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Increasing of world population marks a serious need to create new crop cultivars and
medicinal plants with high growth and production at any environmental situations. Among
the environmental unfavorable conditions, salinity is the most widespread in the world.
Crop production and growth severely decreases under salt stress; however, some crop
cultivars show significant tolerance against the negative effects of salinity. Among salt
stress responses of crops, proteomic responses play a pivotal role in their ability to cope
with it and have become the main center of notification. Many physiological responses are
detectable in terms of protein increase and decrease even before physiological responses
take place. Thus proteomic approach makes a short cut in the way of inferring how
crops response to salt stress. Nowadays many salt-responsive proteins such as heat
shock proteins, pathogen-related proteins, protein kinases, ascorbate peroxidase, osmotin,
ornithine decarboxylase, and some transcription factors, have been detected in some
major crops which are thought to give them the ability of withstanding against salt stress.
Proteomic analysis of medicinal plants also revealed that alkaloid biosynthesis related
proteins such as tryptophan synthase, codeinone reductase, strictosidine synthase, and 12-
oxophytodienoate reductase might have major role in production of secondary metabolites.
In this review we are comparing some different or similar proteomic responses of several
crops and medicinal plants to salt stress and discuss about the future prospects.
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INTRODUCTION
Salt stress limits agricultural production throughout the world and
is becoming an increasingly global problem which affects about
20% of global irrigated land (Flowers and Yeo, 1995). Many major
crops such as pepper, eggplant, potato, lettuce, and cabbage are
salt-sensitive (Shannon and Grieve, 1999). In addition, important
cereals such as rice and maize are also sensitive to hyperosmotic
stresses and their production seriously decreases in saline soils
(Ngara et al., 2012). Therefore increasing of soil salinization as
well as the growing world population shows the increasing need
to develop crops which are able to adapt to salt stress.

Tolerance against salt stress needs profound changes in gene
expression which is accompanied with changes in composition of
plant transcriptome, metabolome, and proteome. Changes in gene
expression at transcript level cannot exactly show the changes at
protein level. This reflects the high importance of plant proteome
since proteins are directly involved in plant stress response. In
addition to enzymes, proteins include components of transcrip-
tion and translation machinery therefore they can regulate plant
stress response at transcript and protein levels (Kosova et al., 2011).
Thus, investigation of plant response to stress conditions at pro-
tein level can provide a powerful tool to reveal the physiological
mechanisms underlying plant stress tolerance.

One of the most popular methods to study of the plant
responses to environmental stresses is proteome analysis since the
extraction of proteins is easy and the obtained two-dimensional
electrophoresis gels have great reproducibility and also the mass

spectrometry (MS) for sequencing of proteins are very sensi-
tive (Komatsu et al., 2003). Proteomics has been used to study
of the expression of salt stress related proteins in several crops
such as rice (Parker et al., 2006), potato (Aghaei et al., 2008a),
soybean (Aghaei et al., 2008b), and foxtail millet (Veeranagamalla-
iah et al., 2008), which can provide a better indication of cellular
activities under salt stress. According to previous studies stress
proteins such as osmotin (Qureshi et al., 2007), reactive oxy-
gen species (ROS) scavenging enzymes (Abbasi and Komatsu,
2004), and pathogen-related proteins (PRPs; Dani et al., 2005)
might be used as important molecular markers for the improve-
ment of salt tolerance. Zhang et al. (2012) have summarized 2171
salt-responsive proteins from proteomic analysis of 34 different
plant species (19 crops and other plants) and functionally cat-
egorized these proteins as follows; photosynthesis, carbohydrate
and energy metabolism, metabolism, stress and defense, tran-
scription, protein synthesis, protein folding and transport, protein
degradation, signaling, membrane and transport, cell structure,
cell division/differentiation and fate, miscellaneous, and unknown
function. We have discussed the proteomic responses of 13 eco-
nomically important crop plants to salt stress and also in compare
to five medicinal plants.

Medicinal plants are among the major and important group of
crops (Rehm and Espig, 1991) which have been used for traditional
prevention and treatment of diseases and using herbal medicines
have a long history (Williamson, 2003). Based on the World Health
Organization (WHO), about 80% of the world populations still
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rely on medicinal herbs. Herbal medicinal products are used by
nearly 19% of the adult populations in the United States (Kennedy,
2005; Patwardhan et al., 2005); however, the quality and the quan-
tity of secondary metabolites of medicinal plants strongly depend
on environmental conditions.

Although the effects of salt stress on crops have been investi-
gated widely and well studied, however, in the case of medicinal
plants there is lack of information. The molecular mechanisms
of salt tolerance and secondary metabolism in these commercially
important crops have not been investigated as other crops. Thus
comparing the responses of medicinal plants to salt stress with
some other important crops has a great value.

Salt stress significantly affects the production of essential oils
and the constituents of medicinal plants, thus the investigation
on the mechanisms of salt tolerance in medicinal plants has a
great importance. Creation of salt-tolerant medicinal plant leads
to increased production of raw materials for drugs, flavors, fra-
grances, and spices all over the world. In order to increase the
production of a special compound in a medicinal plant it is
necessary to know which protein or proteins are involved in
the biosynthetic pathway and as a consequence, the proteomic
approach is a powerful tool to determine the responsible proteins
in secondary metabolism in medicinal plants.

Proteomics is also widely used to analyze biochemical pathways
and the complex responses of plants to abiotic stresses. Using
comparative proteomic investigations of plants before and after
specific stresses we are able to reveal the defensive mechanisms
which are applied by plants (Timperio et al., 2008). Because of the
importance of salt stress effects on crops and medicinal plants and
the ability of proteomics as a widely used and powerful tool to
determine the proteins which are likely responsible in salt stress
responses of these plants in this review we outline the proteome
analysis of crops and medicinal plants under salt stress.

EFFECTS OF SALT STRESS ON CROPS
Salt stress results in impairments in growth of all plants as well
as crops, and its effects can be categorized in two short and
long terms. Osmotic stress, lowering of external water potential
and reduction of water uptake by plants, similar to the situation
under drought, all fall in the category of short term effects (Wang
et al., 2003); however, ion toxicity occurring when crops are not
able to compartmentalize ions properly, falls in the long term
effects. In salt-tolerant crops leaf cells can remove Na+ as well
as Cl− from the cytoplasm and then sequester them in the vac-
uole. Na+ and Cl− are easily taken up when salt concentration
in the soil increases which consequently leads to displacement
of mineral nutrients such as K+, Ca++, and also nitrate, which
can negatively affect the survival of crops. Introduction of ion
excess into the cells causes formation of ROS such as super-
oxide, hydrogen peroxide, singlet oxygen and hydroxyl radicals,
which can disrupt cellular homeostasis and trigger the expres-
sion of genes involved in defense mechanisms (Timperio et al.,
2008; Du et al., 2010). In addition, gene expression is also influ-
enced by salt stress. For example genes involved in the metabolic
pathways of nitrogen reduction and fixation and methionine
biosynthesis are significantly affected by salt stress (Ouyang et al.,
2007). At higher levels of salt stress, Na+ and Cl− have direct

toxic effects on the structure of membrane and enzyme leading
to the uncontrolled entrance or efflux of minerals and nutrients
(Qureshi et al., 2007).

To reveal the facts concerning the proper function of genes
and the biochemical kinetics of plants against salt stress, genome
sequence information alone is insufficient and consequently it is
not possible to determine the exact responsive mechanisms. To
solve these problems, more comprehensive approaches including,
quantitative and qualitative analysis of gene expression products
are necessary at the transcriptome, metabolome, and proteome
levels. Many investigations have shown that, some environmental
stresses which cause cellular dehydration, like freezing, salt and
water stress, often lead to similar changes in plant gene expres-
sion and metabolism (Rabbani et al., 2003) and a strong cross-talk
can be seen in their signaling pathways. By detection of proteins
which are involved in salt stress responses the designated defense
mechanism can be inferred (Timperio et al., 2008).

HOW CROPS RESPOND TO SALT STRESS
Responses of crops to salt stress closely depend on their ability
of stress tolerance or sensitivity. Classification of crops, based
on salt tolerance showed that; sugar beet and durum wheat are
salt-tolerant, broad bean, maize, potato, sunflower, and tomato
are regarded as moderately salt-sensitive (Katerji et al., 2000). The
classification of soybean in two different classes as moderately salt-
sensitive and moderately salt-tolerant can be ascribed to difference
in variety (Katerji et al., 2000).

Increasing of the concentrations of NaCl in soil results in
osmotic stress which leads to create a misbalance in intracellu-
lar ion homeostasis (Chinnusamy et al., 2005). As a consequence
of osmotic stress the osmotic adjustment of cell cytoplasm will
be induced which leads to accumulation of several low-molecular
osmolytes such as; raffinose, glycine betaine, and proline as well
as high molecular hydrophilic proteins from late embryogene-
sis abundant proteins superfamily (Kosova et al., 2011). Glycerol,
sucrose, polyamines, putrescine, and other molecules which are
not highly charged but polar and highly soluble, have a larger
hydration shell to protect biological macromolecules against the
damaging effects of salt stress (Sairam and Tyagi,2004). Accumula-
tion of compatible solutes in the plant tissue is a strategy to combat
salinity in sugar beet (Wakeel et al., 2011) and some other crops
(Zhu, 2002). Free proline plays a major role in the adjustment
of the osmotic potential in a number of crops such as soybean
(Aghaei et al., 2008b), potato (Aghaei et al., 2008a), and tomato
(Amini et al., 2007) under hyperosmotic conditions. Proline acts
both as a protective agent and a free-radical scavenger therefore,
crops may overproduce proline in an attempt to regulate the pH
of their cytosol (Razavizadeh et al., 2009).

Expression of biosynthetic enzymes is an important way to
counter salt stress by increasing compatible solute production
(Sakamoto and Murata, 2000) and the enhancement of Na+ export
from cells and thereby establishment of homeostasis is the other
approach against salinity. Zhu (2001) also showed that over-
expression of a plasma membrane Na+/H+ antiporter confers
salt tolerance in Arabidopsis. Maintaining low cytosolic salt con-
centrations in crops can be controlled by the ability to selective
ion uptake, ion exclusion, and compartmentalization of Na+ in
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vacuoles (Liu et al., 2012). Excess toxic ions, for example, Na+, in
the cytosol and a deficiency of essential ions such as K+ which is
a consequence of ionic stress, disrupts ion homeostasis in plant
cells (Zhu, 2002) therefore various ion transporters, pumps, and
channels play crucial roles in these processes (Zhu, 2003; Reddy
and Reddy, 2004).

Antioxidant enzymes and soluble proteins in the cytoplasm of
potato (Aghaei et al., 2009) and cotton (Gossett et al., 1994) are
able to protect cells from salt-induced oxidative stress. In addition
to above mentioned mechanisms which crops use as a strategy
against salt stress it has been shown that in tomato, plant growth
regulators such as abscisic acid (ABA) and ethylene, also play a
pivotal role in the complicated story of abiotic stress (Ouyang
et al., 2007).

WHICH PROTEINS ARE INVOLVED IN CROPS IN RESPONSE
TO SALT STRESS?
Plant cells may alter their gene expression in order to toler-
ate salt stress which results in an increase, decrease, induction
or total suppression of some stress responsive proteins such as
malate dehydrogenase (NADP+) and pyruvate phosphate diki-
nase (Ngara et al., 2012). Different families of proteins which have
been newly synthesized, accumulated, or decreased are known
to be associated with crops response to salt stress (Table 1).
These proteins may be involved in signaling, translation, host-
defense mechanisms, carbohydrate metabolism, and amino acid
metabolism. Other proteins such as antioxidant enzymes and

chaperonins may encounter salt stressors directly and other groups
of proteins like key enzyme in osmolyte synthesis encounter
salt stress indirectly (Wang et al., 2004). For these reasons elu-
cidating the various mechanisms of plant response to salt stress
and their roles in acquired stress tolerance in crops is of great
importance.

Over-expression of ornithine decarboxylase gene in carrot cells
indicated that these cells were significantly more tolerant to salt
stress (Bohnert et al., 1995). It was also demonstrated that salt-
tolerant varieties of rice showed higher levels of ABA-responsive
proteins in their roots (Moons et al., 1995). Because of the impor-
tant roles of proteins in salt stress tolerance in crops analysis of
proteins under salt stress has a great value. Therefore proteome
analysis which is an important approach has been recently used
to investigate the responses of crops to salt stress as well as many
other biotic and abiotic stresses.

In a comparative study of salt-resistant and salt-sensitive wheat
genotypes, Wang et al. (2007) identified 23 variety-specific salt-
responsive proteins. A major group of proteins which increased
under salinity in rice were ROS scavenging enzymes such as:
ascorbate peroxidase, dehydroascorbate reductase, peroxiredoxin,
superoxide dismutase. Increasing of ROS scavenging enzymes sug-
gests that salt stress results in oxidative stress in rice (Salekdeh
et al., 2002; Abbasi and Komatsu, 2004). It has been shown that
in pea cultivars exposed to NaCl, leaf mitochondrial Mn-SOD,
and chloroplast Cu/Zn-SOD activities increased under salt stress
(Hernandez et al., 1995).

Table 1 | Identified major proteins increased in crop plants under salt stress using proteomics.

No. Crop plant Identified protein Role of protein in salt tolerance Reference

1 Carrot Ornithine decarboxylase Proline biosynthesis Bohnert et al. (1995)

2 Rice ABA-responsive proteins ABA biosynthesis Moons et al. (1995)

3 Rice APX, DHAR, SOD ROS scavenging Abbasi and Komatsu (2004)

4 Rice Sti1(HSPs) Defense mechanisms Kurek et al. (2002)

5 Pea Mn-SOD ROS scavenging Qureshi et al. (2007)

6 Pea PRPs Defense mechanisms Qureshi et al. (2007)

7 Potato Osmotin-like protein Osmotic stress tolerance Aghaei et al. (2008a)

8 Wheat Glutamine synthase Protein biosynthesis Caruso et al. (2008)

9 Wheat Glycine dehydrogenase Protein biosynthesis Caruso et al. (2008)

10 Tobacco PRPs Defense mechanisms Dani et al. (2005)

11 Tobacco Osmotin Osmotic stress tolerance Qureshi et al. (2007)

12 Soybean LEA proteins Seed development Aghaei et al. (2008b)

13 Tomato NHX1 Ion transport Ward et al. (2003)

14 Maize NHX1 Ion transport Neubert et al. (2005)

15 Sorghum Malate dehydrogenase, APX ROS scavenging Ngara et al. (2012)

16 Sugar beet Osmotin-like protein Osmotic stress tolerance Hajheidari et al. (2005)

17 Sugar beet Glycine decarboxylase Metabolism Wakeel et al. (2011)

18 Sugar beet Ferredoxin-NADP-reductase Photosynthesis and metabolism Wakeel et al. (2011)

19 Sugar beet Aminomethyltransferase Metabolism Wakeel et al. (2011)

DHAR, dehydroascorbate reductase; HSPs, heat shock proteins; PRPs, pathogen-related proteins; LEA, late embryogenesis-abundant; NHX1, Na+/H+ antiporter;
APX, ascorbate peroxidase; SOD, super oxide dismutase; ABA, abscisic acid.
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Nucleoside diphosphate kinase and guanine nucleotide-
binding protein which are involved in nucleotide metabolism
and enoyl-ACP reductase involving in fatty acid metabolism
in rice have been increased under salt stress (Dooki et al.,
2006). GTP-binding protein, lectin-like protein, ribulose-1,5-
bisphosphate carboxylase/oxygenase (RuBisCO) activase, ferritin,
fructose bisphosphate aldolase, photosystem II oxygen-evolving
complex protein, oxygen-evolving enhancer (OEE) protein 2,
and SOD were increased in rice (Abbasi and Komatsu, 2004).
PRPs, phytochelatins, chaperonins, and metallothioneins were
also involved in responses to salt stress in pea (Qureshi et al.,
2007). In wheat (Triticum durum) it has been shown that, glu-
tamine synthase which is a key enzyme for proline biosynthesis
and glycine dehydrogenase which is crucial for glycine betaine
biosynthesis were significantly increased under salinity stress
(Caruso et al., 2008).

Using proteomic approaches, it has been indicated that chiti-
nases, which are PRPs, were accumulated in leaf apoplast of
tobacco plants under saline conditions (Dani et al., 2005). It has
been confirmed that in transgenic variety of rice, protein sti1 which
is one of the heat shock proteins, appeared to be increased in
response to salt stress (Kurek et al., 2002; Qureshi et al., 2007).
These proteins are among well known stress responsive proteins
which are expressed in response to abiotic stresses such as heat,
cold, drought, salinity, and oxidative stress (Wang et al., 2004).
Aggregation of stress-denatured proteins is prevented by heat
shock proteins, and they facilitate the refolding of proteins in order
to restore their native biological functions (Wang et al., 2004).

Oxidative stress tolerance related proteins, glycine betaine syn-
thesis, photosynthesis, adenosine triphosphate (ATP) production,
protein degradation, cyanide detoxification, and chaperone activ-
ities were increased in Suaeda aegyptiaca leaves (Askari et al.,
2006). According to Aghaei et al. (2008b) beta-conglycinin and
late embryogenesis-abundant protein were increased in soybean
root and hypocotyl when exposed to salt stress.

It seems that in transgenic Arabidopsis and tomato plants vac-
uolar Na+/H+ antiporter could confer salt tolerance (Ward et al.,
2003). The over-expression of NHX1 contributed to improve
salt-resistance in maize (Neubert et al., 2005). A novel ethylene
responsive factor called TERF1 was identified by Huang et al.
(2004) in tomato, which might have function as a link between
the ethylene and osmotic stress pathways (Huang et al., 2004).
Enoyl-CoA hydratase and phosphoglycerate mutase-like protein
were increased in tomato under salt stress (Amini et al., 2007). In
sorghum leaf, it has been shown that the majority of the identi-
fied salt stress responsive proteins (28 spots) were energy related
proteins (50.9%). RuBisCO subunits, sedoheptulose bisphos-
phatase, phosphoribulokinase, ribulose 5-phosphate isomerase,
OEE1, malate dehydrogenase, and ascorbate peroxidase showed
an increased abundance following salt stress (Ngara et al., 2012).
Osmotin is one of the most studied proteins that are accumu-
lated in salt adaptation (Qureshi et al., 2007). The osmotin gene is
responsible for osmoprotectant synthesis, the most important of
which are proline and glycine betaine (Holmstrom et al., 2000).
Using a proteomic approach, Hajheidari et al. (2005) in sugar
beet and Aghaei et al. (2008a) in potato found an osmotin-like
protein increased in drought and salt conditions. It seems that

osmotin like proteins as well as osmotin can confer salt toler-
ance to these crops in response to osmotic stress resulted from salt
stress. Using proteomic approach it has been proposed that, NADP
reductase, aminomethyltransferase, and decarboxylase subunit T
in sugar beet have been increased in response to salt stress (Wakeel
et al., 2011) which suggests that, these proteins can be considered
as salt-responsive proteins in this crop. In addition to proteins
which have been increased in salt stressed crops, RuBisCO small
subunits, phosphor glycerate kinase, which catalyses a reduction
step in Calvin cycle, and phosphoribulokinase, which catalyses
regeneration of primary CO2 acceptor RuBP, were all decreased
in salt-treated crops such as soybean (Sobhanian et al., 2010) and
Triticum durum (Caruso et al., 2008).

Regarding above mentioned literature about different proteins
which have been induced under salt stress in different crops it can
be suggested that salt-responsive proteins are involved in a variety
of metabolic processes, such as scavenging of ROS, signal trans-
duction, transcription and translation, transporting, chaperones,
cell wall biosynthesis, photosynthesis, processing and degradation,
metabolism of energy, amino acids, and hormones.

EFFECTS OF SALT STRESS ON MEDICINAL PLANTS
Medicinal and aromatic plants are cultivated because of their active
constituents which are used for different purposes, especially for
production of anticancer drugs such as vincristine and paclitaxel
(Verpoorte et al., 2002). In order to create high yielding geno-
types of these plants under different environmental conditions,
response of medicinal and aromatic plants to salinity stress has
been reported in a substantial number of literatures (Said-Al Ahl
and Omer, 2011).

Salt stress affects medicinal plants on different physiological
stages. One of the most salt-sensitive growth stages which is
severely inhibited with increasing salinity is seed germination stage
(Sosa et al., 2005). Seed germination of Ocimum basilicum (Miceli
et al., 2003), Petroselinum hortense (Ramin, 2005), sweet marjoram
(Ali et al., 2007), and Thymus maroccanus (Belaqziz et al., 2009)
showed significant decrease under salt stress. Another stage which
is negatively influenced by salinity is seedling growth. It has been
previously reported that, seedling growth of Thymus maroccanus
(Belaqziz et al., 2009), basil (Ramin, 2005), chamomile and marjo-
ram (Ali et al., 2007) were severely decreased under salt stress. Slow
or less mobilization of reserve foods, suspending the cell division,
enlarging and injuring hypocotyls which are induced by salt stress
have been proposed as main reasons for these effects (Said-Al Ahl
and Omer, 2011).

Morphological characteristics such as number of leaves, leaf
area, and leaf biomass have been reduced under salt stress in
a number of medicinal plants. Similarly, negative effects of salt
stress have been observed in Majorana hortensis (Shalan et al.,
2006), peppermint (Aziz et al., 2008), geranium (Leithy et al.,
2009), Thymus vulgaris (Najafian et al., 2009), sage (Ben Taarit
et al., 2009), and Mentha pulegium (Queslati et al., 2010). Increas-
ing salt stress pronouncedly increased total soluble carbohydrate
contents of Salvia officinalis (Hendawy and Khalid, 2005) and
Satureja hortensis (Najafi et al., 2010).

There are some common responses between medicinal plants
and crops in response to salt stress and the mechanisms of salt
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tolerance in medicinal plants include many of the mechanisms
which have been explained for crops. Synthesis of compatible
solutes such as proline (Ghoulam et al., 2002), nitrogen-containing
compounds such as amino acids, amides, proteins, polyamines
(Mansour, 2000), and soluble sugars such as glucose, fructose,
sucrose, and fructans, have been reported in medicinal plants
under salt stress (Omami et al., 2006). It is supposed that these
compounds function in protection of cellular macromolecules,
scavenging of free radicals, osmotic adjustment, storage of nitro-
gen, and maintenance of cellular pH (Said-Al Ahl and Omer,
2011). However, because of the presence of high concentrations of
different aromatic compounds in these plants such as isoprenoids,
phenols, or alkaloids, at least parts of their response to salt stress is
mediated by antioxidant properties of these aromatic compounds.
Phenylpropanoid derived phenols such as flavonoids, tannins, and
hydroxycinnamate esters, which are produced in the course of
various stress situations, represent important radical scavengers
(Selmar, 2008).

SALT STRESS AND SECONDARY METABOLISM IN
MEDICINAL PLANTS
Secondary metabolites are supposed to have several functions, e.g.,
protective role against herbivores or pathogens, or an attracting
role for pollinators and seed spreading animals in medicinal plants
(Selmar, 2008). The close relationship between plant secondary
metabolism and defense response is widely recognized (Vascon-
suelo and Boland, 2007). Alkaloids, anthocyanins, flavonoids,
quinones, lignans, steroids, and terpenoids are among plant sec-
ondary metabolites which have found commercial applications
as drug, dye, flavor, fragrance, insecticide, and antioxidants
(Jacobs et al., 2000; Verpoorte et al., 2002). Therefore secondary
metabolites of medicinal plants have a great value; however,
molecular mechanisms underlying their production have not been
investigated widely.

Production of secondary metabolites by plants is not always
satisfactory and there are several factors which can restrict their
production. Type of medicinal plant species or genus, particu-
lar growth or developmental stage, specific seasonal conditions,
nutrient availability, or stress conditions are among these factors
(Verpoorte et al., 2002). It has been shown that reactions to salt and
drought stress might be responsible for the increase or decrease
in the content of relevant natural products; however, scientific
background in this field is still rare (Selmar, 2008). Medicinal
plants under salt stress similar to drought conditions accumu-
late higher concentrations of secondary compounds than control
plants which are cultivated under standard conditions. Selmar
(2008) monitored a strong increase in the concentration of tropane
alkaloids in Datura inoxia plants under salt stress.

Essential oils are among important secondary metabolites in
medicinal plants. Contradictory reports have been found con-
cerning the response of medicinal plants in terms of essential oil
production to salt stress. Essential oil yield decreased under salt
stress in Trachyspermum ammi (Ashraf and Orooj, 2006). Sim-
ilar results have been reported in several medicinal plants, e.g.,
Mentha piperita (Tabatabaie and Nazari, 2007), Thymus maroc-
canus (Belaqziz et al., 2009), basil (Said-Al Ahl and Omer, 2011),
and apple mint (Aziz et al., 2008). Although the main essential

oil constituents in Matricaria recutita increased under salt stress
(Baghalian et al., 2008); however, in Origanum vulgare the content
of carvacrol (the main essential oil constituent) and p-cymene and
γ-terpinene decreased under salt stress (Said-Al Ahl and Omer,
2011). Phenolic acid concentration increased in spearmint (Al-
Amier and Craker, 2007), Achillea fragrantissima (Abd EL-Azim
and Ahmed, 2009), and Mentha pulegium (Queslati et al., 2010) as
a result of salt stress. These contradictory results represents the dif-
ferent responses of medicinal plants to salt stress regarding to their
essential oil production; however, the fact that, some medicinal
plants may increase the production of essential oil concentra-
tion or its main constituents in response to salt stress encourage
us to determine the molecular mechanisms of salt stress on the
production of secondary metabolites in medicinal plants.

PROTEOMIC ANALYSIS OF MEDICINAL PLANTS TO
INVESTIGATE THE PRODUCTION OF SECONDARY
METABOLITES
Technical developments in genomics, proteomics, and
metabolomics represent a challenging complexity for scientific
analysis and will open new perspectives for ethno botanical and
phytomedical research purposes. Proteomics provides a promis-
ing approach for studying secondary metabolism in plants and
plant cells. Unfortunately the natural yield of secondary metabo-
lites in medicinal plants is generally low and the biochemistry of
the biosynthesis of these compounds is too complicated which
is poorly understood. Cell suspension cultures and metabolic
engineering are among strategies to increase the yield of these com-
mercially important chemicals. Over-expression of rate limiting
enzymes which are involved in biosynthesis of these compounds
has been used for this purpose (Verpoorte et al., 1999). There-
fore it is necessary to identify proteins involved in the secondary
metabolites biosynthesis. Enzyme isolation and characterization
by current approaches is time consuming and troublesome, thus,
the proteomic approach is a faster and more complete and using
this technology we are allowed to identify regulatory and transport
proteins as well as enzymes.

Table 2 summarizes recent proteomic investigations on some
medicinal plants and represents some of proteins which are sup-
posed to involve in the production of secondary metabolites.
The medicinal plant Catharanthus roseus has been used as a
best studied model system for secondary metabolite produc-
tion (Verpoorte et al., 1997). This plant produces some effective
anti-tumor drugs, vinblastine and vincristine which are alkaloid
compounds. However, alkaloid yields in suspension cell cultures
are generally too low to allow commercialization. Jacobs et al.
(2000) has used two-dimensional gel electrophoresis for pro-
teomic investigations of alkaloid production in C. roseus. Influence
of zeatin and 2,4-dichlorophenoxyacetic acid (2,4-D) on protein
patterns and alkaloid accumulation of C. roseus in a proteomic
approach showed that, proteins, which were decreased by 2,4-D
and increased by zeatin, may have a direct function as an enzyme
or an indirect role as a regulatory or transport protein in alka-
loid biosynthesis. A 28 kDa polypeptide which increased by zeatin
showed a close correlation with alkaloid production (Jacobs et al.,
2000). Another proteome analysis of C. roseus resulted in the dif-
ferential expressions of 88 protein spots which were selected for
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Table 2 | Identified proteins and their role in secondary metabolism in medicinal plants using proteomic approach.

No. Medicinal plant Identified protein Role of protein in secondary metabolism Reference

1 Catharanthus roseus Strictosidine synthase Biosynthesis of strictosidine in alkaloid biosynthesis Jacobs et al. (2005)

2 Catharanthus roseus Tryptophan synthase Biosynthesis of tryptamine as alkaloid precursor Jacobs et al. (2005)

3 Catharanthus roseus 12-oxophytodienoate reductase Biosynthesis of the regulator jasmonic acid Jacobs et al. (2005)

4 Panax ginseng Enolase, glyceraldehyde 3-phosphate

dehydrogenase, aldolase

Ginsenoside biosynthesis Nam et al. (2005)

5 Chelidonium majus Disease/defense-related proteins

Nucleic acid binding proteins

Secondary metabolite metabolism Nawrot et al. (2007)

6 Papaver somniferum Codeinone reductase Morphine biosynthesis Decker et al. (2000)

identification by MS. Full protein spots were identified including
two isoforms of strictosidine synthase, which catalyzes the for-
mation of strictosidine in the alkaloid biosynthesis; tryptophan
synthase, which is needed for the supply of the alkaloid precursor
tryptamine, 12-oxophytodienoate reductase, which is indirectly
involved in the alkaloid biosynthesis as it catalyzes the last step in
the biosynthesis of the regulator jasmonic acid (Jacobs et al., 2005).
Jasmonic acid is essential for signal transduction in the produc-
tion process of alkaloids. Its involvement in stress reactions was
demonstrated by induction of defense proteins including proteins
involved in the biosynthesis of secondary metabolites. Jasmonic
acid induces alkaloid biosynthesis in C. roseus (Jacobs et al., 2005).

Effects of the secondary metabolites of Salvia miltiorrhiza on
atherosclerotic lesions (Hung et al., 2010) and cancer have been
investigated at the proteomic level (Buriani et al., 2012). Another
medicinal plant which has been analyzed by proteomic approach
is Panax ginseng. The important secondary metabolites of gin-
seng especially ginsenoids are mainly produced in its roots. In a
proteomics experiment in order to find the proteins which are
involved in production of its important secondary metabolites,
the hairy roots of Panax ginseng were been cultured and the
root proteome was analyzed. From the 159 cultured hairy root
proteins in ginseng, the putative functions of 91 proteins were
ascertained. More than 20% of the identified proteins were related
to energy metabolism and stress response. Although some proteins
such as enolase, glyceraldehyde 3-phosphate dehydrogenase, and
aldolase were identified as isotypes; however, none of them was
directly related to the metabolism of secondary products (Nam
et al., 2005).

In order to determine the major protein content of medici-
nal plant Chelidonium majus, two-dimensional gel electrophoresis
of milky sap was investigated. Among 21 protein spots, defense
related proteins, nucleic acid binding proteins as well as signal-
ing proteins comprised the main protein components of milky
sap in this plant (Nawrot et al., 2007). However, none of iden-
tified proteins in this plant could be directly related to its
secondary metabolites production. In another attempt, to deter-
mine which proteins are involved in production of morphine
or other secondary metabolites in opium poppy Decker et al.
(2000) performed a proteomic analysis using two-dimensional
gel electrophoresis of poppy latex. The main detected protein
was codeinone reductase which suggests that codeinone reductase

might be a specific enzyme in morphine biosynthesis in this
important medicinal plant.

The main limitation for the identification of proteins from
medicinal plants is the lack of sequence data of both genes and pro-
teins. For example, the SWISS-PROT database still contains only
a few protein entries from C. roseus (Jacobs et al., 2005), Panax
ginseng (Nam et al., 2005), Papaver somniferum (Decker et al.,
2000), and many other medicinal plants. Consequently the lack
of genomic DNA sequence and protein information constitutes a
major bottleneck with regard to the identification of proteins in
proteomic studies of medicinal plants.

FUTURE PROSPECTIVE
Among abiotic stresses, salt stress is a well studied stress in which
proteomic based techniques have provided a powerful tool to
reveal the molecular mechanisms of salt stress responses. Several
salt-responsive proteins have been proposed for crops using these
techniques and using these proteins and their corresponding genes
it will be possible to change salt-sensitive crops to salt-tolerant
crops in near future. Despite these advances in crop stress toler-
ance researches using proteomics, there is still a few and limited
investigations in the field of proteome analysis of medicinal plants
under salt stress or other situations. Although medicinal plants
are very important regarding to their secondary metabolites which
are used as herbal drugs, flavors, fragrances, spices, and other pur-
poses, the molecular mechanisms underlying the production of
these compounds still remained unclear. There are several phar-
maceuticals on the market that are highly expensive due to the fact
that these compounds are only found in rare plants and often
in extreme low concentrations. Podophyllotoxin (Jusling et al.,
2006) and paclitaxel (Verpoorte et al., 2002) are clear examples of
pharmaceuticals that can only be produced through the isolation
from plants. To achieve a sustainable source of such compounds
scientists all over the world have been experimenting with biotech-
nological approaches aiming at the development of an alternative
production system. However, metabolite engineering strategies in
this field are time consuming and troublesome.

Proteomics technology has proven its success in many fields
of plant sciences, thus in the field of phytochemistry, proteomic
approaches have been followed and changes in protein expression
could be correlated with the accumulation of secondary metabo-
lites. In spite of a few successes in proteomic analysis of some
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medicinal plants, the results obtained so far make it clear that
proteomics still has to fulfill much of its presumed potential in
this area. Although proteomic techniques are rapidly develop-
ing; however, some practical constraints still remain which are
mainly associated with sample preparation and protein identifica-
tion. In addition to these problems, one of the major limitations
in this field is the lack of genome information about medicinal
plants. Many of detected proteins in proteomic analysis of medic-
inal plants have been remained unidentified. Therefore advances

in genome-based information about medicinal plants will lighten
new horizons in the field of medicinal plants proteomics. We
hope that in near future identification of key proteins involved
in the production of secondary metabolites in medicinal plants
will leads to increased production of highly appreciated anticancer
compounds like vincristine, paclitaxel (Verpoorte et al., 2002), vin-
blastine (Verpoorte et al., 1997), podophyllotoxin (Jusling et al.,
2006), and other valuable herbal drugs which are critical for
human beings health all over the world.
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