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Understanding the global abiotic stress response is an important stepping stone for the
development of universal stress tolerance in plants in the era of climate change. Although
co-occurrence of several stress factors (abiotic and biotic) in nature is found to be frequent,
current attempts are poor to understand the complex physiological processes impact-
ing plant growth under combinatory factors. In this review article, we discuss the recent
advances of reverse engineering approaches that led to seminal discoveries of key candi-
date regulatory genes involved in cross-talk of abiotic stress responses and summarized
the available tools of reverse engineering and its relevant application. Among the universally
induced regulators involved in various abiotic stress responses, we highlight the importance
of (i) abscisic acid (ABA) and jasmonic acid (JA) hormonal cross-talks and (ii) the central
role of WRKY transcription factors (TF), potentially mediating both abiotic and biotic stress
responses. Such interactome networks help not only to derive hypotheses but also play a
vital role in identifying key regulatory targets and interconnected hormonal responses. To
explore the full potential of gene network inference in the area of abiotic stress tolerance,
we need to validate hypotheses by implementing time-dependent gene expression data
from genetically engineered plants with modulated expression of target genes. We fur-
ther propose to combine information on gene-by-gene interactions with data from physical
interaction platforms such as protein–protein or TF-gene networks.
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INTRODUCTION
During their growth and development plants are constantly
exposed to various kinds of environmental stimuli and stresses
due to their sessile lifestyle. Prominent abiotic stress factors affect-
ing plant growth and yield relate to the shortage of water, the
exposure to low or high temperatures, high salinity or nutri-
ent deficiencies (Sreenivasulu et al., 2007; Lobell et al., 2011;
Mir et al., 2012). Combinations of stresses such as drought and
heat, as well as compounding effects of several abiotic and biotic
stresses impact plant development more severely than single stress
effects leading to severe yield losses (Atkinson and Urwin, 2012).
Among the most prominent physiological alterations in response
to abiotic stress is a substantial induction of the universal stress
hormone abscisic acid (ABA; Sreenivasulu et al., 2012), which is
also involved in the cross-talk between abiotic and biotic stresses
(Chan, 2012). Most importantly, ABA leads to stomata closure to
prevent water loss and thereby to a lower photosynthesis rate. To
allow plants acclimating to stress, ABA further induces desicca-
tion tolerance mechanisms, e.g., by inducing intrinsic proteins
such as late embryogenesis abundant and heat shock proteins
with chaperone activity, RNA chaperones, and the redox machin-
ery or by reprograming metabolism for an enhanced synthesis of
compatible solutes (Ma and Bohnert, 2008). Plants that success-
fully withstand stresses as part of a tolerance mechanism need
to constantly monitor the external milieu through appropriate

sensing mechanisms and need to redefine the appropriate cellular
response for readjusting the metabolism to fine tune growth and
development. Genotypes that fail to respond to stress with accli-
mation processes will not only suffer from impaired growth but
undergo proteolysis, lipid peroxidation, and cellular disintegra-
tion due to the release of reactive oxygen species, finally leading to
senescence and cell death (Chinnusamy et al., 2004; Sreenivasulu
et al., 2007; Moreno-Risueno et al., 2010; Ma et al., 2012). Unravel-
ing the mechanistic processes of coordinated whole-plant growth
requires interlinking genotype× environment interactions with
the dynamics of plant responses in systems biology approaches. To
get comprehensive overview of gradual and complex changes in
plant responses to altering environmental stimuli, stress responses
need to be investigated not only from a temporal and spatial
perspective but also at a cellular, organ, and whole-plant level.

Systems biology is an upcoming field in the area of plant
biology aiming at integrating data from different high through-
put omics platforms such as transcriptome, metabolome, pro-
teome, and phenomics to understand the regulatory structure
and organization of plant responses and their inherent compo-
nents (Moreno-Risueno et al., 2010; Cramer et al., 2011). In this
review, we briefly summarize the existing resources and advance-
ment that has been made in the development of suitable software
required to analyze gene regulatory networks and we exemplify
this by a case study of plant responses to abiotic stress. Further, we

www.frontiersin.org December 2012 | Volume 3 | Article 294 | 1

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/about
http://www.frontiersin.org/Plant_Systems_Biology/10.3389/fpls.2012.00294/abstract
http://www.frontiersin.org/Plant_Systems_Biology/10.3389/fpls.2012.00294/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=SwetlanaFriedel&UID=69817
http://www.frontiersin.org/people/BjoernUsadel/33032
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=NicolausVon_Wir�n&UID=10818
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=NeseSreenivasulu&UID=65916
mailto:srinivas@ipk-gatersleben.de
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Systems_Biology/archive


Friedel et al. Systems component of abiotic stress response

focus on the strengths of reverse engineering strategies (Emmert-
Streib et al., 2012), required as an essential part of systems biology
to gain a more complete picture on regulatory and metabolic
processes under multiple environmental perturbations. Based on
transcriptional responses of different types of plant tissue to chal-
lenging conditions, the complex interplay and cross talk between
different tissues is investigated to understand the dynamics of a
tissue/organ/organism under different environmental challenges.
The implementation of “reverse engineering strategies” not only
deepens the holistic view of abiotic stress responses but eventually
will make the way forward to identify key targets for developing
stress-tolerant crops by new genetic engineering strategies.

CONVENTIONAL TRANSCRIPTOMICS RESOURCES TO STUDY
ABIOTIC STRESS RESPONSES
On the basis of publicly available expression data (Cooper et al.,
2003; Gomez-Porras et al., 2007; Ma et al., 2007,2012; Mentzen and
Wurtele, 2008; Weston et al., 2008; Zeller et al., 2009; Narsai et al.,
2010; Worch et al., 2011), systematic studies have been undertaken
to identify stress-specific and tissue/cell-specific stress responses.
Despite this large amount of data, we still lack the understanding
of common overlapping responses among various abiotic stress
stimuli “as universally induced” factors and how these commonly
induced regulators within the defined stress regulons influence
plant growth and adaptation. Systems biology approaches may fill
this gap and further define the role of “stress regulons” that act
across different abiotic stress factors.

In the era of post-genomics we are continuously challenged
with a massive flood of gene expression data generated by whole-
genome transcriptome platforms. These platforms allow stud-
ies on profiling quantitative RNA abundance at the genome-
wide gene content level for various stress responses. The avail-
able expression data are mostly deposited in online repositories
such as GEO (Barrett et al., 2007), NASCArrays (Craigon et al.,
2004), PLEXdb (Dash et al., 2012), and ArrayExpress (Parkin-
son et al., 2007; Kapushesky et al., 2012). In parallel, various
online query-oriented tools have been developed such as Gen-
evestigator (Zimmermann et al., 2004), Arabidopsis eFP browser
(Winter et al., 2007), RiceArrayNet (Lee et al., 2009), or Arabidop-
sis and rice coexpression data mining tools (Manfield et al., 2006;
Horan et al., 2008; Ficklin et al., 2010; Movahedi et al., 2011) to
extract development- and stress-specific regulons by implement-
ing global normalization and clustering algorithms (Sreenivasulu
et al., 2010). Correlation networks derived from plant ontogeny
have been extended for cross-species comparison (Mutwil et al.,
2011). Recently, gene homologs exhibiting highest sequence iden-
tity and most reminiscent expression patterns under stress have
been identified across several species (Patel et al., 2012). A com-
prehensive overview of coexpression tools and their relevance has
been provided (Usadel et al., 2009). When handling large tran-
scriptome data sets, the following challenges may arise: (i) if we
select candidate genes based on log-fold changes and significance
levels and then cluster these, we may overlook genes with func-
tional relevance for the metabolic and regulatory pathways of
interest. (ii) On the other hand, if we keep threshold levels low, it
becomes a hard task to cluster relevant genes, to find representative
patterns and to define stress regulons. In this case, a compromise

may be achieved applying a “Between Group Analysis” (BGA; Cul-
hane et al., 2002). This type of multivariate analysis can be used, if
the effect of different treatments, for instance stress conditions on
plant growth traits of wild type, mutant, and/or transgenic plants
shall be compared simultaneously across different developmental-
stages. The absence of constraints with regard to the number of
samples compared to the number of genes makes it the method of
choice for several kinds of analysis. BGA is based on a reduction of
dimensions by identifying the factors contributing most to a large
variance in principle component analysis (PCA). Thereby clas-
sifying the sample groups of tissue/developmental-stages/stress
treatments, followed by a projection of the corresponding genes
contributing most to the variance in individual sample groups
as additional elements in the PCA, help to identify highly regu-
lated genes. In the subsequent step, BGA provides scores allowing
a graphical representation of results and defining a list of those
genes which contribute most to each sample group mapped on
the individual (first, second etc.) principal components. In case
of noisy expression data or data coming from different experi-
mental platforms where sophisticated statistical methods cannot
be applied, an alternative method, called rank product analysis,
promises to generate biological meaningful interpretations (Hong
et al., 2006).

REVERSE ENGINEERING STRATEGIES TO DEDUCE GENE
REGULATORY NETWORKS
The rapid progress in sequence technologies and the generation
of in-depth transcriptome data from different stress-treated plant
genotypes, tissues,or cell types provide an ideal resource for reverse
engineering approaches. Inferring gene regulatory networks aims
at identifying possibly all molecular interactions among genes,
which would be the primary goal of the reverse engineering con-
cept. Gene regulatory networks are employed to elucidate the
biological process underlying a certain stress response and the
topology of interactions among the regulators being involved.
Reverse engineering is still at its infancy but has greater poten-
tial to vastly expand in the field of plant abiotic stress tolerance.
The statistical principles for different modeling approaches have
recently been reviewed in great detail (Emmert-Streib et al., 2012).
The most straight-forward approach is the implementation of cor-
relation analysis based on Spearman or Pearson coefficients with
appropriate thresholds. By coexpression analysis a lot of significant
interactions can be obtained with high correlation coefficients,
where a part of them share common genes: for instance, if there
are strong correlations between gene 1 and gene 2 and between
gene 1 and gene 3, then the correlation between gene 2 and gene 3
will be high by default (even if gene 2 and 3 are not correlated in
nature). Thus the number of false positive interactions is high due
to inferred edges, which depends on the previously set threshold
for correlation coefficients. Such an indirect correlation result can
be verified by calculating a partial correlation which answers the
question whether gene 2 and gene 3 are still correlated, if gene 1 was
constant (or completely removed from the picture). Nevertheless,
suitable thresholds need to be selected, which may be difficult in
the case of partial correlations as one needs to find a (high) thresh-
old for validation of a correlation and another (low) threshold
for disappearance of correlations after using partial correlations.
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However, physiology is usually more complex and instead of one
gene mediating the correlation between two target genes, it may
be a multi-layered, complex matrix of interactions, which requires
higher-order partial correlation or estimation approaches (Opgen-
Rhein and Strimmer, 2007). Another recent development has been
the application of regression techniques such as LASSO modeling,
which has allowed to uncover complementary candidate genes
involved in potato responses to hypoxia (Licausi et al., 2011), or in
the case of Arabidopsis seed development to identify genes involved
in mucilage and pectin formation (Vasilevski et al., 2012). Further-
more, algorithms based on Bayesian Network, linear regression or
multivariate auto-regressive models, or Hidden Markov Models
have been implemented to decipher gene networks from dif-
ferences in gene expression levels (Dojer et al., 2006). Bayesian
network is a probabilistic graphical model, which can deal with
noisy expression data, but its accuracy depends on the number
of genes and samples. Because of its high computational com-
plexity this methodology can be used only for a small number
of genes. However, within the past few years the consideration
of heuristics, such as clustering (Dimitrakopoulou et al., 2011)
or the use of prior knowledge (Ong et al., 2002), has enabled
constructing larger Bayesian networks. Particularly promising are
approaches build on correlation, partial correlation, or similar
approaches to efficiently reduce the search space (Lebre, 2009).
Therefore, Dynamic Bayesian Network (DBN) is able to infer inter-
actions from time-dependent gene expression data and consider
regulatory feedback-loops to identify causal relationships from
different stress scenarios. However, DBN still requires improve-
ment with respect to handling computational complexity in larger
gene sets (Faith et al., 2007; Cantone et al., 2009). Ordinary differ-
ential equations (ODEs) relate changes in transcript abundances to
external stress stimuli or to the genetic constitution of a plant and
directly yield a directed graph with a few nodes indicating inter-
actions among genes. However, ODEs do not allow assigning any
meaning to the estimated parameters (Huang et al., 2010). Due
to their high computational complexity ODE-based approaches
are time consuming. A very promising approach, which can deal
with large-scale networks and allows reducing the number of
false positives, is mutual information. Mutual information can
be considered as a generalization of correlation analysis by deal-
ing with non-linear, non-monotonic dependencies among genes.
Therefore, mutual information in theory has a higher sensitivity
when interactions within a huge number of genes are investi-
gated (Steuer et al., 2002). To infer gene regulatory networks,
the information flow between pairs of genes is mathematically
transformed into a mutual information matrix. However, the
problem of indirect influence between genes remains the same
as detailed for correlation networks. It is therefore advisable to
reduce the number of false positive interactions in a second step,
using modern theoretical information methods, such as Maximum
Relevance Minimum Redundancy, MRNET (Meyer et al., 2008),
Algorithm for the Reconstruction of Accurate Cellular Networks,
ARACNE (Zoppoli et al., 2010), Context Likelihood of Related-
ness, CLR (Faith et al., 2007), C3NET (Altay and Emmert-Streib,
2010) and Directed Information, DTI (Kaleta et al., 2010). The
implementation of most of those algorithms can be found in the
minet -package of BioConductor/R Software (Meyer et al., 2008).

According to Emmert-Streib et al. (2012), MRNET and C3NET
outperform CLR, ARACNE, and relevance networks (RELNET),
but definitely require more computational effort. Table 1 lists use-
ful bioinformatics tools that are related to the analysis of gene
regulatory networks. In Table 2, advantages and disadvantages for
reverse engineering methods are discussed. The networks derived
from reverse engineering algorithms can be well visualized using
BioLayout Express 3D, Cytoscape, Osprey, Ondex, ProViz, Pajek,
or Medusa (Pavlopoulos et al., 2008).

Depending on the chosen experimental conditions (tissue-,
condition-, treatment-, development-dependent studies) and data
sets (Chip-Seq, RNA-Seq, microarrays) different biological inter-
pretations can be made based on gene-by-gene networks, for the
interpretation of which a profound biological knowledge plays the
most important role. Before interpreting gene-by-gene networks,
it is important to refer a gene regulatory network to other available
data, e.g., on physical TF-to-gene or protein–protein interactions.
Reconstructed relationships between genes can be caused by tran-
scriptional and posttranscriptional modifications (TF-to-gene) or
can be explained by the participation of one gene product in
different protein complexes (because of protein–protein interac-
tions) or in several metabolic pathways (Metabolic Networks),
refer Figure 1.

As a part of systems biology approaches, several methods have
been developed to construct genome-wide gene networks using
heuristic cluster chiseling algorithms and correlation coefficients.
These networks have been derived from whole-genome coexpres-
sion networks in Arabidopsis and six other important crop plants
(Lee et al., 2009; Mutwil et al., 2011), which allows cross-species
comparisons based on time series networks. Gene networks in
Arabidopsis (curated at AtGenExpress) derived from genome-wide
gene expression data using the Affymetrix platform as well tiling
arrays designed for the assessment of plant responses to envi-
ronmental perturbations, help to understand the fundamental
stochastic processes underlying individual cell and tissue type-
specific responses to various abiotic stress factors (Kilian et al.,
2007; Zeller et al., 2009). Since transcriptional networks already
vary during plant development, stress-induced transcriptional
networks must be supposed to vary dynamically depending on
the plant developmental stage at which the stress is experienced.
Hence, transcriptional networks can not only explain the phe-
notypic plasticity of plant adaptation to different abiotic stresses
but also indicate core regulatory mechanisms of TF networks
which are either shared across species or unique to species or even
genotypes.

MULTI-LAYERED REGULATION IN REVERSE ENGINEERING
Gene-by-gene networks can be modeled and simulated at qualita-
tive and quantitative levels to unravel abiotic stress responses. The
data may come from any type of genome-wide expression analysis,
such as DNA microarrays, protein expression, miRNAs expression,
ChIP-chip, ChIP-Seq data, or RNA-Seq data. As outlined above, the
systematic analysis of large-scale gene expression data from the
model plant Arabidopsis provides a rational way to increase the
knowledge of stress perception and stress tolerance by identifying
the key target genes. At first, the gene regulation at transcriptional
level could be associated with transcription factor (TF)-target
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Table 1 | Bioinformatic tools that are related to the analysis of gene regulatory networks.

Name Mathematical model Description Reference

(A) REVERSE ENGINEERINGTOOLS

WGCNA Weighted correlation The R software package WGCNA is a comprehensive collection of

R functions for performing various aspects of weighted correlation

network analysis.

Langfelder and

Horvath (2008)

qp-Graph Partial correlations q-Order partial correlation graphs, or qp-graphs is useful for

learning undirected graphical Gaussian Markov models from data

sets in which the number of random variables p exceeds the

available sample size n. In the case of microarray data it can be

employed to reverse engineer a molecular regulatory network

GeneReg Linear model fitting GeneReg is used to reconstruct time-course gene regulatory

network. R package GeneReg reconstructs a gene regulatory

network from short time-course gene expression data. A suitable

application is the study of time-dependent biological processes

such as cell cycle, cell differentiation, or causal inference

Huang et al. (2010)

BoolNet Boolean Networks BoolNet or Boolean networks inference R package developed

methods for synchronous, asynchronous, and probabilistic

Boolean Network. It can be applied for reconstructing networks

from time series and can be used for robustness analysis via

perturbation (environmental or genetic) and identification and

visualization of attractors in networks

Mussel et al. (2010)

BNArray Bayesian Network BNArray: An R package for constructing gene regulatory networks

from microarray data by using Bayesian network modeling.

Chen et al. (2006)

GRENITS Dynamic Bayesian

network

The package GRENITS (Gene Regulatory Network Inference Using

Time Series) offers four network inference statistical models using

Dynamic Bayesian Networks and Gibbs Variable Selection: a linear

interaction model, two linear interaction models with added

experimental noise for the case where replicates are available and

a non-linear interaction model

Morrissey et al.

(2010)

Minet Mutual information The R package minet provides a set of functions to infer mutual

information networks from a microarray dataset. Four different

entropy estimators are available in the package: empirical,

Miller–Madow, Schurmann–Grassberger and shrink-, as well as

four different inference methods, namely relevance networks,

ARACNE, CLR, and MRNET. Also, the package integrates accuracy

assessment tools, like F-scores, PR-curves and ROC-curves in

order to compare the inferred network with a reference set.

(Meyer et al., 2008)

Parmigene Mutual information The R package parmigene (PARallel Mutual Information estimation

for GEne NEtwork reconstruction) implements a mutual

information estimator based on k-nearest neighbor distances that

is minimally biased with respect to the other methods and uses a

parallel computing paradigm to reconstruct gene regulatory

networks. parmigene gives more precise results than existing

softwares at strikingly lower computational costs.

(Sales and Romualdi,

2011)

DTI Mutual information An R package including functions for inference of gene regulatory

networks from microarray data. Directed information approach

enables to reconstruct a directed graph.

(Kaleta

et al., 2010)

(Continued)
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Table 1 | Continued

Name Mathematical model Description Reference

C3NET Mutual information R package Conservative cause core (C3NET) algorithm is based on

mutual information and composed of two steps. The first step

confers an elimination of non-significant edges, in the second step

genes are only connected if their shared significant mutual

information value is at least for one of these two genes maximal

with respect to all other genes

Altay and

Emmert-

Streib

(2010)

Name Kind of interactions

network

Description Taxon Reference

(B) NETWORK EXPLORATIONTOOLS FOR ARABIDOPSIS AND OTHER CROP PLANTS

CORNET TF-to-gene The TF tool retrieves regulatory interactions from AGRIS and from

CORNET microarray data. The resulting network is represented in

Cytoscape with possibilities to see localization, TAIR functional

descriptions, Gene Ontology, Plant Ontology, MapMan pathways

and processes, protein domains, PubMed IDs and phenotypes.

Link out to other external databases by right-clicking the nodes in

Cytoscape

A. thaliana, Z. mays De Bodt et al.

(2012)

AtRegNet TF-to-gene AtRegNet tool of AGRIS: Arabidopsis Gene Regulatory Information

Server contains 11,355 direct interactions between known

transcription factors and target genes in A. thaliana. It is based on

TAIR9 annotations

A. thaliana Yilmaz et al.

(2011)

CORNET Protein–protein

interaction

PPI tool interrogates available protein–protein interaction

databases (both experimental and predicted interactions) and the

AraNet probabilistic functional gene network. It includes, e.g.,

ArathReactome, AtPID, MINT, Yeast-2-hybrid Interactome, and so

on. The resulting network is represented in Cytoscape with

possibilities to see localization, TAIR functional descriptions, Gene

Ontology, Plant Ontology, MapMan pathways and processes,

protein domains, PubMed IDs, and phenotypes. Link out to other

external databases by right-clicking the nodes in Cytoscape

A. thaliana, Z. mays De Bodt et al.

(2012)

PMN Metabolic network The Plant Metabolic Network (PMN) provides a broad network of

plant metabolic pathway databases that contain curated

information from the literature and computational analyses about

the genes, enzymes, compounds, reactions, and pathways

involved in primary and secondary metabolism in plants

Over 350 plant

species

Mueller et al.

(2011)

MetNet Metabolic network,

TF-to-gene, evidence

network

The MetNet database (MetNetDB) contains integrative

information on networks of metabolic and regulatory interactions.

Types of interactions in MetNetDB include transcription,

translation, protein modification, assembly, allosteric regulation,

translocation from one subcellular compartment to another. Other

fields describing the interactions are subcellular localization,

confidence, directionality, references, evidence, and synonyms.

Data on entities (DNA, RNA, polypeptides, protein complexes,

metabolites) are derived from web databases (TAIR, GO,

MapMan/GabiPD, PPDB, AMPDB, AtNoPDB, AraPerox, PLprot,

BRENDA, ChEBI, PubChem, KEGG, NCI, NIST MS library), in

some cases with additional annotation by experts

A. thaliana and G.

max

Sucaet and

Wurtele (2010)

AtCOECis TF-to-gene Transcriptional regulatory network is reconstructed here based on

cis-regulatory elements and coexpression network

A. thaliana Vandepoele

et al. (2009)

(Continued)
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Table 1 | Continued

Name Kind of interactions

network

Description Taxon Reference

ATTED-II Coexpression ATTED-II builds coexpression network allows searching

coexpression network for individual target genes of interest or

co-expressed network for each functional bin. Also abiotic, biotic,

hormone treated gene expression data deposited for deriving

coexpression network

A. thaliana Obayashi and

Kinoshita

(2010),

Obayashi et al.

(2011)

Genevestigator Coexpression Pearson correlation coefficient is taken as the measure of

similarity between genes, both for identifying co-expressed genes

as well as to define the pairwise correlation between genes in the

plot. This score is calculated based on log2-scaled expression data

that is processed from the Genevestigator database

A. thaliana, H.

vulgare, N. tabacum,

O. sativa, T.

aestivum, Z. mays

Zimmermann

et al. (2004)

MapMan Visualization MapMan brings its own hand-curated ontology which helps in

exploring and understanding plant networks. The ontology aims to

be redundancy-free aiding in simple graphical network

visualization.

A. thaliana, Z. mays

H. vulgare

Lohse et al.

(2010)

Planet Coexpression Using multiple different plant species and mutual best ranked

coexpression as well as domain information and MapMan terms it

is possible to find conserved correlations between plants

A. thaliana, G. max,

M. sativus, Poplar,

O.sativa, H. vulgare,

T. aestivum

Mutwil et al.

(2011)

Corto Coexpression Corto is a network building and visualization tool which comes

pre-loaded with several plant specific array sets. Its prime role is

network reconstruction of user supplied data sets however. CorTo

applies simple correlation, partial correlation, lasso regression, and

mutual information. A query centered target gene network can be

visualized and explored. All nodes can be color coded based on

MapMan categories

Any species where

high throughput data

is available

Giori

unpublished.

Available from

usadellab.org

CORNET Coexpression Using one or more precompiled expression datasets the

correlation between gene expression profiles will be calculated.

There are possibilities to identify threshold values for acceptance

of interactions. The result can be visualized as a graph in

Cytoscape providing all possible gene annotations

A. thaliana, Z. mays De Bodt et al.

(2012)

AraNet Evidence network AraNet yields all neighbors to query genes, based on coherence

of query genes, which is measured by the area under the ROC

curve AUC from 0.5 to 1. Top neighbors would be good candidates

for your follow-up screen, network-guided focused screen. As

evidence, AraNet uses a probabilistic functional gene network of

Arabidopsis thaliana, constructed by a modified Bayesian

integration of 24 types of “omics” data from multiple organisms,

with each data type weighted according to how well it links genes

that are known to function together in Arabidopsis thaliana. Each

interaction in AraNet has associated LLS that measures the

probability of an interaction representing a true functional linkage

between two genes

A. thaliana Lee et al.

(2010)

STRING Evidence network STRING is a database of known and predicted protein–protein

interactions. The interactions include direct (physical) and indirect

(functional) associations; they are derived from genomic context,

conserved coexpression, HT experiments, and text mining

1133 organism

including plants A.

thaliana, O.sativa

etc.

Szklarczyk

et al. (2011)

(Continued)
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Table 1 | Continued

Name Kind of interactions

network

Description Taxon Reference

EVEX Biomolecular

interaction based on

textmining

EVEX or Event Extraction is a text mining resource built on top of

PubMed abstracts and PubMed Central full texts. It contains over

34 million biomolecular events among more than 67 million

automatically extracted gene/protein name mentions. The text

mining data has been enriched with gene normalization results,

covering more than 42% of all gene/protein names. EVEX

presents both direct and indirect associations between genes and

proteins, enabling explorative browsing of relevant literature

Broad range of

species, including

plant species

Van

Landeghem

et al. (2012)

MetaCrop Metabolic network MetaCrop is a manually curated repository of high-quality data

about plant metabolism, providing different levels of details from

overview maps of primary metabolism to kinetic data of enzymes.

It can be accessed via web, web services and an add-on to the

Vanted software

It contains seven

major crop plants

and two model

plants

Schreiber et al.

(2012)

Table 2 | Advantages and disadvantages of reverse engineering methods.

Model Advantages Disadvantages

Boolean

network

Large-scale network Deterministic description
Better handling of computational complexity Binary abstraction with information loss

Bayesian

network

Handle incomplete and noisy data Computational complexity

Handling of feedback-loops not possibleLearning about causality

Integrating of prior knowledge

Interpretation of network topology (hubs, modules)

Dynamic

Bayesian

network

Handling of feedback-loops and incomplete and noisy data Computational complexity
Learning about causality Deriving regulatory networks using a multivariate approach

considering only the best-scoring network due to limitation

of computational time

Integrating of prior knowledge

Handling of time series and causal relationship from perturbations

Interpretation of network topology (hubs, modules)

Differential

equations

Handling of negative feedback-loops Computational complexity
Great physical accuracy Small number of genes

Good performance Require experimental parameters

Correlation

analysis

Large-scale network

Interpretation of network topology (hubs, modules)

Dependency of accuracy on the set of thresholds
Integration of prior knowledge

For linear or monotonical interactions

Mutual

Information

Large-scale network Dependency of accuracy on the set of thresholds

Integration of prior knowledgeBetter handling of computational complexity through pairwise comparison

Identifying causal relationship of TF-gene prediction

Handling of feedback-loops

Reducing false positives and extract causal rather than associative links in

gene networks

Non-linear and non-monotonically dependencies

gene relationships by constructing gene regulatory networks via
reverse engineering methodologies that integrate in vivo confir-
mation of new regulatory interactions using ChIP-chip (Faith
et al., 2007; Wu and Chan, 2012). This approach can be further
extended to other levels of gene regulation and thereby consider
the role of small RNAs (miRNA, siRNA, and long non-coding

RNAs) or epigenetic-based chromatin modifications, so that such
an extended analysis of abiotic stress responses would provide a
holistic view of regulatory events. TILING array-based transcrip-
tome data provide important insights not only into coding ORFs
but also into the activation of pseudogenes and retro-transposons
under various abiotic stresses. In the case of ABA treatments, this
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FIGURE 1 | Reverse engineering strategies to simulate gene regulatory networks and reconstructed relationship at other physical interactions such as
TF-to-gene, protein–protein, and metabolic networks. The application of relevant softwares and algorithms has been summarized inTable 1.

analysis suggests the importance of additional levels of regulation
conferred by non-coding RNA and epigenetic regulation (Zeller
et al., 2009). TILING arrays (Agilent 60mer probe) and AGRO-
NOMICS1 (a new Affymetrix Arabidopsis array with 25 and 35mer
probes) can also be used for interdisciplinary approaches such as
chromatin immunoprecipitation on chip (ChIP-on-chip) to iden-
tify binding sites of TF (Rehrauer et al., 2010; Sreenivasulu et al.,
2010). TILING arrays are also useful if an altered DNA methylation
status of interesting loci corresponds to changes in steady-state
mRNA levels (Aceituno et al., 2008; Chinnusamy et al., 2008;
Chinnusamy and Zhu, 2009). In this regard, conducting genome-
wide epigenome studies to scan for cytosine-phosphate-guanine
(CpG) islands under various stress treatments will be an impor-
tant future topic. Besides, microarray platforms can be used to
identify stress-regulated microRNAs, small RNAs, and long non-
coding RNAs (Sunkar et al., 2007). All in all, these combinatorial

technologies eventually allow a global understanding of the com-
plex regulatory networks (regulatory role of hormones/TFs – small
RNAs – epigenetics) to generate a specific abiotic stress response.
Such case studies are not yet available in the area of stress genomics
and therefore we focussed here on gene regulatory networks.

UNRAVELING TRANSCRIPTOME DYNAMICS OF ABIOTIC
STRESS RESPONSES IN ARABIDOPSIS BY REVERSE
ENGINEERING: A CASE STUDY
In the present case study, we performed a large-scale analysis
of changes in the transcriptome of Arabidopsis thaliana when
subjected to abiotic stress (i) to find general patterns in gene
expression data typical for roots and shoots, (ii) to identify genes
that are highly inducible and represent a common response to
different abiotic stress conditions, and (iii) to reconstruct gene
regulatory networks for the top regulated gene sets in root and
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shoot tissues. We analyzed 272 microarray samples of A. thaliana
for shoots and roots obtained from nine different abiotic stress
conditions analyzed at six time points (0.5–24 h). The data sets
are publicly available at GEO [AtGenExpress abiotic stress series,
under GEO NCBI Acc. Numbers GSE5628 (heat stress), GSE5627
(wound stress), GSE5626 (UV-B stress), GSE5625 (genotoxic
stress), GSE5624 (drought stress), GSE5623 (salt stress), GSE5622
(osmotic stress), GSE5621 (cold stress), and GSE5620 (respective
control tissues; Kilian et al., 2007)]. In order to find stress-induced

regulons, a BGA was performed, which highlighted that the first
two principal components projected almost 60% of all variance in
gene expression, indicating dramatic transcriptional reprogram-
ing events during the exposure of Arabidopsis plants to different
kinds of abiotic stress (Figure 2). Among the various abiotic stress
responses, osmotic stress and salt stress caused the strongest reac-
tion in both leaf and root tissues. Interestingly, heat treatment
also caused a drastic transcriptional reprograming in roots, while
almost no effect was seen after UV treatment (Figures 2B,D).

FIGURE 2 | Global overview of abiotic stress responses in roots
and shoots of A. thaliana. Abiotic Stress Matrix for shoot (A) and root
tissues (C). Values are calculated as a sum of absolute log-fold changes
over all time points. The score is calculated as median over all abiotic
stress conditions. Between Group Analysis for the whole

transcriptome of shoot (B) and root (D). The larger distance between
stress and control, the stronger the transcriptome reprograming under
a given stress. Higher variance for shoots is noted for Osmotic >

Salt > UV >Wounding. Higher variance for roots is noted for
Salt > Osmotic > Heat.
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These stress-specific alterations in the transcriptome of above-
ground and below-ground plant tissues are quite diverging. Fur-
thermore, these BGA plots also indicated stress responses that
overlap between drought, oxidative, cold, genotoxic, and wound-
ing treatments and may therefore share common underlying regu-
lators (Table S1 in Supplementary Material). To identify the most
responsible genes in every abiotic stress treatment, we calculated
a new Abiotic Stress Matrix to score all genes according to their
global impact on the response to different stresses. For every gene
a score has been calculated according to the following formula:

Sstress
=

∑
t∈{0.5,1,3,6,12,24h}

log2

∣∣∣∣ stresst

controlt

∣∣∣∣
where stresst and controlt are normalized expression values for
nine selected abiotic stress treatments and the respective con-
trol. The resulting stress matrix encompasses all genes present
on the Affymetrix ATH1 array and assayed under nine stress con-
ditions in roots and shoots and identified the top100 regulated
and bottom100 unregulated gene sets (Table S1 in Supplementary
Material). We first took the median of the expression value over all
conditions (0.5–24 h), calculated fold changes (based on median
expression in stress versus control) and then deduced ranks to
order the gene sets along their impact on the stress response. This
resulted in a group of top ubiquitous abiotic stress-regulated genes
(Figures 2A,C and Table S1 in Supplementary Material).

By revisiting this comprehensive transcriptome data set of
short-term shoot abiotic stress responses using Gene Ontology
(GO) analysis we identified an enrichment of genes involved
in plant responses to reactive oxygen species, water deprivation,
heat, light, or cold, as well to carbohydrate limitation or biotic
stimuli (Figure 3A). Within the root tissue, responses to heat,
oxidative stress, carbohydrate limitation, and biotic stimuli were
found to be characterized by ubiquitous abiotic stress-regulated
gene sets (Figure 3B). Among the most stress-responsive gene
sets, transcripts involved in protein degradation, or coding for
AAA-type, cysteine proteases, serine proteases, or selected mem-
bers of RING-domain E3 ubiquitin ligases were found to be highly
induced in both root and shoot tissues. Another large class of pro-
teases that belongs to the E3.SCF F-box family was found to be
non-responsive to many of these abiotic stress treatments. Thus,
irrespective of stress-specific stimuli, there seems to be a conserved
abiotic stress-responsive cascade triggering cell death under unfa-
vorable growth conditions, possibly due to the release of reactive
oxygen species and damage of membrane lipids, leading to cellular
disintegrity, protein degradation, and apoptosis (Ma and Bohnert,
2008). Consequently, a transgenic strategy should consider sec-
ondary effects by creating an effective scavenging system at the
intracellular compartment level (cytosol, mitochondria, and plas-
tidial) to quench released reactive oxygen species generated during
heat, drought, or a combination of these stresses (Mittler, 2006) to
finely modulate PCD pathways.

Understanding dynamic alterations in the cross talk between
phytohormones and TFs in response to different abiotic stress fac-
tors and their importance for optimum plant growth is a major
challenge. In this respect, systems biology approaches will remain
pivotal. With regard to hormonal regulation, we identified in

shoots an enrichment of gene expression changes in the stress-
related phytohormones ABA, jasmonic acid (JA), and ethylene
(Figure 3A). In roots, we found JA, ethylene, and various abiotic
stress-responsive WRKY TFs (as classified by MapMan bins) to be
enriched. By combining a weighted gene coexpression network of
the abiotic stress transcriptome, ABA, JA, and ethylene signaling
hubs were identified to be of central importance for the integration
of different abiotic stress stimuli (Cramer et al., 2011). However,
in the last two decades ABA has been described as an important
phytohormone signaling in abiotic stress responses (esp. drought,
osmotic, and low temperature) while JA, ethylene, and salicylic
acid were considered to play central roles in biotic stress responses
(Lorenzo et al., 2003; Robert-Seilaniantz et al., 2011; Sreenivasulu
et al., 2012). The recently increasing knowledge emerging from
genomic studies clearly points out that ABA, JA, and ethylene are
involved in the cross-talk of abiotic and biotic stress responses.
Thus, unraveling converging points and key regulators involved
in the cross-talk between these hormones and signaling path-
ways under both abiotic and biotic stress responses will help to
understand how ethylene, JA, and ABA operate synergistically in
mediating general stress response. Moreover, the role of these sig-
naling molecules need to be investigated under short-term versus
long-term stress responses to understand the regulation of subsets
of cascades involved in defense responses and growth acclimation
under stress. Reverse engineering approaches will not only help
to unravel which key regulators determine the expression of sub-
sets of genes responding to certain environmental perturbations,
but also allow identifying key targets causing a perturbation in
plant growth. Such targets may eventually be used in the gen-
eration of stress-tolerant plants to promote sustainable growth
and stable yield under various stress conditions. Subsequently, the
network inference could be employed to confirm the major tar-
gets in the genetic reprograming required to achieve sustainable
growth under challenging conditions. To investigate the cross-talk
between the most stress-inducible genes in Arabidopsis shoots and
roots, we reconstructed a gene regulatory network (Figures 4A,B),
using the MRNET algorithm.

In shoots of stress-exposed Arabidopsis plants the genes
AT1G80840 and AT2G28400 were identified as central hub genes
(Figure 4A), potentially involved in coordinating the overall abi-
otic stress response. Their gene regulatory network highlights a
“cross-talk” between the top 100 stress-inducible genes which have
been defined from the Abiotic Stress Matrix. Two parts of the net-
work with the hub genes AT2G28400 (unknown protein DUF584)
and AT1G80840 (WRKY40 pathogen-induced TF) are shown in
detail. In the ontology “Molecular Function,” both networks are
characterized by the overrepresented category GO:0003700 – TF
activity (FDR < 0.05, in both cases). Considering the “Biological
Function” ontology AT2G28400 network shows an enrichment of
GO:0042221 – response to chemical stimulus (FDR < 0.01) and
the WRKY40 subnetwork shows an enrichment of GO:0009611
(FDR < 0.01) – response to wounding. WRKY40 is known as
a pathogen-induced TF involved in repressing basal defense
responses to Pseudomonas syringae with a conserved function in
both, dicots and monocots (Shen et al., 2007). WRKY40 forms
homomeric protein complexes and binds in vitro to W-boxes in
promoter sequences. However, its role in abiotic stress responses
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FIGURE 3 | Gene ontology enrichment of top 100 abiotic stress-regulated genes in shoots (A) and roots (B) using AgriGO database.

has not been analyzed so far. WRKY40 is a central negative regu-
lator, inhibiting the expression of ABA-responsive genes, such as
ABI5, ABI4, ABF4, and thereby repressing a part of the ABA signal-
ing pathway (Shang et al., 2010). Recent data suggest that WRKY40
forms a highly interacting regulatory network with WRKY18 as
well with WRKY60 and modulates gene expression in plant defense
and abiotic stress responses (Chen et al., 2010). WRKY40 itself
is known to be modulated by the phytohormones ABA and JA
(Galletti et al., 2008; Chen et al., 2010). In our reverse engineer-
ing approach, we identified that WRKY40 is a central node in
the regulation of abiotic stress responses in shoots and forms a
gene regulatory network with other TFs such as ERF2 (a positive
regulator of JA-regulated defense genes) and WRKY33 (involved
in abiotic stress responses with high sensitivity to ABA) as well
as other gene sets which include lipoxygenase 4, calmodulin-like
38, tripeptidyl peptidase 2, and a blue copper-binding protein
(Figure 4A). All promoters of these target genes carry the known
W-box cis-element TTGAT/C. A second central hub of abiotic
stress responses in shoots is AT2G28400 (T1B3.8), which encodes

an unknown protein named DUF584. From our analyses it inter-
acts with the unknown protein AT1G05340, a heavy metal trans-
port/detoxification superfamily protein, the tolB protein-related
and SOS3-interacting protein 4, RD26 and JAZ1 (having the high-
est score in the Abiotic Stress Matrix in shoots). The interaction
of AT2G28400 with RD26 has been previously confirmed in a
RD26 overexpression study (Fujita et al., 2004). The receptor
for jasmonates was found to be CORONATINE INSENSITIVE1
(COI1), which is a F-box protein essential for jasmonate responses.
COI1 interacts with multiple proteins to form the SCF-COI1 E3
ubiquitin ligase complex (Yan et al., 2009). JA-Ile forms a ternary
complex with SCF-COI1 and JASMONATE ZIM-DOMAIN (JAZ)
proteins, which are repressors of the TF MYC2, consigning the JAZ
proteins to 26S proteasome-mediated degradation, hence facili-
tating stress-inducible gene expression through MYC2 (Fonseca
et al., 2009; Wasternack and Kombrink, 2010; Wasternack and
Xie, 2010). JAZ proteins are repressors of JA-mediated nicotine
biosynthesis, involved in defense versus growth responses with a
clear antagonistic regulation by JA and GA (Kazan and Manners,

www.frontiersin.org December 2012 | Volume 3 | Article 294 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Systems_Biology/archive


Friedel et al. Systems component of abiotic stress response

FIGURE 4 | Continued
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FIGURE 4 | Continued
Gene regulatory network of shoots (A) and roots (B) highlights
“cross-talk” between the top 100 stress-inducible genes which have
been defined from Abiotic Stress Matrix. Within the shoot gene
regulatory network two hub genes AT2G28400 (unknown protein) and

AT1G80840 (WRKY40) and their connected sub-networks are shown in
detail. Within the root gene regulatory network three hub genes (1)
AT2G46400: ATWRKY46, (2) AT5G10040 (unknown protein), (3) AT1G26380
FAD-binding domain-containing protein and their connected sub-networks
are shown in detail.

2012). Taken together, these results suggest that many of these key
regulators modulate growth by interfering in the trade-off between
abiotic and biotic stress responses.

With regard to the regulatory networks in stressed Arabidop-
sis roots, AT2G46400 (AtWRKY46), AT1G26380 (FAD-binding
domain-containing protein), and AT5G10040 (unknown pro-
tein) were identified as central hubs, with a high probability to
coordinate stress responses (Figure 4B). In the category “Mole-
cular Function” the AtWRKY46 network is characterized by the
enrichment term GO:0003700 – transcriptional factor activity
(FDR < 0.01) and GO:0009743 – response to carbohydrate stim-
ulus; the AT1G26380 network is enriched by the GO:0003824
catalytic activity, GO:0009697 response to biotic stimulus, and
GO:0051707 response to other organisms. There are no significant
GO terms for the AT5G10040 network. Interestingly, similar to
shoots, WRKY46 regulates another member of the WRKY family,
namely WRKY18, and a member of the ETHYLENE RESPON-
SIVE FACTORS (ERF),ERF13. Other strongly interacting partners
of WRKY46 are the TF MYB15 and the copper transport protein
BCS1. In general, there was only 10% of overlap between roots and
shoots in the response to abiotic stress. In both tissues, however,
the central hub networks are represented by WRKY-homologs
WRKY40 in shoots and WRKY46 in roots. Nevertheless, both
WRKYs appear to regulate, in turn, TFs of the ERF and WRKY
families, suggesting a partial overlap in their regulation of down-
stream targets. Based on the predicted protein–protein interaction
and coexpression networks from the CORNET database, we iden-
tified that WRKY40 acts as a central regulator and forms complexes
with WRKY46, WRKY53, SZF1, STZ, CCR4, GCN5, GML37, and
an immediate-early fungal elicitor family protein (Figure 5).

From the Planet database, information can be obtained on
knock-out phenotypes of genes involved in the regulatory net-
work of WRKY40 and WRKY46. Interestingly, the phenotypes of
the target genes of both WRKYs were predicted to show increased
susceptibility to pathogens, decreased thermo tolerance, chlorotic
leaves, and inhibited growth (Figure 6). These results suggest that
both, abiotic and biotic stress factors share at least in part common
pathways of the general stress-responsive machinery. It remains
interesting to see how this general stress-regulatory machinery
will be connected to individual stress-specific pathways and thus
regulating key traits controlling plant growth and development
under stress. Conclusions and hypotheses generated from such
reverse engineering strategies need to be validated by (i) identi-
fying the respective mutants and/or fine-tuned manipulation of
key regulatory targets in transgenic approaches and (ii) eventu-
ally employing these mutants or transgenics in systems biology
approaches to validate the selected regulatory cascades.

FUTURE PERSPECTIVES
Exploring gene regulatory networks derived from genome-wide
data sets for various stress responses is an important milestone

FIGURE 5 | Coexpression gene network and protein–protein
interaction network of WRKY40 derived from CORNET database (De
Bodt et al., 2012). Within the coexpression network blue lines represent
correlations of >0.9. The protein–protein interaction network is represented
by black solid lines (validated protein interactions) or by dotted black lines
(predicted protein–protein interactions).

in the era of green biotechnology. Novel regulatory components
within these networks can be identified as central hubs or as
key candidate genes to further explore their functional relevance
using systems biology approaches. Undoubtedly, the analysis of
integrated genome-wide networks has helped immensely to iden-
tify key target genes for crop improvement under ambient con-
ditions (Ferrier et al., 2011), but it has even greater potential in
the area of defense responses to abiotic stresses and for identi-
fying key targets promoting growth stability. However, extending
such knowledge to finally predict plant growth responses to stress
requires an even more comprehensive understanding of underly-
ing regulatory networks, which can only be done by integrating
analyses on phytohormones to elucidate hormone-TF networks
from the cell type to the whole-plant level. This may be achieved
either by direct measurements of relevant phytohormone species,
which is a challenge regarding the large number of more and less
physiologically active forms of phytohormones or by employing
reporter genes, which sometimes allow a cell type-specific resolu-
tion of hormonal gradients but may be confounded by the inter-
action with other hormones or by variable hormone sensitivities
of stressed tissues. To overcome the gap between the identification
of stress-regulated genes or hubs and the manipulation of yield-
determining genes for improved crop growth under challenging
environmental conditions, we need further knowledge on (a) how
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FIGURE 6 | Gene coexpression network and knock-out phenotypes characterized in surrounding network of AtWRKY40 derived from PLANET
database (Mutwil et al., 2011).

stress cues become active and integrated in plant developmental
programs at different growth stages and (b) which are the specific
and which are the common regulatory nodes involved in promot-
ing growth under multiple abiotic and biotic stress factors. Such
a systematic and integrative knowledge will be required to engi-
neer and develop multi-stress-tolerant plants. For instance, from
the above-mentioned data-mining approaches we start realizing
the importance of ABA and JA interactions in several abiotic stress
treatments. This is not achieved when looking at the individual role
of these hormones, as presently done when dissecting the role of
ABA in abiotic and of JA for biotic stress responses. Thus, combi-
natory stress treatments are required to better discriminate specific
from ubiquitous stress response pathways. Discoveries obtained by
reverse engineering approaches may then allow us to forge ahead
toward the generation of a new generation of stress-tolerant plants.
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