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Formation of plant virus membrane-associated replication factories requires the association
of viral replication proteins and viral RNA with intracellular membranes, the recruitment
of host factors and the modification of membranes to form novel structures that house
the replication complex. Many viruses encode integral membrane proteins that act as
anchors for the replication complex. These hydrophobic proteins contain transmembrane
domains and/or amphipathic helices that associate with the membrane and modify its
structure. The comovirus Co-Pro and NTP-binding (NTB, putative helicase) proteins and
the cognate nepovirus X2 and NTB proteins are among the best characterized plant virus
integral membrane replication proteins and are functionally related to the picornavirus 2B,
2C, and 3A membrane proteins. The identification of membrane association domains and
analysis of the membrane topology of these proteins is discussed.The evidence suggesting
that these proteins have the ability to induce membrane proliferation, alter the structure
and integrity of intracellular membranes, and modulate the induction of symptoms in
infected plants is also reviewed. Finally, areas of research that need further investigation are
highlighted.
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CHARACTERIZATION OF COMOVIRUS AND NEPOVIRUS
REPLICATION COMPLEXES AND IDENTIFICATION OF
PUTATIVE MEMBRANE ANCHORS
Positive-strand RNA viruses replicate in large complexes that
are associated with host intracellular membranes (Salonen et al.,
2005; Sanfacon, 2005; Miller and Krijnse-Locker, 2008; den Boon
and Ahlquist, 2010; Laliberte and Sanfacon, 2010; Nagy and
Pogany, 2012 ). Some viruses require host membrane proteins
to target their replication proteins to the membranes (Yamanaka
et al., 2000). However, many viruses encode proteins that inter-
act with membranes directly and modify their intrinsic structure.
These proteins have membrane association domains and contain
protein–protein and/or protein–RNA interaction domains that
allow them to recruit the viral RNA, other viral replication pro-
teins, or host factors to the membranes. Well-characterized plant
virus membrane proteins include the tombusvirus 33–36 kDa
proteins, bromovirus 1a protein, potyvirus 6K protein, and
tymovirus 140 kDa protein (Schaad et al., 1997; den Boon
et al., 2001; Weber-Lotfi et al., 2002; Prod’Homme et al., 2003;
Turner et al., 2004).

The family Secoviridae (order Picornavirales) includes the gen-
era Comovirus, Fabavirus, Nepovirus, Sequivirus, Waikavirus, Cher-
avirus, Sadwavirus, and Torradovirus (Sanfacon et al., 2011). The
best characterized members of the family are Cowpea mosaic virus
(CPMV, comovirus), Grapevine fanleaf virus (GFLV, nepovirus),
and Tomato ringspot virus (ToRSV, nepovirus; Pouwels et al.,
2002a; Sanfacon et al., 2006). These viruses use a polyprotein

strategy to express their proteins and have a replication block con-
sisting of a nucleotide-binding protein (NTB), a genome-linked
protein (VPg), a proteinase (Pro), and an RNA-dependent RNA
polymerase (Pol; Figure 1C). Although they share these properties
with picornaviruses (including the well-characterized poliovirus),
nepo- and comoviruses differ in that they have bipartite genomes.
The RNA1-encoded polyprotein contains all protein domains nec-
essary for replication and RNA1 can replicate independently of
RNA2 (Vos et al., 1988; Viry et al., 1993 ).

Plant cells infected by como- and nepoviruses are characterized
by the presence of numerous membraneous vesicles, which are
derived from the endoplasmic reticulum (ER; Carette et al., 2000;
Ritzenthaler et al., 2002; Han and Sanfacon, 2003). In CPMV-
infected cells, vesicles first appear throughout the cytoplasm, but
later coalesce in a large perinuclear structure (Carette et al., 2002a).
Actin microfilaments are probably involved in this process (Carette
et al., 2002a). Perinuclear membrane aggregates are also observed
in ToRSV- and GFLV-infected cells (Ritzenthaler et al., 2002; Han
and Sanfacon, 2003). Viral replication proteins, de novo RNA syn-
thesis and dsRNA intermediates co-localize with these structures,
indicating that they are the site of viral replication (de Zoeten et al.,
1974; Carette et al., 2000, 2002a; Ritzenthaler et al., 2002; Han and
Sanfacon, 2003).

Vesicles induced in como- and nepovirus-infected cells are
irregularly shaped, vary in size and are usually surrounded by
a single-membrane (Carette et al., 2000; Ritzenthaler et al., 2002;
Figure 1A). These vesicles are similar to those observed in early
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FIGURE 1 | Membrane replication proteins encoded by CPMV,ToRSV

and poliovirus. (A) Electron micrograph showing the proliferation of
single-membrane vesicles in ToRSV-infected Nicotiana clevelandii plants.
The bar indicates 200 nm. (B) Models for the formation of viral replication
complexes. (1) In cells infected with poliovirus or coxsackie B3 virus, viral
integral membrane proteins (red ovals) induce positive curvature of the
membrane allowing the budding of tubular structures. Other viral
replication proteins (e.g., polymerase, green ovals) interact with the viral
membrane proteins. Host factors and viral RNA (not shown) associate with
the replication complex by protein–protein and protein–RNA interactions.
Single-membrane vesicles may bud out and form double-membrane
vesicles after the internal collapse of the single-membrane vesicle and
subsequent membrane fusion to allow its circularization. Late in infection,
double-membrane vesicles are predominant in picornavirus-infected cells.
This model is based on electron tomography observations from Belov et al.
(2012) and Limpens et al. (2011). (2) In cells infected with many plant and
animal viruses, induction of negative membrane curvature results in
membrane invagination and formation of spherules in the lumen of the
membrane. In plant, spherules have been observed in association with
membranes from the ER (brome mosaic virus), chloroplast (turnip yellow
mosaic virus), peroxisome (tomato bushy stunt virus) and mitochondria
(carnation Italian ringspot virus). The spherules are connected to the
cytoplasm by a neck. Viral integral membrane proteins (red ovals) line the

(Continued)

FIGURE 1 | Continued

interior of the spherule. The viral polymerase (green ovals) as well as other
viral proteins, host factors and the viral RNA (not shown) are enclosed in
the spherule. Release of the vesicle in the lumen of the membrane may
be followed by budding of a double-membrane vesicle into the cytoplasm.
This model has been discussed in recent reviews (den Boon and Ahlquist,
2010; Laliberte and Sanfacon, 2010; Nagy and Pogany, 2012). (C) Organiza-
tion of replication protein domains in the polyproteins of CPMV, ToRSV, and
poliovirus. The RNA1-encoded polyproteins of CPMV and ToRSV are shown.
For poliovirus, the polyprotein encoded by the single genomic RNA is shown,
although the P1 region (containing the structural proteins) is truncated as
indicated by the diagonal bars. Vertical lines represent the protease cleav-
age sites. Conserved motifs are: RNA-dependent RNA polymerase (Pol,
green ovals), protease (Pro, orange diamond), nucleotide-binding protein
(NTB, red oval), Co-Pro and X2 (purple square). Horizontal bars under each
polyprotein represent integral membrane proteins that have been detected
in virus-infected cells.The matureToRSV X2 protein is shown with a question
mark. Although likely, its presence in infected cells could not be confirmed
due to the lack of antibodies. (D)The regions of the polyprotein containing the
putative membrane anchors are shown for each virus. Predicted membrane-
association domains are indicated with blue barrels (hydrophobic helices)
or with yellow/blue barrels (amphipathic helices, with the yellow half rep-
resenting the polar/charged hydrophilic side of the helix and the blue half
representing the hydrophobic side of the helix).

stages of infection by poliovirus and coxsackie B3 virus (both
picornaviruses). Three-dimensional reconstruction of these early
picornavirus-induced structures revealed that they are branching
tubular structures rather than closed vesicles (Limpens et al., 2011;
Belov et al., 2012). Positive membrane curvature induced by viral
membrane proteins allows budding of tubular structures from
the surface of the membrane. Replication proteins accumulate on
the outside of the single-membrane structures (Figure 1B, model
1). That GFLV- and poliovirus-induced vesicles are immuno-
precipitated by antibodies against viral replication proteins, is
consistent with this model (Bienz et al., 1994; Carette et al., 2000).
In contrast, membrane structures induced by many plant viruses
(including bromo-, tombus-, and tymoviruses) are formed by
membrane invagination and require negative membrane curva-
ture. These replication complexes are sheltered inside spherules
that are connected to the cytoplasm by a neck (Figure 1B, model 2).

Of the replication proteins encoded by como- or nepovirus
RNA1, two contain obvious hydrophobic regions: the comovirus
Co-Pro and NTB proteins and the cognate nepovirus X2 and NTB
proteins (Figure 1D). In infected cells, mature proteins co-exist
with stable intermediate polyproteins (Figure 1C). The CPMV
Co-Pro is only detected as a mature protein due to efficient cleav-
age between Co-Pro and NTB. However, NTB is found either
as a mature protein or within various intermediates (NTB–VPg,
NTB–VPg–Pro, and NTB–VPg–Pro–Pol; Wellink et al., 1986). In
contrast, processing at the nepovirus X2–NTB cleavage site is
inefficient in vitro leading to the accumulation of X2–NTB and
X2–NTB–VPg in addition to X2 and NTB (Wang and Sanfa-
con, 2000; Wetzel et al., 2008). In ToRSV-infected cells, NTB,
NTB–VPg, and X2–NTB–VPg are tightly associated with ER
membranes active in viral replication (Han and Sanfacon, 2003).
In contrast, only a sub-population of a polyprotein containing
the VPg, Pro, and Pol domains (VPg–Pro–Pol’) is associated
with replication-competent membranes and this association is
peripheral, suggesting that it requires an interaction between
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VPg–Pro–Pol’ and a membrane protein (Chisholm et al., 2007).
Similarly, only a fraction of VPg–Pro–Pol is membrane-bound
in CPMV-infected cells (Dorssers et al., 1984). When expressed
individually, the ToRSV X2, NTB and NTB–VPg and the CPMV
Co-Pro and NTB–VPg associate with ER membranes, while pro-
teins containing the ToRSV or CPMV VPg, Pro, and Pol domains
remain in the soluble cytoplasmic fraction (Carette et al., 2002b;
Zhang et al., 2005; Zhang and Sanfacon, 2006;Chisholm et al.,
2007 ). Thus, the CPMV Co-Pro and NTB and ToRSV X2 and
NTB and/or intermediate polyproteins containing these protein
domains are likely to act as membrane anchors for the replication
complex.

The nucleotide-binding motif of the nepo- and comovirus NTB
is related to that of the poliovirus 2C protein (Figure 1C). The
nepo- and comovirus NTB also contain a hydrophobic C-terminal
domain, which is absent in 2C (Figure 1D). The poliovirus 3A
protein (immediately downstream of 2C in the polyprotein) has
a hydrophobic domain that corresponds to the C-terminal region
of the nepo- and comovirus NTB, although polyproteins contain-
ing both 2C and 3A are not detected in infected cells (Figure 1C;
Cameron et al., 2010). The ToRSV X2, and CPMV Co-Pro are
highly hydrophobic and share a signature sequence (F-x27-W-
x11-L-x23-E; Rott et al., 1995), which is also found in the cognate
proteins of nepo-, como-, faba-, and cheraviruses (Sanfacon et al.,
2011). Co-Pro is a protease co-factor that slows the processing
of the CPMV RNA1 polyprotein (Peters et al., 1992). However,
there is no experimental evidence that X2 regulates the nepovirus
protease activity (Wang and Sanfacon, 2000; Wetzel et al., 2008).
Thus, the conserved motif may be important for another com-
mon activity of Co-Pro and X2. The poliovirus 2B protein is
located immediately upstream of 2C (Figure 1D) but does not
share sequence motifs with X2 and Co-Pro, other than a general
hydrophobicity.

MEMBRANE MODIFICATIONS AND SYMPTOMS INDUCED
BY THE COMOVIRUS Co-Pro AND NTB–VPg
When overexpressed from a viral vector, the CPMV NTB–VPg
or Co-Pro induces the formation of small ER-derived perinuclear
bodies (Carette et al., 2002b). Proliferation of the cortical ER is
also observed after overexpression of Co-Pro. These structures
resemble the ER modifications observed in early stages of natural
CPMV infections but differ from the large perinuclear structures
present later in infection. Thus, both proteins may act together to
induce the larger structures in natural infections. NTB and NTB-
containing intermediate polyproteins co-immunoprecipitate with
Co-Pro, suggesting that Co-Pro and NTB interact with each other
(Wellink et al., 1986). This situation is reminiscent of that observed
with poliovirus membrane proteins. While 3A, 2C, and 2BC each
induce ER modifications, co-expression of 3A and 2BC together
is required to induce vesicles that are similar to those observed in
natural poliovirus infections (Suhy et al., 2000). Protein–protein
interactions among these proteins are well-documented (Teterina
et al., 2006; Yin et al., 2007).

Ectopic overexpression of CPMV Co-Pro or NTB–VPg induces
local necrosis in plant (Carette et al., 2002b). Interestingly, CPMV
does not cause necrosis in natural infection, even though Co-
Pro and NTB–VPg accumulate in infected cells. Accumulation of

these proteins in electron-dense bodies, which are probable sites
of protein aggregation, may help reduce their toxicity (Carette
et al., 2002b). Comparison of the symptomatology induced by
chimeric constructs of two isolates of bean pod mosaic virus
(another comovirus) also points to Co-Pro and NTB as symptom
severity determinants (Gu and Ghabrial, 2005). Chimeric con-
structs containing Co-Pro or NTB from the severe isolate induce
increased symptomatology and accumulate to higher level than
the mild isolate. Co-Pro and NTB may regulate the rate of virus
replication, in agreement with their proposed role in replication
complex assembly. Although the severe symptoms may be due
to increased accumulation of viral products, possibly triggering
plant defense responses, it may be a direct consequence of the
membrane alterations induced by NTB and Co-Pro. Poliovirus 2B
and 3A induce apoptosis when overexpressed (Madan et al., 2008).
At least for 2B, the induction of apoptosis was correlated with its
viroporin activity, which affects the integrity of various mem-
branes, including mitochondrial membranes (Madan et al., 2008,
2010). Although a sub-population of the CPMV NTB–VPg targets
chloroplast membranes (Carette et al., 2002b), there is no exper-
imental evidence that mitochondria are targeted. Further studies
will be necessary to investigate possible correlations between mem-
brane alterations and symptomatology induced by the comovirus
NTB and Co-Pro proteins and to determine whether the nepovirus
X2 and NTB proteins can alter membrane structures and induce
symptoms.

MEMBRANE TOPOLOGY OF THE ToRSV X2 AND NTB:
EVIDENCE FOR OLIGOMERIZATION AND VIROPORIN
ACTIVITY
Membrane association of integral membrane proteins can be
directed by transmembrane α-helices, which are highly hydropho-
bic, or by amphipathic α-helices. Amphipathic helices initially
insert parallel to the membranes with their hydrophobic face
inserted in the lipid bilayer (Figures 2A,B). Oligomerization of
amphipathic helices can lead to the formation of aqueous pores
whereby the hydrophilic faces of the helices orient toward the pore
and the hydrophobic faces interact within the membrane envi-
ronment (Gonzalez and Carrasco, 2003; Figure 2B). Hydropho-
bic intra- and intermolecular interactions among amphipathic
and adjacent hydrophobic helices can stabilize the oligomers
(Figure 2B), as suggested for the poliovirus 2B protein (Agirre
et al., 2002; Martinez-Gil et al., 2011).

The hydrophobic C-terminal domain and a predicted
N-terminal amphipathic helix of the ToRSV NTB protein
(Figure 1D) are each sufficient to target GFP fusion proteins to
ER membranes in plant cells or to direct the insertion of NTB
or NTB–VPg into canine microsomal membranes in vitro (Wang
et al., 2004; Zhang et al., 2005). These domains are conserved in the
sequence of NTB from other nepo- and comoviruses (Figure 1D).
The C-terminal hydrophobic region of the ToRSV NTB contains
a highly hydrophobic α-helix, which traverses the membrane.
The VPg domain of NTB–VPg is translocated in the membrane
lumen (topology 1, Figure 2C), allowing the recognition of a
naturally occurring N-glycosylation site (Wang et al., 2004; Zhang
et al., 2005). The luminal orientation of the C-terminal region of
NTB–VPg was confirmed by proteinase K protection assays using
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FIGURE 2 |Topology model forToRSV membrane replication proteins.

(A) Model for the parallel insertion of an amphipathic helix. The hydrophobic
side of the helix (blue) inserts in one leaflet of the lipid bilayer while the
polar/charged hydrophilic side of the helix (yellow) is exposed to the
cytosolic face of the membrane. This insertion displaces the lipid
headgroup, causing the acyl chain to reorient and inducing positive
membrane curvature. (B) Model for the oligomerization of amphipathic
helices and formation of an aqueous pore. In the top panel, an amphipathic
helix is inserted parallel to the lipid bilayer (horizontal gray lines) of the
membrane (left). Formation of an aqueous pore (double-ended red arrow)
requires oligomerization of four or six amphipathic helices (middle). In the
aqueous pore, the hydrophilic side of the helix (yellow) is exposed toward
the pore, while its hydrophobic side (blue) is oriented toward the
membrane lipid bilayer. A simplified representation of the pore shows only
two molecules to better visualize each side of the amphipathic helix relative
to the pore (right). In the bottom panel, a membrane protein consisting of
an amphipathic helix and a hydrophobic helix (blue) is shown. After initial
membrane insertion of the monomer with the amphipathic helix parallel to
the membrane (left), an aqueous pore is formed by oligomerization of the
amphipathic helix (middle). The hydrophobic helix of each molecule is
located on the outside of the pore alongside the amphipathic helix (model
shown for a hexamer). Hydrophobic interactions between the hydrophobic
side of the amphipathic helix and the hydrophobic helix stabilize pore
formation. A simplified representation of the pore shows only two

(Continued)

FIGURE 2 | Continued

molecules (right). (C) Predicted topologies for NTB–VPg, X2, and X2–NTB–
VPg shown for monomers (left) or oligomers (right). Two possible topologies
are shown for NTB–VPg monomers (1 and 2, see text). To simplify the figure,
only two molecules are shown in the oligomer models. However, at least
four molecules would be necessary to form an aqueous pore (as shown in
B). The open circle represents the VPg domain and the red oval indicates the
conserved NTB motif. (D) Model for the induction of positive membrane cur-
vature by hydrophobic interactions of membrane proteins oligomers, shown
for NTB–VPg. On the left, blue arrows represent possible hydrophobic inter-
actions. These interactions (shown by broken blue lines on the right) would
induce positive membrane curvature. Similar hydrophobic interactions are
predicted to occur in X2 or X2–NTB–VPg oligomers (not shown).

membrane-fractions of ToRSV-infected cells (Han and Sanfacon,
2003). However, these results do not exclude the possibility that a
sub-population of the protein adopt an alternate topology. In vitro,
a second weakly predicted transmembrane α-helix traverses the
membranes when the first transmembrane helix is deleted (Wang
et al., 2004). In an alternate topology (topology 2, Figure 2C),
the NTB C-terminal hydrophobic region traverses the membrane
twice allowing a cytosolic orientation of the VPg. Experiments
are required to determine whether this alternate topology exists in
infected cells. Alternative topologies for NTB–VPg could regulate
the presentation of the VPg to the cytoplasmic face of the mem-
brane where protein–protein interactions and viral replication take
place.

The N-terminus of NTB is translocated in the membrane
lumen, suggesting oligomerization of the amphipathic helix and
pore formation (Zhang et al., 2005; Figure 2C). Pore formation
may be enhanced by hydrophobic interactions between the N-
terminal amphipathic helix and the C-terminal transmembrane
helix. Denaturing SDS-polyacrylamide gel electrophoresis (SDS-
PAGE) of NTB–VPg or of fragments containing the amphipathic
or transmembrane helices revealed the presence of additional
bands that correspond in size to oligomers. Membrane pro-
teins can conserve their oligomeric structure in the presence
of denaturing agents, due to strong hydrophobic interactions
(DeGrado et al., 2003). The potential NTB–VPg oligomers were
glycosylated, suggesting that oligomerization occurred within the
membranes (Wang et al., 2004; Zhang et al., 2005). Although
the topology model of NTB–VPg oligomers suggests the forma-
tion of an aqueous pore, further experimentation is required
to test whether the protein affects the membrane integrity
in vivo.

In plant cells, ER-targeting of ToRSV X2 is directed by two
strongly predicted transmembrane helices and a putative amphi-
pathic helix (Zhang and Sanfacon, 2006; Figure 1D). These
features are conserved in the X2 from other nepoviruses. Sim-
ilarly, three transmembrane helices and one amphipathic helix
are predicted in the CPMV Co-Pro (Carette et al., 2002b; Zhang
and Sanfacon, 2006; Figure 1D). The topology of ToRSV X2
was examined in vitro (Zhang and Sanfacon, 2006). The two
predicted transmembrane helices were found to traverse the mem-
brane, forming a hairpin and resulting in a cytosolic orientation
of the C-terminus of X2 (Figure 2C). The N-terminus of X2
was translocated to the membrane lumen. Analysis by SDS-PAGE
of full-length or truncated X2 suggests that, as for NTB–VPg,
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protein oligomerization occurs through hydrophobic interactions
(Zhang and Sanfacon, 2006). A topology model of X2 oligomers
implies the formation of an aqueous pore by oligomerization of
the amphipathic helix (Figure 2C). However, in vivo evidence in
support of this model is still lacking. Due to its highly hydropho-
bic nature, it has not been possible to produce antibodies against
X2. Thus, although the presence of mature X2 in ToRSV-infected
cells is likely, it could not be confirmed. However, polyproteins
corresponding to the expected molecular mass for X2–NTB–VPg
were detected with anti-NTB and anti-VPg antibodies (Han and
Sanfacon, 2003). Efforts are underway to develop ToRSV infec-
tious clones, which may allow the insertion of epitope tags in X2 to
confirm its presence in ToRSV-infected cells and examine its topol-
ogy in vivo (Chisholm and Sanfacon, unpublished). Although
insertion of hydrophilic epitope tags into hydrophobic membrane
proteins can hinder their function, a recent study described tol-
erated insertion sites in poliovirus membrane proteins (Teterina
et al., 2011a).

The topology models for X2 and NTB–VPg pose some prob-
lems when applied to the X2–NTB–VPg polyprotein. The cytosolic
orientation of the C-terminus of X2 is in apparent conflict with
the luminal orientation of the N-terminus of NTB. However, the
presence of two strong transmembrane domains in the X2 domain
of X2–NTB–VPg may prevent the membrane translocation of the
NTB amphipathic helix, forcing it to insert parallel to the mem-
branes (Figure 2C). Thus, processing at the X2–NTB cleavage site
may influence the orientation of the NTB amphipathic helix and
alter the ability of NTB and/or X2 to modify intracellular mem-
branes. The impact of proteolytic cleavage on membrane topology
was demonstrated for the poliovirus 3A and 3AB (Fujita et al.,
2007). Using a fluorescence quenching method, 3AB was shown
to adopt a single topology, in which the hydrophobic domain is
parallel to the membrane. In contrast, 3A adopts two possible ori-
entations, one of which traverses the membrane. It was suggested
that the hydrophilic VPg domain prevents the membrane translo-
cation of the 3A hydrophobic domain in 3AB. Regulated cleavage
of the poliovirus 2BC also impacts its membrane-modification
activities. Although 2B,2C,and 2BC can target to membranes, only
2BC induces a proliferation of membraneous vesicles (Suhy et al.,
2000). On the other hand, poliovirus mutants with decreased pro-
cessing efficiency at the 2BC cleavage site have reduced membrane
permeabilization activity, suggesting that the release of mature 2B
from 2BC is essential for its viroporin function (van Kuppeveld
et al., 1996).

INTERACTION OF VIRAL MEMBRANE PROTEINS WITH HOST
FACTORS: TOWARD A MECHANISM FOR MEMBRANE
MODIFICATION
The experimental evidence points to a role for como- and
nepovirus membrane replication proteins in altering host
membranes and assembling the replication complexes. Positive

membrane curvature can be induced by parallel insertion
of amphipathic helices (Figure 2A) or by intra- and inter-
molecular hydrophobic interactions among membrane protein
oligomers (as shown for NTB–VPg, Figure 2D; McMahon and
Gallop, 2005).

Host factors are also likely to play an important role. The
secretory pathway is hijacked by poliovirus to help the forma-
tion of membraneous vesicles, resulting in an inhibition of host
protein transport (Hsu et al., 2010). The 2B and 3A proteins
inhibit the secretory pathway (Doedens and Kirkegaard, 1995).
3A interacts with several components of the secretory pathway,
including ACBD3, a Golgi adaptor protein (Greninger et al., 2012;
Sasaki et al., 2012) and GBF1, a guanine nucleotide exchange fac-
tor that activates Arf1, a cellular GTPase and regulator of the
secretory pathway (Wessels et al., 2006; Belov et al., 2008; Tete-
rina et al., 2011b). Arf1 is also the known target of brefeldin
A, an inhibitor of the secretory pathway that blocks poliovirus
infection (Irurzun et al., 1992; Maynell et al., 1992). The 3A–
GBF1 and 3A–ACBD3 interactions may assist in the recruitment
of P1KIIIβ, an enzyme involved in phospholipid synthesis, to
the replication complex (Hsu et al., 2010; Greninger et al., 2012;
Sasaki et al., 2012). P1KIIIβ would alter the membrane lipid
composition, possibly affecting the membrane curvature and facil-
itating the formation of virus factories. However, the sensitivity
of picornaviruses to brefeldin A varies greatly and the GBF1–3A
interaction is not conserved for all picornaviruses, suggesting that
the interaction between viruses and the host secretory pathway
varies.

How do these findings apply to como- and nepoviruses? Repli-
cation of CPMV and GFLV is hindered by cerulenin (Carette
et al., 2000; Ritzenthaler et al., 2002), an inhibitor of type II fatty
acid synthase, suggesting that de novo phospholipid synthesis is
required for membrane proliferation, possibly involving changes
in membrane lipid composition. GFLV and CPMV replication is
inhibited by brefeldin A (Pouwels et al., 2002b; Ritzenthaler et al.,
2002). However, the interaction of nepo- and comoviruses with
the secretory pathway is not well understood and their ability to
block protein secretion has not been investigated. Two SNARE-
like proteins from Arabidopsis thaliana were shown to interact
with the CPMV NTB–VPg (Carette et al., 2002c). Although their
function is not known, they may regulate membrane fusion and
vesicle formation. Identification of additional interaction partners
of the nepo- and comovirus membrane proteins will be essen-
tial to better understand membrane remodeling directed by these
proteins.
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