major CHO metabolism. degradation.starch.” The metabolism of
minor sugars, such as members of the raffinose (cold) family
and trehalose (darkness) which are considered to act as signal
under stress or energy deprivation, are also affected (bins 3.1
and 3.2). High-light (21-HL) results in over-enrichment of bins
involved in “PS.photorespiration” and detoxification such as “misc.
gluthatione.”

The C/N imbalance at darkness conditions is further sup-
ported by the over-enrichment of bins involved in nitrogen
metabolism and nutrient recycling such as the bins containing
genes related to “Amino acid metabolism” and “Protein degra-
dation.” Next to the C/N balance disruption, under limited
nutritional condition, like darkness, remobilization of carbon
and nitrogen can occur through the secondary metabolism,
as it is reflected by the over-enrichment of the bins involved
in “secondary metabolism.phenylpropanoid,” “secondary metabo-
lism.glucosinolates,” “secondary metabolism.flavonoids.” Addition-
ally,bins 14.15“S-assimilation.AKN” and“misc.nitrilases”are over-
enriched as a result of early changes of abundance of the metabo-
lite O-acetylserine (OAS), which is in accordance with existing
results analyzing changes of OAS level within this data set as well
as providing further evidence that OAS is a signaling molecule
[aside from its role in sulfur assimilation (Nikiforova et al., 2005)
based on further studies of transgenic plants (Hubberten et al.,
2012)]. Altogether, changes in C/N balance affect plant growth.
Plant growth is also closely regulated by cell wall expansion which
requires constant remodeling of its components. We observed sev-
eral MapMan bins involved in the cell wall remodeling might play
a role in the remobilization of sugar in response to sugar starvation
(Lee et al., 2007). Transcriptional changes in genes related to cell
wall modification, synthesis, and degradation under starvation or
dark treatment has been associated with the putative role of cell
wall as alternative energy source and as a means of restricting cell
growth and elongation (Baena-Gonzalez and Sheen, 2008).

Finally, it is important to realize that these findings are based
on genes of significant contribution to the first and second prin-
cipal component of the compromise of eight environmental con-
ditions and thus represent the common aspects of Arabidopsis’
transcriptomic response under light and temperature changes.

DUAL-STATIS ANALYSIS DEMONSTRATES A CONSERVED GRADUAL
PROGRESSION OF ARABIDOPSIS’ TRANSCRIPTOMIC ADJUSTMENTS
IN THE TIME DOMAIN
The previously performed three steps of a STATIS analysis can be
complemented by a dual-STATIS analysis. As outlined in Section
“Materials and Methods,” the analysis based on dual-STATIS
employs the transposed transcriptomic data set (i.e., in each table,
a row now corresponds to a time point, while a column stands for

a gene). Therefore, it enables to obtain a compromise based on the
covariance between time points. Figures 6A,B display the obtained
table weights and the RV coefficients, as well as the compromise of
time points. We observe that – aside from minor differences – all
eight experimental conditions exhibit comparable table weights
(within the range of ∼0.34 to ∼0.37) and RV coefficients (within
the range of 0.83–0.94). This indicates that the covariance of time
points is similar under all experimental conditions suggesting
similar temporal progression of transcriptional regulation.

Moreover, the contribution of time points, by projecting the
corresponding rows onto the principal components of the com-
promise, displays an almost perfect cycle. With the exception of
some intermediate time points (∼120–280 min) as well as the
last time point (1280 min), all observations contribute equally to
either the first or second principal component as indicated by
their equidistant displacement from the origin. Such representa-
tion could be explained by a gradually progressing system under
tight control of diurnal rhythm. Interestingly, these results contrast
the anticipation of stronger contributions of early time points as a
result of fast system-wide adaptations to environmental changes.

STATIS ANALYSIS REVEALS THAT ALTERNATIVE EXPRESSION DATA
NORMALIZATION STRATEGIES EMPHASIZE TEMPERATURE AND LIGHT
STRESS RESPONSES
The obtained findings pointed out that the control condition, 21-
L, exhibits a considerable effect with respect to the contribution

FIGURE 6 | Dual-STATIS analysis of the data set. Here, the tables are
transposed in order to characterize each condition by the time points (in this
setting corresponding to observations). (A) Table weights and RV coefficient
discriminate the influence of tables. (B) The contribution of the individual
time points (0–1280 min) to the principal components allows describing to
progression of transcriptional adjustments in Arabidopsis over the complete
time-course.
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of conditions as well as time points (cf. Figures 2 and 4). Cal-
dana et al. (2011) suggested to normalize the whole time-course
for each stress to the respective time points measure under con-
trol condition to better assess the stress similarities and specificities
further eliminating circadian and diurnal responses. Therefore, we
repeated the analysis based on STATIS with a correspondingly re-
normalized data set (cf. Material and Methods section): Figure 7A
displays table weights and the coefficient of the compromise and
the individual tables. In contrast to Figure 2A), now, the control
condition has the least influence and, thus, the smallest similarity
to the compromise. Furthermore, heat and control temperature
conditions under low-light/darkness exhibit higher similarities to
the compromise. A subsequent investigation of the interstructure
(Figure 7B) shows that low-light/darkness conditions contribute
the most to the first principal component, which captures differ-
ences among the light regimes across the eight experimental exper-
iments. Moreover, the second principal component corresponds
to temperature differences, since the low temperature conditions,
4-L and 4-D, contribute positively, while the high temperature
experiments, 32-L and 32-D, contribute negatively. Finally, the
third principal component facilitates the separation between the
control, 21-L, and the remaining conditions.

The analysis of the contributions of variables, i.e., time points,
additionally emphasizes the diminished effect of circadian regula-
tion within the control condition (Figure 8A): as compared to all
other seven conditions, the trajectories of the time point in 21-L
display the weakest variations and contributions to either prin-
cipal component. This observation is further confirmed by the
fact that except from the high-light and the control conditions,

21-HL and 21-L, all others do not exhibit the aforementioned
closing of the cycle with the last time point (1280 min). Similar to
the interstructure, the contribution of the light regime to the first
principal component (low-light/darkness positive; high-light neg-
ative) becomes more pronounced. Likewise, time points from the
experiments in low temperature exhibit negative contributions,
whereas those from high temperature experiments show positive
contributions to the second principal component.

By performing an analysis based on dual-STATIS on the trans-
posed and normalized data set, in which observations correspond
to time points, Arabidopsis’ stress response becomes apparent
(Figure 8B). In contrast to the temporal progression observed
in the previously used dataset (cf. 4b), early time points, e.g., 5,
10, 20 40, 60 min, are grouped together in a non-sequential man-
ner further separated from successive time points indicating the
systems response to perturbation. This is additionally illustrated
by considering the length of the trajectories between early time
points in Figure 8A, which are generally of greater length than
trajectories between two later time points.

From these observations, it becomes apparent that with lim-
ited presence of diurnal effects, the influence of observations, i.e.,
genes, allows a more detailed picture of the pathways affected
by stress adjustments than the precious analysis. Table 2 dis-
plays the MapMan bins that are additionally enriched by per-
forming a GSEA on highly contributing observations by using
the normalized dataset (note that all MapMan bins exhibiting
over-enrichment are also found using the normalized dataset).
For instance, MapMan (sub) bins 2.1.2.2, 2.1.2.3, and 2.2.1.4
corresponding to “major CHO metabolism.synthesis.starch.starch

FIGURE 7 | STATIS analysis of the importance of tables, i.e.,
conditions of the re-normalized dataset. (A) Table weights and RV

coefficient allow assessing the influence of tables on the resulting
compromise; the eigenvalues correspond to the variance captured by the

principal components (B) The interstructure is the projection of the
individual condition on the principal components (PC1 and PC2 on the left,
PC1 and PC3 on the right) allowing characterization of the effects
governing the separation of conditions.
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FIGURE 8 | (A) Contributions of variables (i.e., time points
0–1280 min) by projection of the corresponding columns on the first
and second principal components for each condition (panel 1–8)
obtained by using the re-normalized dataset. As the first time point

(0 min) is the same across conditions, it resides at the origin.
Arrows/trajectories illustrate to temporal progression of contributions
of the variables. (B) Dual-STATIS analysis of the transposed and
re-normalized dataset.

synthase,” “major CHO metabolism. synthesis.starch.starch branch-
ing,”and“major CHO metabolism.degradation. sucrose.hexokinase”
characterize in greater detail. Here, the effects of darkness and
high-light conditions reciprocally lead to degradation of starch
stored transiently in the chloroplasts or increase of synthesis as pri-
mary product of photosynthesis in leaves (Zeeman et al., 2007).
As a second example, two more effects on transcriptional regu-
lation become visible – MapMan bin 27.3.3 “RNA.regulation of
transcription.AP2/EREBP, APETALA2/Ethylene-responsive element
binding protein family” and 27.3.32 “RNA.regulation of transcrip-
tion.WRKY domain transcription factor family.” The WRKY family
of transcriptions factors, with up to 100 representatives in Ara-
bidopsis (Eulgem et al., 2000), has been shown to be involved in
response to abiotic stresses in plants (Chen et al., 2012). More
specifically, one member, WRKY22 (AT4G01250), is exclusively
induced over four, three, and fivefold in the three darkness con-
ditions, 21-D, 4-D, and 32-D, respectively, and has been shown to

regulate darkness-induced leaf senescence in Arabidopsis (Zhou
et al., 2011). As a summary, the analysis of contributions of tables,
variables, and observations by application of STATIS provides
insights for different dimension of the data tables (i.e., condi-
tions, time points, and genes). Moreover, the STATIS analysis on
the re-normalized data allows exposing those biological compo-
nents which remain conserved across all conditions, by subse-
quently reducing typically preserved dynamics of the organism,
e.g., diurnal behavior, by application of different normalization
strategies.

DISCUSSION
To capture the complex behavior of organisms, systems biol-
ogy studies require design of experiments and analysis of the
corresponding read-outs, whereby multiple components and
subsystems are simultaneously affected upon various internal
(i.e., structural) and/or external (i.e., condition) perturbations.
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Table 2 | Overview of over-represented MapMan bins using significantly contributing observations (i.e., genes) in the STATIS analysis of the

re-normalized dataset.

MapMan bin Description

1.1.5.4 PS.lightreaction.other electron carrier (ox/red).ferredoxinoxireductase

2.1.2.2 Major CHO metabolism.synthesis.starch.starch synthase

2.1.2.3 Major CHO metabolism.synthesis.starch.starch branching

2.2.1.4 Major CHO metabolism.degradation.sucrose.hexokinase

2.2.2.3 Major CHO metabolism.degradation.starch.glucan water dikinase

8.1.9 TCA/org transformation.TCA.malate DH

10.2 Cell wall.cellulose synthesis

10.6.3 Cell wall.degradation.pectatelyases and polygalacturonases

10.8.99 Cell wall.pectin*esterases.misc

11.6 Lipid metabolism.lipid transfer proteins etc

16.2.1.3 Secondary metabolism.phenylpropanoids.lignin biosynthesis.4CL

21.2.1.2 Redox.ascorbate and glutathione.ascorbate.GDP-l-galactose-hexose-1-phosphate guanyltransferase

23.5.4 Nucleotide metabolism.deoxynucleotidemetabolism.ribonucleoside-diphosphatereductase

26.10 Misc.cytochrome P450

26.2 Misc.UDPglucosyl and glucoronyltransferases

26.6 Misc.O-methyl transferases

27.3.3 RNA.regulation of transcription.AP2/EREBP, APETALA2/Ethylene-responsive element binding protein family

27.3.32 RNA.regulation of transcription.WRKY domain transcription factor family

29.2.1.1.3.2.35 Protein.synthesis.ribosomalprotein.prokaryotic.unknown organellar.50S subunit.L35

33.1 Development.storage proteins

34.2 Transporter.sugars

Note, that this table contains bins which are derived in addition to those displayed in Table 1. A significance level of 1% was used for the enrichment analysis and

MapMan bins are sorted based on their bin number.

Descriptive and inferential statistical analysis of such multidi-
mensional data sets, usually including observation of biochemical
entities (e.g., genes) whose number is comparatively larger than
that of observations, necessitate the development and application
of novel methods. The principle requirement for such methods
is that they provide the possibility for simultaneous analysis of
all or some of the multidimensional data sets, while inferring
the biochemical entities which most contribute to the resulting
observations.

The methods used in this study, namely, STATIS and dual-
STATIS, derive a single table, referred to as a compromise, which
captures information common to the investigated multiple data
sets. We note that the compromise is derived as a linear combi-
nation of the covariance matrices corresponding to the individual
data sets, with coefficient obtained from the eigenvalue decom-
position of a special matrix capturing the congruence for all
pairs of data sets. Moreover, since (dual-)STATIS can be seen
as a form of generalized SVD, of which PCA is a very special
instance, the contribution of each row and/or column of each data
set to the derived compromise can be investigated through sev-
eral projections. Moreover, classical statistical techniques, such as
bootstrapping and jackknifing, can be used to infer which of the
contributions are statistically significant.

Here we illustrated the usage of STATIS in the analysis of
time-resolved transcriptomics data sets obtained from Arabidopsis
thaliana under combination of growth conditions. Analysis based
on the coefficient of congruence, i.e., the RV coefficient, for a pair

of tables is in agreement with the established biological knowl-
edge regarding the influence of mild vs. strong perturbation on
the level of transcripts, with temperature perturbation having a
larger effect on the similarity of the data sets in comparison to
the modulation of light. In addition, our detailed examination of
time points indicates the circadian/diurnal effects in light condi-
tions, while starvation response is pronounced in dark conditions.
Finally, we demonstrated that dual-STATIS can be integrated with
GSEA to determine gene functions most affected by the consid-
ered conditions by using projections onto the compromise, itself
capturing the similarities across the data sets. As with PCA, the
choice of which components are to be used plays an important
role in the interpretation of the data.

Our novel analysis of transcriptomics data sets based STA-
TIS and dual-STATIS raises some issues which could likely be
addressed through modification of the applied methods. For
instance, the usage of covariance matrix does not allow the con-
sideration of the time domain implicitly present in time-resolved
data nor it is suitable for categorical variables. To this end, exten-
sion to STATIS, called DISTATIS, may facilitate the treatment of
other distance measures in creating the compromise, which will
be explored in a future study. Finally, one may consider exten-
sion of the illustrated methods so as to allow generation of a
compromise data table. Clearly, moving away from a compro-
mise on the level of the similarity structure within each data
set may bring the modified approach closer to multi-way data
analysis.
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