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Recent findings suggest that both subcellular compartmentation and route of sucrolysis
are important for plant development, growth, and yield. Signaling effects are dependent
on the tissue, cell type, and stage of development. Downstream effects also depend
on the amount and localization of hexoses and disaccharides. All enzymes of sucrose
metabolism (e.g., invertase, hexokinase, fructokinase, sucrose synthase, and sucrose
6-phosphate synthase) are not produced from single genes, but from paralog families in
plant genomes. Each paralog has unique expression across plant organs and developmental
stages. Multiple isoforms can be targeted to different cellular compartments (e.g.,
plastids, mitochondria, nuclei, and cytosol). Many of the key enzymes are regulated by
post-transcriptional modifications and associate in multimeric protein complexes. Some
isoforms have regulatory functions, either in addition to or in replacement of their
catalytic activity.This explains why some isozymes are not redundant, but also complicates
elucidation of their specific involvement in sugar signaling. The subcellular compartmenta-
tion of sucrose metabolism forces refinement of some of the paradigms of sugar signaling
during physiological processes. For example, the catalytic and signaling functions of diverse
paralogs needs to be more carefully analyzed in the context of post-genomic biology. It is
important to note that it is the differential localization of both the sugars themselves as well
as the sugar-metabolizing enzymes that ultimately led to sugar signaling. We conclude that
a combination of subcellular complexity and gene duplication/subfunctionalization gave rise
to sugar signaling as a regulatory mechanism in plant cells.
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INTRODUCTION
Through this review, we show how one should consider both
extensive gene duplication and extensive cellular compartmen-
tation of plant metabolism to fully understand sugar signaling.
Establishment of sugar gradients across different subcellular com-
partments, cells, and organs is a central issue of plant physiology;
therefore, we address the multiplicity of sucrolytic pathways in
sink and source tissues.

SUBCELLULAR COMPARTMENTATION
Eukaryotic organisms differ from prokaryotic organisms in that
their metabolic activity occurs in different parts of the cell (Lunn,
2007). Every cellular compartment depends, to some extent, on
other subcompartments for the supply and/or delivery of precur-
sors and/or intermediates (Stitt, 1997). Since primary pathways
occur in different organelles, one should assume a priori that
sugar perception and signal transduction is also compartmental-
ized (Lunn, 2007); however, most research on plant metabolomics
and sugar signaling has ignored such a premise. In Arabidopsis,
bulk tissue (from either rosette plants or germinating seedlings)
is typically harvested and homogenized to determine metabolite
levels as a bulk megacompartment, thereby both ignoring diversity

of cell types and further mixing subcellular organelles (Osuna
et al., 2007; Sulpice et al., 2009). Therefore, some mutants of key
enzymes of sucrose metabolism have sometimes been reported to
have no “obvious” phenotype (Bieniawska et al., 2007). To advance
sugar signaling research, one should use a diverse array of experi-
mental approaches for determining developmental gradients and
subcellular levels of many biomolecules (Geigenberger et al., 2011;
Kueger et al., 2012).

SPATIAL DISTRIBUTION OF PROTEINS AND RNA
Plant gene expression patterns and protein location have been tra-
ditionally analyzed with β-glucoronidase, luciferase, and green
fluorescent protein (Hejatko et al., 2006; Lalonde et al., 2008).
Many constructs can be transiently expressed with new methods
(Li et al., 2009), but experimental elucidation of protein location
must be done in carefully sectioned tissues with laser-capture
micro-dissection (Chang et al., 2012). Localization of mRNA is
mostly determined with in situ hybridization (Borisjuk et al., 2005;
Fallahi et al., 2008). In the post-genomic era, bioinformatic predic-
tion of protein targeting is more extensively used and could even-
tually replace some experimental approaches (Gomez-Anduro
et al., 2011).
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SPATIAL DISTRIBUTION OF METABOLITES
The location of either mRNA or proteins reveals biosynthetic
potential, but it is not necessarily where the metabolite finally
accumulates (Lee et al., 2012). Metabolic networks represent a
completely different level of realization of genomic information
that is not always correlated with proteins and nucleic acids (Saito
and Matsuda, 2010; Kueger et al., 2012).

Microscopy is the standard method for determining the loca-
tion of biomolecules in plant organs because molecular gra-
dients produce different colors and intensities in specific cells.
Microscopy generates qualitative information, but unfortunately
it has not yet been adapted for quantitative measurement of
metabolites and enzymes.

Non-aqueous fractionation (NAF) is a powerful technique for
separating subcellular compartments under conditions in which
biological activities are completely arrested (Farré et al., 2001;
Geigenberger et al., 2011). This method allows to calculate in
vivo mass-action ratios of all reactions of sucrose metabolism
(Tiessen et al., 2002). Metabolomic NAF analysis in barley seeds
(Tiessen et al., 2012), Arabidopsis leaves (Fettke et al., 2005a;
Geigenberger et al., 2011), potato leaves (Fettke et al., 2005b), and
potato tubers (Farré et al., 2006, 2008, 2001), shows marked dif-
ferences in compartmentation. The classical assumptions about
metabolite subcellular distribution are not always true in all species
and in all organs. The subcellular ADPGlc level in barley mutants,
for example, provides important clues about metabolic regulation
in cereal endosperms (Tiessen et al., 2012).

Improved methods for single-cell transcriptomics, proteomics,
and metabolomics are needed for a holistic understanding of sugar
signaling (Dai and Chen, 2012). Fluorescence techniques reveal
dynamics and localizations of molecular interactions within cells
(Lalonde et al., 2005); mechanical- and affinity-based technologies
are used to isolate and analyze individual cell types in plants (Wang
and Ruan, 2012); and system-level analyses of specific cell types in
plants may soon become standard (Kueger et al., 2012).

METABOLISM AND REGULATION: EXAMPLES OF A
DUAL ROLE
Neither compartments nor functions should be mixed. For some
proteins, there is a risk of confusing metabolic activity with signal
perception. Few metabolic enzymes “moonlight” as transcrip-
tional regulators. The best known example in plants is hexokinase
(HXK; (Harrington and Bush, 2003). In addition to catalyz-
ing the first step of glycolysis, HXK is also a glucose sensor
(Moore et al., 2003; Rolland et al., 2006) and in plants it transduces
downstream signals, both transcriptionally (Baena-Gonzalez et al.,
2007) and post-transcriptionally (Tiessen et al., 2003). Plant HXKs
are encoded by a family of 5–10 genes (Claeyssen and Rivoal, 2007)
which can be active in several compartments (Balasubramanian
et al., 2007; Damari-Weissler et al., 2007; Figure 1). AtHXK1 is pre-
dominantly associated with the mitochondria but can also occur in
the nucleus (Cho et al., 2009), where it associates with transcrip-
tional complexes (Cho et al., 2006) to regulate gene expression
(Balasubramanian et al., 2007). This remarkable bi-functionality
enables crosstalk between compartments and metabolic pathways.

Some HXKs have similar catalytic activity, but they are not
interchangeable for the regulatory function (Rolland et al., 2006).

Other isozymes might have lost their original biochemical function
during endosymbiotic evolution. In Arabidopsis, three of six HXK
paralogs lack catalytic activity (Cho et al., 2006; Karve et al., 2008).
These hexokinase-like (HKL) proteins have been experimentally
detected in the mitochondria (Heazlewood et al., 2007) and can
cause an unusual root hair phenotype (Karve et al., 2010).

The existence of HXK-based sugar signaling was initially ques-
tioned because it was isoform-specific and further because the
glucose phenotype was only observed at specific stages of germi-
nation (Halford et al., 1999). Later it was found that two signaling
pathways involving both SnRK1 and HXK regulate key enzymes of
sucrose-starch metabolism (Tiessen et al., 2003; McKibbin et al.,
2006). We believe the importance of such key enzymes should
be re-evaluated in more detail and separately for each isoform,
organelle, stage of development, and species.

DO SOME SUGAR TRANSPORTERS ALSO ACT AS SENSORS?
The perception of metabolites can occur at the plasmatic mem-
brane, as the first site of sugar signaling (Lalonde et al., 1999).
H+-sucrose co-transporters (e.g., SUC2 and SUT1) are crucial for
sucrose loading into the phloem, but their role as sensors remains
elusive. In yeast, the glucose transporters RGT2 and SNF3 act as
low- and high-affinity glucose sensors, respectively (Ozcan et al.,
1996; Belinchón and Gancedo, 2007). An additional sensing mech-
anism involves RGS1, a negative regulator of G-protein signaling
(Chen et al., 2003; Urano et al., 2012). In Arabidopsis, however, reg-
ulatory proteins are believed to be absent. Ectopic overexpression
of the hexose transporter 2 gene alters glucose sensing and suggests
that post-germinative development not only depends on cytosolic
AtHXK1 but also on the entry of sugars through the membrane
(Padilla-Chacon et al., 2010).

METABOLITE COORDINATION BETWEEN CYTOSOL
AND PLASTIDS
Metabolism of trehalose-6-phosphate (T6P) is needed for repro-
ductive development in maize (Satoh-Nagasawa et al., 2006) and
Arabidopsis (Eastmond et al., 2002), and is also important for seed
germination (Gomez et al., 2006) and sugar signaling (Kolbe et al.,
2005). T6P is synthesized in the cytosol and is strongly corre-
lated with sucrose levels and the rate of starch synthesis in the
plastid (Lunn et al., 2006). Supplying T6P to isolated chloro-
plasts promotes redox activation of AGPase (Kolbe et al., 2005),
although the molecular mechanism is not fully understood. The
direct effects of T6P on signaling/target proteins still need to
be characterized in detail. T6P may act allosterically through
either SnRK1 or NADP-thiorredoxin reductase C, which regulates
AGPase (Michalska et al., 2009). T6P may act as a secondary mes-
senger of carbon status between the cytosol and the chloroplasts
(Kolbe et al., 2005).

METABOLIC ROUTES FOR SUGAR SIGNALING
Overexpression of yeast invertase (INV) and bacterial glucoki-
nase in the cytosol was intended as a strategy to increase sucrose
import and sink strength in potato tubers (Trethewey et al., 1998).
Contrary to expectation, a futile cycle of sucrose degradation and
resynthesis is created, leading to decreased starch content in the
transgenic lines (Trethewey et al., 1999).
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FIGURE 1 | Central metabolism in photosynthetic cells. Carbon is
converted into starch in the plastid and sucrose (Suc), in the cytosol. Suc is
partitioned into different pathways by multiple isozymes in the different
subcellular compartments. Signaling metabolites (Pi, T6P) coordinate fluxes
within the cytosol and the plastids. BE, branching enzyme; cBAM, pBAM,
cytosolic and plastidial beta-amylase; CBB; Calvin–Benson–Bassham; CS,
cellulose synthase; DB, debranching enzyme; DHAP; dihydroxyacetone
phosphate; Fru, fructose; cFBPase, pFBPase, cytosolic and plastidial
Fructose-1,6-bisphosphate phosphatase; FK, fructokinase; FT,
fructosyl-transferase; Glu, glucose; G6P, glucose-6P; G1P, glucose-1P; GT,

glucose transporter; GWD, glucan water dikinase; cHxk, mHxk, nHxk,
pHxk, cytosolic, mitochondrial, nuclear, and plastidial hexokinase; cInv,
cwInv, pInv, vInv, cytosolic, cell wall, plastidial, and vacuolar invertase;
Malt, maltose; Mex1, maltose exporter; Pi, inorganic phosphate; PPi,
pyrophosphate; Pyr, pyruvate; S6P, sucrose-6-P; SBPase,
sedoheptulose-1,7-bisphosphate phosphatase; SPP, sucrose-6-P
phosphatase; SPS, sucrose-6-P synthase; SS, starch synthase; SUS, sucrose
synthase; SUT, sucrose transporter; Tre, trehalose;T6P, trehalose-6-phosphate;
TCA, tricarboxylic acid cycle; TPP, trehalose-6-P phosphatase; TPT, triose-P
translocator; VDAC, voltage-dependent anion channel.

Heterologous expression of sucrose phosphorylase (SuPho)
was used to bypass SUS (sucrose synthase)/fructokinase (FK) and
INV/HXK routes (Fernie et al., 2002). It decreases cytosolic sucrose
levels (Tiessen et al., 2002). Reduction of starch in the SuPho trans-
formants occurred from an ∼40% decrease in AGPase activity
and the redox activation state (Tiessen, 2002). Ectopic overex-
pression of either INV or SuPho affects the internal oxygen levels
in growing tubers and is correlated with decreased starch con-
tent (Bologa et al., 2003). The INV/HXK pathway is, therefore,
more energy demanding, and the SUS/FK pathway allows to main-
tain a higher cellular energy state under low-oxygen conditions
(Bologa et al., 2003).

The different routes of sucrose degradation are not inter-
changeable because the subcellular levels of hexoses and sucrose
produce different signals that activate different metabolic path-
ways (Figure 1). A low sucrose/hexose ratio promotes respiration
over starch synthesis (Geiger et al., 1998). Expressing INV in
either the apoplast or the cytosol leads to very different results
(Farré et al., 2008; Ferreira and Sonnewald, 2012). Inhibition

of SUS decreases specifically starch accumulation but not
protein or lipid synthesis (Zrenner et al., 1995; Angeles-Núñez
and Tiessen, 2010).

MULTIPLE SUCROLYTIC ROUTES
Sucrolytic INV activity is critical for metabolism in plants (Ferreira
and Sonnewald, 2012), and it might also have a direct role in signal-
ing (Roitsch, 1999; Farré et al., 2008). Arabidopsis has six cell wall
INV, two vacuolar INV, and 11 neutral/alkaline INV genes (Sher-
son et al., 2003). The functional roles of different INV isozymes
are still not understood because subcellular location affects the
different hexose pools that may be independently sensed (Ji et al.,
2005; Xiang et al., 2011; Figure 1). Neutral/alkaline INVs have
ascribed functions for energy metabolism and oxidative stress
in the mitochondria (Xiang et al., 2011; Martín et al., 2012), for
photosynthesis in plastids (Murayama and Handa, 2007), and for
overall cell development (Welham et al., 2009). Cytosolic, neutral
INVs interact with phosphatidylinositol monophosphate 5-kinase
and regulates root cell elongation (Lou et al., 2007). Cell wall INVs
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have been associated with carbon partitioning (Roitsch et al., 2003)
and regulation of cellulose genes in cotton (Yang et al., 2008). Vac-
uolar INVs are needed in cell expansion, via osmotic-dependent
and -independent pathways (Wang et al., 2010). The differential
expression patterns of cwINV and vINV have also provided insight
into early seed development (Wang and Ruan, 2012).

Sucrose synthase is important for primary metabolism
(Geigenberger and Stitt, 1991), and has been implicated in
long-distance carbon allocations, stress responses, and symbiotic
interactions (Koch, 2004; Barratt et al., 2009; Coleman et al., 2009).
SUS preferentially partitions carbon toward starch, in both potato
tubers (Zrenner et al., 1995) and Arabidopsis seeds (Angeles-Núñez
and Tiessen, 2010). This likely occurs through provision of direct
or indirect intermediates of starch or cellulose synthesis (Fujii
et al., 2010; Cai et al., 2011). The expression patterns of SUS iso-
forms, which have different subcellular locations, suggests specific
signaling functions (Brill et al., 2011).

The Arabidopsis genome contains six SUS genes whose exact
function remains to be known, since most mutants show few
observable effects (Bieniawska et al., 2007) or present only sub-
tle metabolic phenotypes in specific tissues and developmental
stages (Angeles-Núñez and Tiessen, 2010, 2012). AtSUS2 appears
to be specifically expressed in seeds and is not induced in leaves
in response to either abiotic stresses or sugar feeding (Baud et al.,
2004; Núñez et al., 2008). Mutants of SUS paralogs have not been
analyzed with subcellular methods, but the pleitropic effects on
metabolite homeostasis (Angeles-Núñez and Tiessen, 2010) can-
not be simply explained by a catalytic function. Elucidating the
structure of SUS isoforms could provide further insights into the
signaling mechanisms and regulatory interactions that occur with
other cellular targets (Zheng et al., 2011).

SUCROSE 6-PHOSPHATE SYNTHASE
Sucrose 6-phosphate synthase (SPSs) are encoded by a multigene
family whose tissue- and developmental stage-specific expres-
sion patterns appear to have functional significance (Salerno and
Curatti, 2003). The activities of both SPS and sucrose 6-phosphate
phosphatase (SPP) are required for sucrose metabolism (Lunn,
2002; Salerno and Curatti, 2003), but have not yet been directly

implicated in sugar signaling. Nevertheless, the similarity between
S6P and T6P suggests a sugar signaling role for either sucrose or
trehalose metabolism (Figure 1).

POST-GENOMIC RESEARCH
Genome-scale metabolic modeling is well-established for
microbes (which typically have only one enzyme per reaction in
the cytosol), but is not yet established in plants, which posses many
different isozymes and subcellular compartments (Caspi et al.,
2008). Various databases contain lists of reactions and putative
metabolic pathways that are based on automatic gene annotations
via BLAST (Youens-Clark et al., 2011; Kanehisa et al., 2012). The
pathways in MetaCyc are manually curated (Caspi et al., 2012);
however, metabolic models neither incorporate paralog nor sub-
cellular information (Fernie and Stitt, 2012). Another difficulty for
plants occurs with an assignment of catalytic function that is only
based on overall sequence similarity. Multiple isozymes of HXK,
SUS, or INV might share the similar folding that is needed for
binding of metabolites and may be involved in signaling functions,
but not catalysis (Karve et al., 2008).

CONCLUSION
Sugar signaling research has advanced rapidly in recent years.
Learning more will require acknowledging the importance of
subcellular compartmentation and routinely implementing all
available methods (Kueger et al., 2012). A key feature in signaling
is that sucrose, for example, does not freely cross cell membranes.
Thus it was the combination of subcellular organization plus the
recruitment of potential signaling molecules that are differentially
membrane permeable (plus gene duplication/specialization) that
drove the occurrence of signaling.

Since carbon metabolism occurs simultaneously in different
organelles, different sensors may be required under specific con-
ditions or circumstances. Specific isoforms of sucrolytic enzymes
are therefore not redundant but complementary for signaling
or catalysis. We propose that different sucrolytic enzymes are
important for channeling carbon into different metabolic routes,
and we further postulate that sugar signals are specific for each
paralog/pathway.
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