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The production of reactive oxygen species (ROS) in different plant subcellular compart-
ments is the hallmark of the response to many stress stimuli and developmental cues.
The past two decades have seen a transition from regarding ROS as exclusively cytotoxic
agents to being considered as reactive compounds which participate in elaborate signaling
networks connecting various aspects of plant life. We have now arrived at a stage where it
has become increasingly difficult to disregard the communication between different types
and pools of ROS. Production of ROS in the extracellular space, the apoplast, can influ-
ence their generation in the chloroplast and both can regulate nuclear gene expression.
In spite of existing information on these signaling events, we can still barely grasp the
mechanisms of ROS signaling and communication between the organelles. In this review,
we summarize evidence that supports the mutual influence of extracellular and chloroplas-
tic ROS production on nuclear gene regulation and how this interaction might occur. We
also reflect on how, and via which routes signals might reach the nucleus where they are
ultimately integrated for transcriptional reprogramming. New ideas and approaches will be
needed in the future to address the pressing questions of how ROS as signaling molecules
can participate in the coordination of stress adaptation and development and how they are

involved in the chatter of the organelles.
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INTRODUCTION

During their life plants face a vast set of environmental chal-
lenges: extreme changes in ambient illumination, temperature,
and humidity, differences in soil salinity, attack by pathogens and
herbivores, mechanical wounding, etc. To withstand all these chal-
lenges, plants have developed a repertoire of signaling pathways
that is unparalleled in its complexity among living organisms. Sig-
naling through plant hormones (Vanstraelen and Benkovd, 2012),
cell surface receptors (Geldner and Robatzek, 2008), and light
perception by plastids and photoreceptors (Kami etal., 2010) are
integrated in the cell to eventually reprogram gene expression and
metabolism and shape strategic decisions on plant stress response
and development (Jaillais and Chory, 2010).

A critical role in this signal integration and decision-making
is played by a class of reactive forms of the molecular oxygen,
collectively referred to as reactive oxygen species (ROS; Murphy
etal., 2011; Kangasjirvi etal., 2012). ROS, including singlet oxy-
gen (10,), superoxide (037), hydrogen peroxide (H,0,), and
hydroxyl radical (*OH) are unavoidable by-products of aerobic
metabolism (Imlay, 2003, 2008; Ogilby, 2010) which have tradi-
tionally been regarded mainly as damaging cytotoxic agents. In
line with this view, life has developed a plethora of ROS scav-
enging systems including the low-molecular weight compounds
ascorbic acid and glutathione (Foyer and Noctor, 2011) as well
as different classes of antioxidant enzymes (Apel and Hirt, 2004).
During the recent years, however, a new concept has emerged
where ROS play important signaling roles during development
and stress responses, and controlled production of ROS acts as a

signal. ROS are generated in many compartments of plant cells.
Whereas the “ROS landscape” of the animal cell is dominated by
mitochondria as the main source of ROS (Marchi et al., 2012), the
role of these organelles in ROS production in plants is more sub-
tle (Dutilleul etal., 2003; Suzuki etal., 2012) and is not addressed
in this review. Apart from mitochondria, ROS are produced in
the chloroplasts, the peroxisomes, and the apoplast, as well as in
less commonly known locations, the nucleus and the endoplasmic
reticulum (Overmyer et al., 2003; Ashtamker et al., 2007; Foyer and
Noctor, 2009; Jaspers and Kangasjérvi, 2010; Mazars etal., 2010).
Yet uncharacterized signaling networks between the organelles that
employ ROS as second messengers have recently raised consider-
able interest (Figure 1). For example, ROS that are produced in
the chloroplast have been implicated as intermediates in retrograde
signaling from chloroplast to nucleus during acclimation of pho-
tosynthesis (Nott etal., 2006; Galvez-Valdivieso and Mullineaux,
2010). Intriguingly, however, it has recently been realized that the
role of this signaling goes beyond optimization of photosynthesis:
chloroplastic ROS production and photosynthetic functions are
also regulated by cues that are perceived in the cell wall, frequently
referred to as the extracellular space or the apoplast (Padmanab-
han and Dinesh-Kumar, 2010). Thus, the sensu stricto retrograde
signaling (from chloroplast to nucleus) can also be regarded as a
part of a larger network where apoplastic signals induce the gener-
ation of ROS in the chloroplast, which in turn leads to regulation
of nuclear gene expression by several still uncharacterized, but
at least partially chloroplast-derived, ROS-dependent retrograde
signals.
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FIGURE 1 | Reactive oxygen species (ROS)-talk in plant cells. Biotic and
abiotic stimuli lead to the generation of ROS in the apoplast which is
subsequently communicated to the inside of the cell where the signal leads
to an increase in chloroplastic ROS production. The chloroplast can further
amplify the signal and transmit it to the nucleus via various cytosolic signaling

networks. Apoplastic ROS signaling can also reach the nucleus through
cytosolic pathways directly. Yellow arrows demonstrate intracellular
transmission of apoplastic and chloroplastic ROS-induced signals where they
connect neighboring cells (local signaling) or participate in long-distance
("systemic") signaling throughout the plant (red arrows).

ROS IN THE APOPLAST
Likely candidates involved in the apoplast-to-chloroplast signal-
ing are ROS produced in the cell wall. Their accumulation in
response to different abiotic and biotic stimuli during the so-
called apoplastic “oxidative burst” depends on several classes of
enzymes, including cell wall peroxidases (Bindschedler et al., 2006)
and plasma membrane NADPH oxidases (Figure 2; Torres etal.,
2002; Suzuki etal.,, 2011). The latter enzymes, commonly known
as respiratory burst oxidase homologs (Rboh) are transmembrane
flavoproteins that oxidize cytoplasmic NADPH, translocate elec-
trons across plasma membrane and reduce extracellular ambient
(triplet) oxygen to yield O3~ in the cell wall. Due to its charge, this
short-lived ROS is unable to passively cross the lipid bilayer and
remains in the apoplast, where it is rapidly converted into another
species, H,O,, either spontaneously or in a reaction catalyzed by
the superoxide dismutase (SOD; Browning et al., 2012). The func-
tions of plant NADPH oxidases stretch beyond stress responses
and include roles in development (Sagi and Fluhr, 2006; Takeda
etal., 2008), in sodium transport in the xylem sap (Jiang etal,,
2012), and intriguingly also in long-distance (“systemic”) ROS sig-
naling (Miller etal., 2009). In Arabidopsis wounding, heat stress,
high light, and increased salinity result in RbohD-dependent sys-
temic spread of the oxidative burst along the rosette leaves. The
signal is triggered by intracellular Ca®>* spiking at the wounding
site. It is propelled by accumulation of ROS in the apoplast and
by — still unidentified — symplastic signals, one of which might
be ROS production in chloroplasts: results by Joo etal. (2005)
suggest that chloroplastic ROS is required for intercellular ROS
signaling. This ROS “wave” travels across an Arabidopsis rosette
at a rate of approximately 8 cm per minute (Miller etal., 2009).
Taken together, the currently available data suggests different roles
for ROS in strictly localized signaling events but also in systemic
signaling.

We have obtained a good understanding of the processes in
which apoplastic ROS are involved, but how they are perceived

by plant cells remains unclear. It is not known how the signal
is transmitted to the cytoplasm, the chloroplasts and eventually
the nucleus and what are the interactions between the differ-
ent subcellular compartments. The possibility of O3~ itself being
the mediator of downstream signaling would require superoxide-
specific extracellular receptors or anion channels in the direct
vicinity to the site of O3~ production (Browning etal., 2012).
Anion channels have been shown to mediate superoxide import
in mammalian cells (Hawkins etal., 2007) thereby linking extra-
cellular and intracellular ROS signaling. Analogous systems in
plants have so far not been identified. Unlike superoxide, the
H,0, molecule is relatively stable (with a half-life of ~1 ms)
under physiological conditions and in many respects resem-
bles a molecule of water. Its dipole moment, similar to that of
H,O, limits passive diffusion of H,O, through biological mem-
branes. Possible candidates for the import of apoplastic H,O,
are aquaporins (Figure 2), a ubiquitous family of channel pro-
teins that has undergone an extensive expansion in vascular plants
(Zardoya, 2005; Soto etal., 2012). Recent studies have identified
several aquaporins as specific HyO, transporters in Arabidopsis
(Bienert etal., 2007; Dynowski etal., 2008; Hooijmaijers etal.,
2012). However, further research is required to assess the role
of H,O; transport during the oxidative burst. In addition to
transport across membranes, O3~ and H,O, may be sensed by
a number of apoplastic compounds. Oxidation of extracellu-
lar pools of glutathione and ascorbic acid might play a role in
transmitting the redox signal to the cytosol (Destro etal., 2011;
Foyer and Noctor, 2011; Noctor etal., 2012). ROS can also be
perceived by the apoplastic proteins and/or plasma membrane-
localized receptors through redox modification of their cysteine
residues (Figure 2). Those putative receptors or other sensory sys-
tems for extracellular ROS in plants have so far remained elusive,
but for example, several classes of receptor-like protein kinases
(RLKs) with cysteine-rich extracellular domains (most notably
the CYSTEINE-RICH RLKs, CRKs) have been suggested to be

Frontiers in Plant Science | Plant Physiology

December 2012 | Volume 3 | Article 292 | 2


http://www.frontiersin.org/Plant_Physiology/
http://www.frontiersin.org/Plant_Physiology/archive

Shapiguzov etal.

ROS signals from apoplast to chloroplast to nucleus

Peroxidases

FIGURE 2 | Reactive oxygen species (ROS) signaling networks
connecting apoplast, chloroplast and nucleus. Apoplastic ROS are
produced by extracellular peroxidases (hydrogen peroxide; HoO5) and plasma
membrane-bound NADPH oxidases, Rboh. Superoxide (O{) is then
converted to HyO;. Hy O, (and possibly O57) might enter the cell through
plasma membrane channels (aquaporins, AQP) and/or react with extracellular
(apoplastic protein, AP) or transmembrane sensor proteins (e.g., receptorlike
kinases, RLKs) ultimately resulting in changes in gene expression through
intracellular signaling pathways, involving, for example, MAPKs
(mitogen-activated protein kinases). Extracellular ROS production is sensed
via yet unknown mechanisms in the chloroplast where ROS generation by the

electron transfer chain (ETC) subsequently increases. Singlet oxygen (105)
and 03~ /H, 0, are produced in different domains of ETC. Elevated ROS
inside the chloroplast results in transcriptional reprogramming through
identified (e.g., EXECUTER1/2, EX1/EX2, rupture of chloroplast envelope) and
unknown components of the retrograde signaling but also through hormone
signaling, e.g., increased production of the stress hormone salicylic acid (SA).
Channel proteins (AQP) might also allow ROS leak from the chloroplast to the
cytoplasm. Calcium (CaZ™) is involved in the regulation of ROS production in
the apoplast and the chloroplast. In the latter case it acts through the sensory
protein CALCIUM-SENSING RECEPTOR (CAS) but the mechanisms are still
unclear.

involved in ROS perception (Shiu and Bleecker, 2003; Wrzaczek
etal., 2010).

FROM BEYOND TO HERE, SIGNALS FROM THE
EXTRACELLULAR SPACE

What happens in the plant cell after an extracellular oxidative burst
has been triggered? A connection of apoplastic and chloroplas-
tic ROS into common signaling networks during the plant stress

response is evident in various model systems and processes (Joo
etal., 2005; Vahisalu etal., 2010), although it is mechanistically
still largely unexplained. The results suggest that the apoplastic
ROS signal is transduced to the chloroplasts, where a secondary
ROS production is initiated. This signal transmission might use
cytosolic signaling components. Also, the location of chloroplasts
close to the plasma membrane might facilitate direct communica-
tion between the two organelles. Thus, the chloroplast can act as
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an “amplifier,” or “execute” the signal received from the apoplast
(Figure 1).

One of the examples of such a role of chloroplasts is the plant
immune response to pathogens that is accompanied by a bi-phasic
accumulation of ROS. The first phase occurs within tens of min-
utes from the onset of infection. It is mostly apoplastic and is
tightly linked to NADPH oxidase activity (Figure 2). The sec-
ond increase in ROS production happens several hours after the
pathogen attack (Lamb and Dixon, 1997; Jones and Dangl, 2006).
During this stage of response the infected cells might undergo pro-
grammed cell death (PCD) leading to the collapse of the infected
tissue and, in the case of biotrophic pathogens, to suppression
of pathogen growth. This specialized form of pathogen-triggered
PCD is a part of the hypersensitive response (HR). Different
subcellular compartments including apoplast, chloroplasts, mito-
chondria, and peroxisomes contribute to ROS production during
HR, but a growing amount of evidence suggests a crucial role
for the chloroplast in this process (Yao and Greenberg, 2006;
Liu etal., 2007; Zurbriggen etal., 2009, 2010). Silencing of the
chloroplast redox proteins peroxiredoxin and NADPH-dependent
thioredoxin reductase C that scavenge chloroplastic H,O, led to
spreading PCD in response to application of coronatine, a phy-
totoxin with structural similarity to jasmonic acid produced by
several pathogenic strains of Pseudomonas (Ishiga etal., 2012).
The involvement of chloroplasts in plant immunity is further sup-
ported by the observation that the pathogen resistance of plants
differs between light and dark (Roden and Ingle, 2009) and by
the fact that several bacterial and viral elicitors interact with
chloroplast-targeted proteins or are imported into chloroplasts
(Padmanabhan and Dinesh-Kumar, 2010). Thus, not only the
apoplast and the cytosol, but also the chloroplasts are strategic
battlefields during the defense against pathogens (Padmanabhan
and Dinesh-Kumar, 2010).

Chloroplast-generated ROS are not only involved in initiat-
ing and promoting cell death during the HR, but also in the
up-regulation of defense-related genes, down-regulation of pho-
tosynthesis genes and even in limiting the spread of the cell death
(Straus etal., 2010). For example, a significant portion of the
genes induced by artificial metabolic overproduction of H,O, via
expression of glyoxylate oxidase in the chloroplasts (Balazadeh
etal., 2012), are also induced by chitin, a well-known elicitor of
the apoplastic oxidative burst and downstream pathogen defense
responses. Similarly, silencing of thylakoid ascorbate peroxidase
(tAPX) led to an increase in H,O; production and to activation
of defense responses (Maruta etal., 2012), including the accumu-
lation of the stress hormone salicylic acid (SA), a central mediator
of plant pathogen defense. These examples underline that H,O,
accumulation in the chloroplast and the related retrograde signal-
ing are involved in the activation of defense genes during responses
to pathogens.

CHLOROPLASTS AS THE PET PEEVE OF THE PLANT CELL

Why does the plant cell involve the chloroplast, the major site
of energy production and biosynthesis in stress responses? One
explanation is that photosynthesizing chloroplasts continuously
produce ROS due to numerous electron transfer reactions in the
presence of oxygen (Foyer and Noctor, 2003; Asada, 2006). Hence,

in the photosynthesizing plant tissues chloroplasts are able to pro-
duce the most massive pools of ROS among different subcellular
compartments.

Generation of ROS in the chloroplasts depends on multiple
aspects of chloroplast physiology including photosynthesis, gene
expression, chlorophyll (tetrapyrrole) biosynthesis, and hormonal
control (Asada, 2006; Sierla etal., 2012). For example, the pro-
duction of OS5 /H,0; by photosystem I (PS I) varies according
to changing photosynthetic electron transfer and CO, fixation
rate. Extracellular stimuli, such as recognition of bacterial com-
ponents by the plasma membrane receptors, can rapidly regulate
chloroplastic functions. During plant—pathogen interactions the
cues perceived in the apoplast trigger MAPK cascades (Figure 2)
and result in fast down-regulation of photosynthetic genes and
accumulation of H,O, in chloroplasts that is necessary for initia-
tion of HR-mediated cell death (Liu et al., 2007). Another example
is the transient decrease in the ability of PS II to dissipate exces-
sive light energy as heat via non-photochemical quenching (NPQ)
at an early stage of pathogen recognition. This decrease in NPQ
makes chloroplasts more predisposed to the production of ROS,
which might be a priming mechanism for chloroplast ROS sig-
naling at later stages of immune response (Gohre etal., 2012).
Several chloroplastic redox hubs, including the plastoquinone as
well as the glutathione pools and the thioredoxin system, pro-
vide not only dynamic local regulation of photosynthesis, but also
might communicate the chloroplast redox status to the cytosol
(Marty et al., 2009; Bashandy et al., 2010; Foyer and Noctor, 2011;
Noctor etal., 2012; Rochaix, 2012). For example, the redox state
of plastoquinone, a component of photosynthetic electron trans-
fer chain, is monitored through the thylakoid-associated protein
kinase STATE TRANSITION 7 (STN7). STN7-dependent phos-
phorylation of chloroplast proteins leads on the one hand to
optimization of photosynthesis in response to changing light con-
ditions (via the reversible reallocation of light-harvesting antennae
called state transitions) and on the other hand to a retrograde
signal (Bonardi etal., 2005; Rochaix, 2012). Another chloroplast
protein kinase, CHLOROPLAST SENSOR KINASE (CSK), cou-
ples plastoquinone redox state to the regulation of chloroplast gene
expression (Puthiyaveetil etal., 2012). The soldat8 mutation in the
chloroplastic RNA polymerase SIGMA SUBUNIT 6 (SIG6) gene
increases the tolerance of seedlings to 'O, (Coll et al., 2009), which
links chloroplast transcriptional control to the ROS signaling. The
RNA-binding chloroplast protein GENOMES UNCOUPLED 1
(GUN1) is implicated both in chloroplast translation and tetrapyr-
role biosynthesis and is somehow involved in retrograde signaling
(Czarnecki etal., 2011; Woodson etal., 2012). GUNI1, and one of
the key components of tetrapyrrole biosynthesis, the ChlH sub-
unit of magnesium chelatase, are also involved in abscisic acid
signaling (Shen et al., 2006; Koussevitzky etal., 2007; Cutler etal.,
2010; Shang etal., 2010). The heme, the product of a side branch
of tetrapyrrole biosynthesis, exits chloroplasts to be used as a
cofactor by numerous hemoproteins in the cell and to provide
positive feedback on transcription of nuclear genes that encode
chlorophyll-binding proteins of chloroplasts (Nott etal., 2006;
Woodson etal., 2011, 2012; Czarnecki and Grimm, 2012). The dis-
turbance of the cell affects the delicate physiological equilibrium
of the chloroplasts resulting in elevated ROS production.
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CHLOROPLASTIC ROS AS SIGNALS

Plant cells have over the course of evolution learned to use
chloroplastic ROS for signaling purposes. Several studies have
demonstrated a central role for the highly reactive singlet oxy-
gen (10,) as a chloroplastic signal involved in the regulation of
plant cell death. PS II and its light-harvesting antennae produce
10, when light-excited chlorophylls adopt the rare triplet state and
then reduce triplet oxygen (Krieger-Liszkay etal., 2008). Produc-
tion of 'O, is enhanced when the light-excited electrons cannot
escape PS II chlorophylls because the downstream components
of electron transfer chain (mainly the plastoquinone pool) are
already over-reduced, a situation typical of excessive illumination.
10, readily reacts with lipids, proteins, and pigments and is rapidly
quenched by water, which makes its diffusion distance from the
site of production shortest among all ROS (Asada, 2006). For that
reason 'O, is unlikely to leave the chloroplasts, but several prod-
ucts of '0,-dependent lipid or carotenoid oxidation, including
oxylipins (op den Camp etal., 2003; Przybyla etal., 2008) and
volatile B-cyclocitral (Ramel etal., 2012), are suspected to act as
the '0,-dependent retrograde signal.

The Arabidopsis flu mutant (Meskauskiene etal., 2001) has
been used as a genetic tool to identify ' O,-responsive genes and to
dissect signaling pathways triggered by ' O, production in chloro-
plasts. The chloroplast-localized FLU protein inhibits one of the
early enzymes of tetrapyrrole biosynthesis. Fluseedlings are unable
to control the biosynthetic pathway through negative feedback and
accumulate the chlorophyll precursor protochlorophyllide in the
dark. Being transferred to light, the seedlings bleach and die due to
the massive generation of !0, in their chloroplasts. This death is
primarily caused by a profound reprogramming of nuclear tran-
scription rather than by mere chemical toxicity of 'O, (op den
Camp etal., 2003). In addition, shortly after the exposure of flu
seedlings to light, their chloroplasts rupture releasing the soluble
stroma into the cytosol — this resembles the leakage of mitochon-
drial proteins to the cytosol during the mitochondria-triggered
PCD. Two homologous chloroplast proteins EXECUTERI and
EXECUTER2 (Figure 2) conserved in higher plants are involved in
this process, although their exact role is unknown (Wagner etal.,
2004; Lee etal., 2007; Kim etal., 2012). It should be noted that
although ' O,-dependent PCD is significantly exacerbated in flu, it
is not confined to the mutant but is also observed in wild-type Ara-
bidopsis under severe light stress (Kim etal., 2012). The sensory
and signaling systems involved in the transmission of the chloro-
plastic ' O,-dependent signal to nucleus have not been identified,
but it has been suggested that nuclear topoisomerase VI could
act as an integrator of ' O,-dependent signal in regulating nuclear
gene expression (Simkova etal., 2012).

Apart from triggering PCD, the transcriptional reprogramming
of flu induces many genes of stress response and leads to rapid
accumulation of SA, inducing a defense pathway characteristic of
plant reaction to pathogens or wounding (Ochsenbein et al., 2006;
Lee etal., 2007). One of the mechanisms triggering this pathway
exploits the calcium-sensing protein CAS localized to chloroplast
thylakoids (Figure 2). Regulation of CAS activity is linked to the
state of photosynthetic electron transfer chain. CAS has earlier
been shown to be involved in high light acclimation of the green
alga Chlamydomonas reinhardtii (Petroutsos etal., 2011) and it is

phosphorylated by the thylakoid protein kinase STN8 (Vainonen
etal,, 2008), a paralog of STN7, which suggests a link between
the CAS activity and the redox state of the plastoquinone pool.
However, CAS is not only involved in light-dependent retrograde
signaling: also various abiotic or biotic stress stimuli activate CAS
through a yet unknown mechanism. This activation leads to real-
location of Ca?* ions within the chloroplast and to accumulation
of '0,, which, in turn, initiates defense responses through an
unidentified retrograde signal (Nomura etal., 2012). Thus, CAS
appears to act in the !O,-dependent retrograde signaling pathway
discussed above.

Another source of ROS in chloroplasts is PS L. Its electron-
donor side generates O3~ that is scavenged by chloroplast SOD
to form H,O, (Asada, 2006). H,O,, in turn, is reduced to water
by a number of enzymes including ascorbate peroxidase (APX),
peroxiredoxin, and glutathione peroxidase. H,O, produced in
chloroplasts gives rise to retrograde signals. The signaling is not
well understood and might be a combination of passive diffusion
of H,O,with indirect pathways including hormonal (abscisic acid)
signaling (Mullineaux and Karpinski, 2002; Galvez-Valdivieso and
Mullineaux, 2010). The possibility of H,O; leakage from chloro-
plasts is supported by the fact that a knockout of cytosolic APX1
leads to hypersensitivity of the photosynthetic apparatus to light
stress (Davletova etal., 2005). Diffusion of H,O, from chloro-
plasts has also been demonstrated in vitro (Mubarakshina etal.,
2010). Aquaporins in the chloroplast envelope (Figure 2) seem to
be involved in this H,O; leakage (Borisova etal., 2012), but how
the aquaporins are regulated is unknown. In any case, H,O; itself
is not likely to be the retrograde signaling substance that directly
affects nuclear gene expression. More probably, it is sensed by
compartment-specific redox-sensitive components, which medi-
ate the signal to the nucleus (Sierla et al., 2012). Oxidized proteins
or peptides have been suggested as one of the possible downstream
mediators of such H,O, signaling (Wrzaczek etal., 2009; Moller
and Sweetlove, 2010).

THE FRUSTRATING COMPLEXITY OF ROS RESPONSES
One of the most frequently employed tools to investigate the role
of O™ in the chloroplast is the herbicide methyl viologen (MV;
also known as paraquat). MV accelerates the production of O3~
by PS I and inhibits APX, leading to the accumulation of H, O, in
MV-treated plants (Mano etal., 2001). Comparison of the tran-
scriptional responses to 'O, and H,O, using the flu mutant and
the plants treated with MV demonstrated the specific and to a large
extent antagonistic effect of these two chloroplastic ROS on gene
expression (op den Camp etal., 2003; Gadjev etal., 2006; Laloi
etal., 2007). Interestingly, the transcriptional response to apoplas-
tic H,O, produced during oxidative burst has little similarity to
the effect of either chloroplastic O3~ /H,O, or chloroplastic 10,
(Gadjev etal., 2006; Miller etal., 2009; Petrov etal., 2012; Sierla
etal., 2012). This illustrates a remarkable specificity of cellular
responses to different types and subcellular sources of ROS pro-
duction. This also demonstrates the complexity of ROS signaling
and raises the question of the mechanisms responsible for such
specificity.

Clustering results of microarray experiments involving ROS
production in different subcellular compartments reveals distinct
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temporal signatures. For example, the gene expression profiles
4 h after elicitation with flg22 (a 22-amino acid fragment of the
bacterial flagellar protein flagellin, which induces an apoplastic
oxidative burst via the activation of NADPH oxidase) have sim-
ilarities to the profiles induced by ozone, while 12 h after flg22
treatment the expression profile resembled that of chloroplastic
ROS production induced by MV (Sierla etal., 2012). Ozone trig-
gers generation of ROS in the apoplast, which leads to subsequent
chloroplastic ROS production and transcriptional up-regulation
of 25 (out of 44) Arabidopsis CRK genes, but the activation profile
of these genes differs from that induced by high light (Wrzaczek
etal., 2010). Thus, both temporal and spatial aspects appear to
be involved in determining the specificity of ROS. In addition,
the outcome is most likely dictated by the specific combinations
of ROS (O5™, H,0,, or 10,). It is unlikely that, for example,
merely a change in the cytoplasmic redox state could carry the
information about the subcellular source of H,O,. Therefore, as
proposed (Moller and Sweetlove, 2010), the signal transduction
would require specific and distinct sensory systems for the different
ROS in diverse subcellular compartments.

The involvement of chloroplasts in plant systemic signaling has
also started to emerge recently (Joo etal., 2005; Szechyfiska-Hebda
etal.,2010). Excessive illumination of Arabidopsis rosettes resulted
in the propagation of an electric signal as measured by changes in
plasma membrane potential of bundle sheath cells of leaf central
veins. The signal was systemic, i.e., it also spread over the shaded
leaves of the entire rosette. It correlated with transients of H,O,
concentration and was altered in the mutant deficient in cytoso-
lic APX2. Besides, the signal was deregulated by the inhibitors of
photosynthetic electron transfer and blocked by a Ca>* channel
inhibitor. These observations suggest that information on light
conditions perceived by the chloroplast photosynthetic apparatus
is communicated to the cell, most likely through ROS production,
and then propagated along the plant in a Ca?* -channel dependent
way (Szechynska-Hebda etal., 2010). The possible integration of
this pathway with a systemic NADPH oxidase-dependent signal
(Miller etal., 2009) is the subject of further research.

The high focused localization of ROS signaling events raises the
issue of organelle spatial organization inside the cell. Stromules,

the transient protrusions of organellar surfaces that are known
to be induced by stress, could be one of the mediators of this
focused organellar cross-talk (Leister, 2012). Besides, all organelles
move and dynamically associate with each other, and the role of
this movement in stress response starts to be recognized (Suzuki
etal., 2012). For example, the bacterial elicitor harpin leads to HR
accompanied by redistribution of mesophyll cell chloroplasts in
tobacco (Boccara etal., 2007). During the last 15 years the laws of
organellar movement have started to be revealed, but the conse-
quences of dynamic physical proximity and contact between the
organelles are unknown (Suetsugu etal., 2010; Sakai and Haga,
2012). Recent studies demonstrate impairment of stress reactions
in the Arabidopsis mutants which are unable to move chloroplasts
in response to light stimuli or to dock them to the plasma mem-
brane (Schmidt von Braun and Schleiff, 2008; Goh etal., 2009;
Oliver et al., 2009; Lehmann et al., 2011).

CONCLUDING REMARKS

Research performed over the last two decades has made it clear
that ROS signaling connects events that take place in very dif-
ferent subcellular locations, most importantly (but not limited
to) the apoplast, the chloroplast, and the nucleus. To achieve the
elaborate and fine-tuned responses to biotic and abiotic stimuli
that we observe on transcriptional, biochemical, and physiologi-
cal level, intense and strictly controlled communication between
the subcellular “crime scenes” must take place. While some com-
ponents of this information exchange have been proposed, we still
lack a thorough understanding on how the apoplast, the chloro-
plast, and the nucleus keep in touch. It will be perhaps one of the
major challenges of ROS research in plants to understand ROS-
induced signaling pathways between different organelles. Once we
find out which components transmit information under specific
conditions, we will be able to generate an integrated view of ROS
signaling and its role in environmental adaptation.
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