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A tight coordination of biological processes between cellular compartments and organelles
is crucial for the survival of any eukaryotic organism. According to cellular requirements,
signals can be generated within organelles, such as chloroplasts and mitochondria, mod-
ulating the nuclear gene expression in a process called retrograde signaling. Whilst many
research efforts have been focused on dissecting retrograde signaling pathways using
biochemical and genetics approaches, metabolomics and systems biology driven studies
have illustrated their great potential for hypotheses generation and for dissecting signal-
ing networks in a rather unbiased or untargeted fashion. Recently, integrative genomics
approaches, in which correlation analysis has been applied on transcript and metabolite
profiling data of Arabidopsis thaliana, revealed the identification of metabolites which are
putatively acting as mediators of nuclear gene expression. Complimentary, the continuous
technological developments in the field of metabolomics per se has further demonstrated
its potential as a very suitable readout to unravel metabolite-mediated signaling processes.
As foundation for these studies here we outline and discuss recent advances in elucidat-
ing retrograde signaling molecules and pathways with an emphasis on metabolomics and
systems biology driven approaches.
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INTRODUCTION
Biological systems rely on complex interactions of heterogeneous
small- and macro-molecules to execute cellular functions required
for their growth, survival, and propagation (Smeekens et al.,
2010). To maintain cellular homeostasis the interactions of and
among these heterogeneous molecules need to be strictly reg-
ulated and coordinately modified to respond appropriately to
external and internal stimuli. This fundamental process, which
is common to all organisms, is broadly termed signal transduc-
tion. Generally, it involves the sensing of a stimulus or signal, the
integration of information within and between different systems
levels and finally, the execution of regulatory events resulting in
a cellular response (Keurentjes et al., 2011; Baldazzi et al., 2012).
While on a first glance signal transduction seems to be unidi-
rectional with respect to information processing, a continuous
sensing and control of the regulated function is required for
fine-tuning.

In contrast to bacteria, the eukaryotic cell comprises a large
number of diverse subcellular compartments and organelles which
are usually delineated by a lipid bilayer to maintain specific
microenvironments (Pogson et al., 2008; Krueger et al., 2011).
Along with this many physiological processes and metabolic
reactions are either solely localized in a single compartment or
partitioned between them (Martinoia et al., 2007; Weber and Fis-
cher, 2007; Linka and Weber, 2010). Although these compartments
are physically and biochemically distinct, a tight coordination of

processes between them is essential to maintain the biological
functionality of the eukaryotic cell (Lunn, 2007).

While the different subcellular compartments are involved
in storage, detoxification, and synthesis of a variety of spe-
cific and important compounds (Paris et al., 1996; Dyall et al.,
2004; Becker, 2007), plastids and mitochondria in particular
play also an essential role in integrating environmental cues into
metabolic responses assisting in the adjustments of growth and
development (Leon et al., 1998; Yang et al., 2008; Kessler and
Schnell, 2009). However and in spite of the broad range of func-
tions housed in, e.g., the plastids, only 5% of its proteome is
encoded and synthesized by the plastids themselves (Abdallah
et al., 2000). Chloroplasts and mitochondria are believed to have
originated by endosymbiosis of free-living bacterial ancestors by
a pre-eukaryotic cell, but contain (in comparison to their clos-
est free-living relatives) only a strongly reduced portion of the
ancestral genome with the majority of genes having been either
lost or transferred to the nucleus (Andersson et al., 2003; Dyall
et al., 2004). Given that many components of the energy transduc-
tion cascades are encoded by both the organelle and the nuclear
genome, a tight coordination of gene expression in two or more
cellular compartments is required to ensure the correct concen-
trations of organelle proteins, independent of their genesis, and
thus to maintain organelle functions (Pogson et al., 2008; Kleine
et al., 2009). Such genome-coordination mechanisms are achieved
by bidirectional signaling that controls the information flux from
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the nucleus to the organelles (anterograde signaling; Sardiello
et al., 2005) and by signals from the organelles to the nucleus
(retrograde signaling; Biehl et al., 2005; Nott et al., 2006; Pesaresi
et al., 2007; Jung and Chory, 2010). Retrograde signaling discloses
the functional and developmental state of the organelles to the
nucleus, which can then modulate anterograde control and cellu-
lar metabolism, as a result of environmental changes and signals
perceived by the organelles (Woodson and Chory, 2008). Tight
regulation of such signaling establishes the proper balance of gene
expression and regulation in response to a fluctuating environ-
ment and thus, is fundamental for the survival of any organism.
The intracellular communication between various organelles is
quite complex and interdependent (Leister, 2005; Koussevitzky,
2007; Pesaresi et al., 2007; Jung and Chory, 2010). In photosyn-
thetic eukaryotes, this scenario is even more complex owing the
cross-talk between chloroplasts and mitochondria (Woodson and
Chory, 2008).

TARGETED AND BOTTOM-UP APPROACHES FOR SIGNAL
MOLECULE VALIDATION
To date, an increasing but still small number of candidate signaling
molecules and their respective pathways have been identified. So
far, the putative sources of retrograde signals are thought to derive
from (i) components of tetrapyrrole biosynthetic pathway inter-
mediates (Mochizuki et al., 2001; Strand et al., 2003), (ii) reactive
oxygen species levels in plastid (op den Camp et al., 2003; Wagner
et al., 2004; Laloi et al., 2006; Lee et al., 2007), (iii) the redox state
of organelles (Bonardi et al., 2005; Piippo et al., 2006; Pesaresi
et al., 2007), and (iv) protein synthesis (Koussevitzky, 2007; for
recent reviews, see Leister, 2005, 2012; Nott et al., 2006; Kousse-
vitzky, 2007; Pesaresi et al., 2007; Pogson et al., 2008; Kleine et al.,
2009; Chan et al., 2010; Jung and Chory, 2010; Pfannschmidt,
2010; Leister et al., 2011). However, most of the research on ret-
rograde signaling has targeted isolated pathways under artificial
and/or pleiotropic conditions (Kleine et al., 2009). One of the best-
studied chloroplast retrograde signaling pathways, the tetrapyrrole
pathway provides an example of the complexity involved in
unequivocally identifying a retrograde signal. Photo-oxidative
damage of undeveloped chloroplasts leads to the accumulation of
Mg-proto, an intermediate metabolite of chlorophyll biosynthesis,
which represses nuclear genes encoding for photosynthesis-related
proteins (Strand et al., 2003). Genetic screenings associated to
microarray analysis in Arabidopsis have resulted in identifying the
genomes uncoupled (gun) mutants, which block Mg-proto medi-
ated retrograde signaling by affecting its accumulation (Mochizuki
et al., 2001; Strand et al., 2003; Koussevitzky, 2007). Those earlier
studies have found a direct correlation of nuclear gene expression
and total cellular levels of Mg-proto IX estimated using fluo-
rescence spectrometry (Mochizuki et al., 2001). However, later
studies that employed a more sensitive and reproducible HPLC
methodology revealed the absence of any correlation between
Mg-proto IX and nuclear gene expression levels (Mochizuki et al.,
2008). These finding argues against the proposed model for Mg-
proto IX as a retrograde signal. Thus, further investigations using
alternative analytical approaches together with subcellular local-
ization estimation might be necessary to unambiguously accept
or reject the involvement of Mg-proto IX in retrograde signaling.

Therefore, the unambiguous experimental validation of a com-
pound as a signaling molecule is an extremely laborious task and
so far, arguably no “true” signaling molecule leaving the plastid
has been identified (Pfannschmidt, 2010). Innovative biochemical
and genetic screenings, such as inducible expression or inducible
RNA interference (RNAi) are supposed to aid in further identify-
ing proteins and signals in these pathways (Woodson and Chory,
2008). As the function of a cellular constitute might also be
context-dependent, more holistic ‘omics-like approaches might
be helpful in elucidating the specificity of a candidate signaling
molecule.

IDENTIFICATION AND VALIDATION OF NOVEL SIGNALING
CANDIDATES VIA METABOLOMICS
Whilst much research efforts have been focused on dissecting sig-
naling pathways using biochemical and genetics approaches, the
number of yet discovered mechanisms of retrograde signaling are
likely not sufficient to explain the tight regulation and interdepen-
dence of organelle functions. For instance, the cellular metabolism
is tightly correlated with processes occurring in chloroplasts and
mitochondria. It is widely believed that changes in the concen-
tration of metabolites triggered by the organelles are likely sensed
in the cytosol and thus, might regulate nuclear gene expression
(Kleine et al., 2009). Therefore, metabolites are thought to be the
most likely candidates for retrograde signaling molecules, since
the metabolites exported from the organelles into the cytosol are
likely reflective of the organellar metabolic state (Leister, 2012). A
consequence of this view is that fluxes of metabolites between,
e.g., the chloroplast and the cytosol can mediate information
on the chloroplast redox stage and therefore, acting as potential
intracellular signals (Kleine et al., 2009). For instance, trehalose
6-phosphate (T6P) promotes thioredoxin-mediated redox trans-
fer to AGPase in response to cytosolic sugar levels, reporting
on the metabolic status between the cytosol and the chloroplast
(Kolbe et al., 2005). Another example of alteration in the cellu-
lar redox status has been reported for malate in tomato fruits
(Centeno et al., 2011).

Over the past decades a number of analytical methods, such
as gas chromatography (GC), liquid chromatography (LC), cap-
illary electrophoresis (CE) coupled to mass spectrometry (MS)
or nuclear magnetic resonance (NMR), have been developed and
improved to accurately and sensitively analyze small molecules
from complex sample mixtures (Kopka et al., 2004; Lisec et al.,
2008; Lei et al., 2011). As these technologies enable the simultane-
ous detection of several hundred to several thousand metabolites,
a more holistic view of cellular functions can be gathered since
metabolites are considered to directly reflect the physiological sta-
tus of a cell. Therefore, metabolite profiling has been considered as
a powerful tool for the unbiased ability to characterize and differ-
entiate genotypes and phenotypes (Hirai et al., 2005; Kusano et al.,
2007; Hannah et al., 2010; Caldana et al., 2011) and provides also
an excellent readout for the dissection of novel signaling pathways.
Unfortunately, the measurement of all metabolites using a single
analytical technology is yet not feasible due to the vast number
of compounds which on top differ widely in their chemical prop-
erties, such as size, polarity, stability, and quantity, as well as in
their immense dynamic concentration ranges (Kopka et al., 2004;
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Lisec et al., 2008; Lei et al., 2011). The optimal selection of a tech-
nology will thus largely depend on the study aim and is usually a
compromise of selectivity, speed, and throughput (Lei et al., 2011;
Krueger et al., 2012). Therefore, orthogonal analytical technolo-
gies in conjunction with targeted and untargeted data analyses
will support a broader compound coverage as the chemical prop-
erties and also the structure of molecules involved in signaling
might not be known to date. Nonetheless, some metabolites
might still not be precisely captured using a particular analytical
‘omics technology or their combinations, thus requiring tar-
geted biochemical assays either simultaneously applied or used for
verification.

Several lines of evidence suggested that the development of
target methods with high accuracy is very informative in eluci-
dating the role of candidate signals. One successful example of
the use of metabolic profiling for elucidating retrograde signals in
plants is the identification of methylerythritol cyclodiphosphate
(MEcPP; Xiao et al., 2012). Using a genetic approach the authors
identified the retrograde signaling ceh1 mutant, which displayed
changes in expression of stress-related genes associated to salicylic
acid response and resistance to the pathogen Pseudomonas. Ceh1 is
caused by a mutation in the HDS gene responsible for the conver-
sion of MEcPP to hydroxymethylbutenyl diphosphate (HMBPP)
in the methylerythritol phosphate (MEP) pathway. Metabolite
profile analysis of MEP pathway intermediates by LC-MS revealed
an accumulation of the intermediate metabolite MEcPP in ceh1.
MEcPP is a specific and critical retrograde signaling metabo-
lite that acts as a stress sensor by triggering the expression
of specific stress-responsive nuclear encoded plastidial proteins
(Xiao et al., 2012).

IDENTIFICATION AND VALIDATION OF NOVEL SIGNALING
CANDIDATES VIA SUB-/CELLULAR METABOLOMICS
Despite the great potential of metabolomics in identifying novel
signals, the majority of studies rely on the entire set of metabolic
reactions that can take place within different tissues, but do not
consider the type of tissue or the subcellular specificity and local-
ization of metabolites. Taking this observation into account, only
metabolites whose changes are readily transferable between com-
partments represent promising retrograde signals (Kleine et al.,
2009; Leister, 2012). Thus, unraveling the subcellular localiza-
tion of metabolites and their dynamics are crucial for identifying
small molecules within organelles that potentially trigger retro-
grade signaling. The main challenge of such analysis is the fast
conversion and reallocation of metabolites out of organelles. To
date, several methods have been developed to monitor the spa-
tial distribution of metabolites within the different cell types and
cellular compartments (for a review, see Krueger et al., 2012).

Protoplast fractionation has been widely used to quantify
metabolite levels in purified organelles such as chloroplasts, mito-
chondria, and the vacuole, respectively (e.g., Robinson and Walker,
1980; Stitt et al., 1983; Gerhardt and Heldt, 1984; Dancer et al.,
1990; Martinoia et al., 1991; Gardestrom, 1993; Abdallah et al.,
2000; Tohge et al., 2011). However, the procedure is very time-
consuming as it includes several centrifugation steps, therefore
causing a disturbance of the physiological and biochemical sys-
tem (Krueger et al., 2012). Consequently, such artificial system

may not accurately reflect the in planta situation. Recently, proto-
plast fractionation was used to detect the subcellular levels of 3′-
Phosphoadenosine 5′-phosphate (PAP) and confirm its role as a
retrograde signal (Estavillo et al., 2011). PAP was found to accu-
mulate in response to drought and high light and is regulated by the
enzyme SAL1, which is present in chloroplasts and mitochondria
(Estavillo et al., 2011). The cellular levels of PAP correlated well
with the nuclear gene expression. Interestingly, transgenic target-
ing of SAL1 to either the nucleus or chloroplast of sal1 mutants
reduced the total PAP levels (Estavillo et al., 2011). However, except
for the chloroplast, the subcellular quantification of PAP frac-
tions has failed due to technical reasons (Estavillo et al., 2011;
Leister, 2012).

A more accurate technique to monitor spatial and temporal
metabolic changes in cellular compartments of intact tissues is
the use of genetically encoded metabolite nanosensors. The flu-
orescence resonance energy transfer (FRET) nanosensor makes
use of a recognition element (a protein that binds with the
metabolite of interest) fused to a report element (a fluorophore
pair). Changes in protein conformation triggered by ligand
(metabolite)-recognition element binding leads to the emission
of fluorescent light via the report element (for review, see From-
mer et al., 2009). In Arabidopsis, FRET-based glucose and sucrose
sensors have been used to successfully monitor sucrose and glu-
cose transport in root tips (Chaudhuri et al., 2008, 2011). To follow
the dynamic changes of a given metabolite with subcellular reso-
lution, the FRET sensor has to be flanked with a signal sequence
recognized by the organelle (e.g., nuclear or ER signal sequence)
to enable the proper import of the sensor into the organelle (Hou
et al., 2011). As each metabolite however requires its own sensor,
it remains an arduous task to engineer sensors for various poten-
tial signaling molecules. Thus, only small molecules with previous
strong evidence of being a putative signal can likely be considered
in such an approach.

The probably most promising strategy to analyze subcellular
metabolite distribution is the non-aqueous fractionation method
which separates cellular compartments under conditions where
metabolite translocation and conversion are completely arrested
(Gerhardt and Heldt, 1984; Riens et al., 1991). It has a proven
record especially in plant science (Gerhardt et al., 1987; Riens
et al., 1991; Winter et al., 1993; Fettke et al., 2005; Krueger et al.,
2009) and routinely facilitates the separation of three distinct
compartments from each other, namely the cytosol, the plas-
tids, and the vacuole (Gerhardt et al., 1987; Farre et al., 2001;
Krueger et al., 2009, 2011). Although NAF produces continuous
metabolite distributions of organelles and a successful separation
of mitochondria is not yet reported, the entire cellular content and
thus its metabolites are represented in the gradient which can be
considered as an advantage for identifying signaling molecules
(Jung and Chory, 2010). As the collected NAF fractions can
be analyzed with modern high-throughput metabolite profiling
techniques several hundred molecules from different broad com-
pound classes can be measured simultaneously (Krueger et al.,
2011) and finally assigned into compartments using improved
statistical tools (Klie et al., 2011). Thus, the impact of environmen-
tal changes on cellular and subcellular metabolism and the cell’s
state can be analyzed with high spatial resolution providing the

www.frontiersin.org December 2012 | Volume 3 | Article 267 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Physiology/archive


“fpls-03-00267” — 2012/12/3 — 20:58 — page 4 — #4

Caldana et al. Unraveling signals via systems approaches

necessary basis to discover novel signaling molecules. Recently,
non-aqueous fractionation (NAF) in conjunction with orthogonal
metabolite profiling technologies was applied to unravel the sub-
cellular localization of primary and secondary metabolites as well
as lipids (Krueger et al., 2011). While this study depicts the subcel-
lular localization for a large number of chemically diverse metabo-
lites, it also illustrates that there is the potential to further increase
the compartmental resolution as various metabolites could not
be unambiguously assigned into one of the three resolved
compartments.

SYSTEMS BIOLOGY APPROACHES IN RETROGRADE
SIGNALING
The complexity and interdependence of the pathways involved
in intracellular communication have a dramatic impact on cel-
lular levels. To understand how plants adjust their biochemical
machineries on several levels of biological information, a more
holistic approach such as systems biology is required. Recent
advances of high-throughput technologies and analytical meth-
ods, such as transcriptomics and metabolomics, have supported
multilevel phenotyping and can help to understand many com-
plex biological processes by generation of hypothesis about
the dynamic system (Jung and Chory, 2010). Application of
such systems-orientated analyses in retrograde control may pro-
vide novel means to unravel intracellular communication and
corresponding signaling molecules.

Gene expression profiling has been widely used to study retro-
grade control. The classical approach to identify a set of nuclear
genes under retrograde control is based on transcriptomics anal-
ysis of mutants defective in retrograde pathways (for examples,
see the reviews of Jung and Chory, 2010). However, to avoid
biased results caused by pleiotropic effects of a single experi-
ment, it is highly recommended to use expression profile data of
multiple experimental conditions. As an example, meta-analysis
of 11 microarray experiments from mutants (e.g., aox1a and
msd1-RNAi, among others) and short-term chemical treatments
(e.g., antimycin A and rotenone) involved in plant mitochon-
drial dysfunction has been carried out to identify targets and
pathways involved in mitochondrial retrograde signaling (Schwar-
zlander et al., 2012). Regardless of the level of severity of these
mitochondrial impairments, three main retrograde signaling tar-
gets were identified, namely protein synthesis, photosynthetic
light reactions, and plant–pathogen interactions (Schwarzlan-
der et al., 2012). A similar approach has been performed to
unravel intra- and inter-compartmental transcriptional networks
coordinate the expression of genes for organellar functions
(Leister et al., 2011).

Another recent study investigated the time-dependent impact
of redox signals at both transcriptome and metabolome levels
of Arabidopsis thaliana growing under either PSI or PSII light
(Brautigam et al., 2009). The authors showed rapid and dynamic
changes in nuclear transcript accumulation, which resulted in
differential expression pattern for genes associated with photo-
synthesis and metabolism (Brautigam et al., 2009). This work
proposed that photosynthesis acts as an environmental sensor,
producing redox signals that perform a fine-tuning not only
for photosynthesis but also for metabolic reactions (Brautigam
et al., 2009).

Integration of high-throughput transcript and metabolite data
has facilitated the identification of small molecules as potential
mediators of gene expression (Hannah et al., 2010). Extensive anal-
ysis of transcript and metabolite correlations across a wide ranging
of environmental conditions revealed single, highly-connected
metabolites which correlated with several hundred to thousand
transcripts. Among the candidates, compounds derived from
carotenoid metabolism such as cryptoxanthin, zeaxanthin, and
lutein were found to significantly correlate with a large number of
transcripts. Interestingly, those metabolites displayed a significant
overlap between positively correlated genes and those repressed
by norflurazon, a known inhibitor of phytoene desaturase in the
carotenoid biosynthesis (Hannah et al., 2010).

Another important issue for the identification of signals is to
distinguish between “true” primary targets from tertiary targets
(Pfannschmidt, 2010). Several lines of evidence demonstrated
that retrograde signal may affect nuclear gene expression in a fast
and dynamic range. Therefore, a combination of high resolution
kinetic analysis combined with inducible systems and subcellular
metabolite flux would allow setting a signal at a given time point.
A recent example of this is that of O-acetylserine (OAS) which has
been recently identified as a regulator of the sulfur status in Ara-
bidopsis using computational analysis of time-series experiments
and inducible transgenic plants revealing conditional increased
OAS levels (Hubberten et al., 2012). However, it is important to
note that OAS can be synthesized in multiple subcellular compart-
ments. So, it is highly unlikely to represent a retrograde signal since
such signals should confer organelle specific information. This is
a crucial aspect of retrograde signaling which due to the extensive
compartmentation (and three genomes) of the plant cell renders
the identification of non-redundant signals highly complex. How-
ever, it would appear likely that the spatial-temporal resolution of
metabolite levels and metabolite exchange between organelles will
greatly aid in the detection and ultimately the mechanistic under-
standing of retrograde and anterograde signaling orchestrating
plant organellar and nuclear gene expression.
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