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The plant secretome refers to the set of proteins secreted out of the plant cell into the
surrounding extracellular space commonly referred to as the apoplast. Secreted proteins
maintain cell structure and acts in signaling and are crucial for stress responses where they
can interact with pathogen effectors and control the extracellular environment. Typically,
secreted proteins contain an N-terminal signal peptide and are directed through the
endoplasmic reticulum/Golgi pathway. However, in plants many proteins found in the
secretome lack such a signature and might follow alternative ways of secretion. This
review covers techniques to isolate plant secretomes and how to identify and quantify
their constituent proteins. Furthermore, bioinformatical tools to predict secretion signals
and define the putative secretome are presented. Findings from proteomic studies and
important protein families of plant secretomes, such as proteases and hydrolases, are
highlighted.
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INTRODUCTION
In plant cells, many proteins undergo secretion or exocytosis to
the extracellular space (ECS) in order to maintain cell structure,
regulate the external environment and as a part of signaling and
defense mechanisms. The ECS is composed by the cell wall and
space between these and contains what is often referred to as the
apoplastic fluid (APF). The protein composition of the phloem
and xylem are not considered in this review.

The word secretome was first used in association with proteins
secreted from bacteria (Tjalsma et al., 2000). In plants, there has
been an ongoing discussion on how to define secretomics. Agrawal
et al. (2010) described it as “the global study of secreted proteins
into the ECS by a cell, tissue, organ or organism at any given time
and conditions through known and unknown secretory mechanisms
involving constitutive and regulated secretory organelles.” This is a
useful definition even though it should be noted that until now few
studies have identified more than 100 proteins and thus cannot be
considered to give a “global” view of the secretome.

In “classical” or “conventional” protein secretion, a mechanism
highly conserved in eukaryotes, proteins containing a signal pep-
tide are transported via the Golgi apparatus. In the Arabidopsis
genome, 18% of proteins are predicted to be secreted (the Ara-
bidopsis Genome Initiative, 2000), but recurrently between 40
and 70% of the proteins identified in secretome studies lack a
signal peptide, and thus putatively belong to the class of leader-
less secreted proteins (LSPs), even though possible contamination
of proteins from other cell compartments is a concern (discussed
below).

In spite of the fact that commonly the majority of identified
secretome proteins lack signal peptides, unconventional protein
secretion (UPS) has been little studied in plants, as pointed out in
a recent review by Ding et al. (2012). UPS can be divided into two
major classes: proteins are either transported in a non-vesicular
mode where they pass directly from the cytosol through the

plasma membrane or by various vesicular modes with membrane-
bounded structures fusing with the plasma membrane before
release in the ECS. Recently, a plant-specific compartment named
EXPO (exocyst-positive organelle), which appears to mediate UPS
without proteins passing the Golgi apparatus, trans-Golgi net-
work, or multi-vascular body, was discovered (Wang et al., 2010).

ISOLATION AND IDENTIFICATION OF SECRETOME PROTEINS
Until the last 3–4 years suspension-cultured cells (SSCs) were the
preferred choice for preparation of secretome samples and so far
around half of the published studies have been conducted with
SSC. Advantages over material derived in planta are that cell leak-
age can be readily estimated by determining the number of dead
cells and that the separation of the secretome from intact cells by
filtration and/or centrifugation is easier. Still, the general trend is
that recent studies are carried out in planta, and there are good
reasons for this switch since SSC does not provide a natural envi-
ronment for the cells and physiologically relevant treatments are
difficult to apply. Furthermore, it is possible to derive organ- and
developmental-specific secretomes using plant material. Jung et al.
(2008) reported on a striking difference in rice secretome proteins
depending on whether in planta or SSC material were used with
an overlap of only 6 spots out of 222 after resolution by two-
dimensional gel electrophoresis (2D-PAGE) and a difference in
the levels of identified proteins with predicted signal peptides of
27 and 76%, respectively, between the two systems. Both secre-
tomes showed low level of contamination as determined by a
malate dehydrogenase activity. This indicates that there are large
differences in the protein populations derived in planta and from
SSC and that the secretion mechanisms might be fundamentally
different.

When preparing secretomes from intact plant organs cau-
tion must be taken to minimize cell breakage and leakage.
Non-destructive methods are less likely to give rise to cytosolic
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contamination. The most common method, vacuum infiltration-
centrifugation, has been practiced for about 50 years (Klement,
1965). Whereas pH of the infiltration buffer affects the metabolic
composition, osmolarity and incubation time have little effect on
the eluate (Lohaus et al., 2001). Due to differences in sample infil-
trability adjustment depending on species may be necessary, e.g.,
Nouchi et al. (2012) recently suggested a rice-specific method. For
potato leaves we first thoroughly rinse the leaves with a buffer to
reduce leaf surface tension and facilitate the vacuum infiltration
which is repeated once. After infiltration the leaf surfaces should
quickly be dried not to dilute samples. Thereafter carefully rolled
leaves are transferred to 15 mL Falcon tubes with a washer at the
bottom to avoid immersion of leaves into the collected APF (Ali
et al., 2012; Figure 1). The centrifugation force should not exceed
1000g in order to avoid cell breakage (Terry and Bonner, 1980). In
general, there is a noticeable lack of studies comparing the effect
of different procedures, e.g., buffer concentrations, for secretome
isolation.

An alternative, the gravity extraction method (GEM), has been
proposed, but it has so far only been used in one study (Jung et al.,
2008). In this method, the vacuum infiltration step is omitted and
the APF is collected directly to decrease cell damage and solubi-
lization of membrane proteins. After sap isolation it is necessary
to add a cetyltrimethylammonium bromide (CTAB) precipita-
tion step to remove interfering compounds such as carbohydrates.
Various methodological adaptations might be necessary for effi-
cient secretome preparation, e.g., a water-displacement method
was developed to obtain apoplast fluid from stem tissue in poplar
(Pechanova et al., 2010).

PURITY ASSESSMENT
Enzyme activity, immunoblotting and microscopy have been used
to assess the purity of secretome fractions, e.g., by comparison
to the microsomal fraction. Especially in planta studies require
more stringent assessment of purity to ensure secretome frac-
tions with little intracellular contamination. To estimate cytosolic
contamination, enzyme activities of glucose-6-phosphate dehy-
drogenase, catalase and malate dehydrogenase are commonly
measured. Based on malate dehydrogenase activity 1–3% of con-
tamination is usually seen, but up to 10% has been reported (Song
et al., 2011). In destructive methods, where the cell-wall fraction
is isolated, determining the putative contamination by the plasma
membrane is also necessary, e.g., by measuring H-ATPase activ-
ity (Pandey et al., 2010; Bhushan et al., 2011). Antibodies against
malate dehydrogenase and RuBisCo are also frequently used to
determine the contamination level (Pechanova et al., 2010; Gupta
et al., 2011). It can be necessary to estimate levels of membrane
damage caused by the test condition itself, and for this purpose
electrolyte leakage and concentration of malondialdehyde, which
is a breakdown product of membrane lipid peroxidation, have
been measured (Zhou et al., 2011). In plant–pathogen interac-
tion studies, it should be remembered that cell leakage can be
caused by direct damage of hyphae or cell wall maceration, and
thus be a result of the biological system itself rather than the iso-
lation procedure. Likewise, plant developmental processes, such
as programmed cell death during xylem formation, can release
non-secretary cytosolic proteins into the apoplast.

FIGURE 1 | Outline of secretome preparation in potato leaves. The
leaves are washed in a beaker by gentle swirling in a solution of 1%
Tween-20 and thereafter dried quickly. Up to five potato leaves can be
processed at the same time. They are then placed in petri dishes containing
150 mM sodium phosphate pH 7 and 50 mM sodium chloride and covered
with a metal grid to ensure that they are completely immersed. Vacuum is
applied for two rounds of 5 min each, with the pressure being allowed to
return to atmospheric in between. The leaves are then removed, gently
dried with tissue paper, placed in tubes containing protease inhibitor and
centrifuged for 1000g at 4◦C. It is vital to roll the leaves gently, preferably
several together, when placing them in the tubes to minimize cell breakage
and subsequent contamination. A metal washer in the tube separates the
extracted secretome from the leaves.
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By estimating enrichment or depletion of peptides of a set of
marker proteins, quantitative proteomics can be a good method
to determine the level of contamination. Due to its sensitiv-
ity, selected reaction monitoring mass spectrometry (SRM-MS),
discussed below, is particularly promising.

PROTEOMIC ANALYSES
In plant secretome analysis mainly 2D-polyacrylamide gel elec-
trophoresis (PAGE), but also 1D sodium dodecyl sulfate (SDS)-
PAGE, have been used (e.g., Gupta et al., 2011; Ali et al., 2012).
2D-PAGE is a well-established and relatively inexpensive method.
While transmembrane, highly hydrophobic and very large proteins
can be difficult to analyze using 2D-PAGE, apoplast proteins do
not generally belong to these categories. Furthermore, 2D-PAGE
separation is based on the properties of the intact proteins and
splicing and post-translational modifications (PTMs) will affect
migration, something that is not always desirable. Finally, multi-
ple proteins are often identified from the same 2D-gel spot, making
unambiguous identification difficult.

More recently, high-performance liquid chromatography
(HPLC)-based methods, where tryptic peptide digests rather than
proteins are analyzed, permit simultaneous identification of larger
number of proteins. The proteins can be digested directly or pre-
fractionated, e.g., on 1D-SDS-PAGE. Consequently, HPLC-based
methods are useful for the analysis of hydrophobic proteins diffi-
cult to retain in solution during 2D-PAGE and for small proteins
such as the proteolytic fragments commonly found in the protease-
rich apoplast. However, these methods sometimes require more
complicated sample preparation and data processing, and since
analysis is done for individual peptides splice variants and PTMs
may remain unrecognized.

In the HPLC-based methods, peptides can be quantified either
by isotopic labeling or by label-free methods (Schulze and Usadel,
2010; Neilson et al., 2011; Yao, 2011). Isobaric tags for relative and
absolute quantitation (iTRAQ) was used by Kaffarnik et al. (2009)
to analyze secretome of Arabidopsis SSC challenged with Pseu-
domonas. In the label-free methods, quantitative data is obtained
by analyzing the intensity of the mass spectrometrical signal from
a peptide, or by counting the number of times it is identified
(spectral counting). The label-free methods are simpler in terms
of sample preparation and the number of comparisons you can
make is not limited, but analysis can be more computationally
challenging.

In SRM-MS, the eluate from an HPLC column is monitored to
detect selected peptides enabling high dynamic range (Anderson
and Hunter, 2006; Kitteringham et al., 2009). When combined
with isotopically labeled internal standard peptides this method
allows for sensitive absolute quantification. However, it will only
measure peptides from a pre-selected set.

In plant–pathogen interactions identification of secreted pro-
teins from more than one organism is expected. Still, very
few pathogen proteins have been identified in interaction stud-
ies. Nevertheless, since proteins from the interacting organism
can be expected to be a minority, precautions should be taken
to avoid false positive hits from host peptides when match-
ing pathogen peptides. In our experience, the use of a com-
bined plant–pathogen protein database extended with a random

sequence database for false discovery rate determination is a good
approach.

Pathogens and other sources of stress result in a powerful
oxidative burst in the secretome. Protein oxidation is known
to affect both stability and enzymatical activity (Sweetlove and
Moller, 2009) and oxidation proteomics is a field in rapid devel-
opment. Oxidation products can be identified in global analyses
by searching for peptides with oxidized amino acids, or by
enrichment-based approaches, e.g., enrichment of carbonylated
(Madian and Regnier, 2010) or nitrosylated peptides (Lindermayr
et al., 2005). Since oxidative modifications can be quite labile,
sample preparation should be optimized to minimize changes in
oxidation state (Hawkins et al., 2009). Depending on the possible
enrichment strategies, buffer composition should be considered
during experimental design, e.g., when isolating modified cysteine
residues (Lindermayr et al., 2005). A proteomic investigation of
oxidation in the secretome is still lacking but could yield interesting
knowledge regarding targets and extent of the oxidative burst.

BIOINFORMATICAL TOOLS AND DATABASES
For in vitro prediction of signal peptides SignalP (Petersen et al.,
2011) has been widely used. SecretomeP is a prediction method
trained on sequence features outside of the signaling peptide of
secreted proteins (Bendtsen et al., 2004). It is based on mammalian
and bacterial proteins, but interestingly, 60% of the LSPs identified
in Arabidopsis SSC were predicted to be secreted by SecretomeP
(Cheng et al., 2009). New tools are emerging and, e.g., LocTree2 has
high prediction success especially for secreted proteins (Goldberg
et al., 2012).

In the SUBA3 database 471 Arabidopsis proteins are registered
as “extracellular” based on MS/MS identification (Heazlewood
et al., 2007). Little less than half of these have been reported exclu-
sively in the “extracellular” compartment and less than 10% are
not predicted by TargetP to be extracellular proteins. Lum and
Min (2011b) identified 1704 plant proteins annotated as secreted
in the manually curated UniProt database. Using three prediction
tools 97.5% were identified to carry a signal peptide. A database for
secreted plant proteins, PlantSecKB, is currently being established
(Lum and Min, 2011a).

BIOLOGICAL FINDINGS
For plant secretome studies published before 2010 we mainly refer
to Agrawal et al.’s comprehensive review (Agrawal et al., 2010).
Since then more than a dozen studies have appeared (highlighted
below). Protein families commonly found in the secretome are
listed in Table 1. For a review on secretomes of oomycetes and
fungi we refer to Kamoun (2009).

Plant secretomes have been studied in natural conditions (e.g.,
Soares et al., 2007), in different cultivars (e.g., Konozy et al., 2012),
during nutritional deficiency (Tran and Plaxton, 2008), after hor-
mone treatment (e.g., Cheng et al., 2009), temperature change
(Gupta and Deswal, 2012), salt stress (Song et al., 2011), and
presence of pathogens and elicitors (e.g., Kim et al., 2009).

Martinez-Esteso et al. (2009) studied the grape secretome of
SSC in response to methylated cyclodextrins and methyl jas-
monate (MeJA) and could show that the expression levels of
peroxidases, pathogenesis-related (PR) proteins, SGNH plant
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Table 1 | Proteins families commonly found in the secretome. Protein family name is given together with PLAZA2.5 gene family identifiers and

number of members in Arabidopsis and rice (spp. japonica) according to PLAZA2.5.

Protein family PLAZA2.5 gene

family identifier

Number identified

in A. thaliana

Number in rice

(spp. japonica)

Subtilase-related (e.g., P69 protein, proteinase inhibitor I9, serine proteases) HOM000020 69 77

Eukaryotic aspartyl protease HOM000037 58 102

Serine carboxypeptidase HOM000054 54 60

Cysteine protease inhibitor (serpins) HOM000290 13 20

Pectin methylesterase inhibitor/ Pectin lyase-like HOM000034 70 47

Kunitz-type trypsin and protease inhibitor HOM000489 4 3

Glycosyl hydrolases family 17 (e.g., PR2) HOM000021 95 86

Glycosyl hydrolases family 31 HOM000508 5 6

Chitinase family (Glycoside hydrolase, family 19, PR3) HOM000272 14 18

Cysteine-rich secretory protein family (e.g., PR1) HOM000169 23 40

Thaumatin family (e.g., PR5) HOM000107 22 36

Pectinacetylesterase HOM000436 12 10

RmlC- and germin-like cupins HOM000084 33 42

Peroxidases class III HOM000453 7 10

xyloglucan endotransglucosylase/hydrolase HOM000089 33 30

lipase-like, xyloglucan endotransglycosylase and subtilisin-like
protease were affected. In a similar study, application of elicitors
MeJA and cyclodextrins also led to the identification of chitinases
and other PR proteins in tomato SSC (Briceno et al., 2012).

Gupta et al. (2011) characterized the secretome from SSC of the
legume chickpea and identified over 700 proteins by combining
1D SDS-PAGE and HPLC-MS/MS. By comparing the secretome
based on sequence homology to previously published Arabidopsis,
Medicago, and rice data the authors could show a large degree of
species-specificity in secreted proteins hinting at differences in the
apoplast composition between species and monocots and dicots,
something that needs further investigation. Cultivar-specific secre-
tome composition also exists and in the fruit pericarp of three
tomato cultivars the percentage of proteins with signal peptides
varied with 50–70% (Konozy et al., 2012).

Even if only a few proteins were identified, differences in the
effects on exocytosis and protein transport were observed in an
elegant experiment using transient over-expression of different
SNAREs in tobacco protoplasts (Ul-Rehman et al., 2011)

Several studies have targeted the rhizosphere. Over 100 secreted
proteins were identified from rice roots grown in an aseptic hydro-
culture (Shinano et al., 2011). These proteins are believed to play
an important role in the rhizosphere and a relatively high number
(54%) had predicted signal peptides. Ma et al. (2010) collected
proteins secreted in the mucilage of primary maize roots. Using a
combination of 1D SDS-PAGE and HPLC-MS/MS, the presence
of 2848 proteins were reported, which is over 50 times more com-
pared to earlier quantitative studies of root mucilage based on
2D-PAGE or MudPIT (Basu et al., 2006; Wen et al., 2007).

The effects in the secretome of rice seedlings were studied
under oxidative stress caused by 0.3 and 0.6 mM of hydrogen
peroxide (H2O2). Of the 54 proteins identified, around half of the

responsive proteins were involved in carbohydrate metabolism,
with redox homeostasis as the second largest group (Zhou et al.,
2011). The typical stress response marker PR1a was also up-
regulated. In rice leaves more than 100 identified proteins were
shown to be affected by drought stress in a time series spanning
over 8 days (Pandey et al., 2010). Similarly to this study, Song
et al. (2011) studied the effect of salt stress in rice during a 12 h
time course and found 64 proteins with changed abundance. In
both studies, proteins related to carbohydrate metabolism were
the largest group of proteins with changed abundance.

Gupta and Deswal (2012) explored the secretome of seabuck-
thorn after low-temperature treatment and identified thaumatin-
like protein and chitinase as putative antifreeze proteins.
Pechanova et al. (2010) collected secretome samples and measured
gene expression by microarrays from poplar growing in a riverine
ecosystem exposed to multiple stresses. The composition of the
secretome showed clear specificity depending on the tissue and
type of stress response.

In plant interaction studies, Goulet et al. (2010) found around
90 proteins, two of which were bacterial, in the leaf apoplast
of Nicotiana benthamiana infected by the bacterial gene vec-
tor Agrobacterium tumefaciens. PR proteins were found to be
the most abundant proteins in the isolated fraction, and sev-
eral increased greatly upon infection. Floerl et al. (2012) identified
seven proteins, several of which were peroxidases, with changed
abundance in the leaf secretome of Arabidopsis infected by the soil-
borne fungal pathogen Verticillium longisporum. Shenton et al.
(2012) used virulent and avirulent Magnaporthe oryzae strains
to compare compatible and incompatible interactions in rice in
early and late infection. A number of DUF26 domain-containing
proteins increased in the compatible interaction already at 12 h. In
the incompatible reaction several PR proteins were accumulated.
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Interestingly, one M. oryzae protein, a cyclophilin, was identified
and that only in the compatible interaction. The authors reduced
the detergent concentration in the vacuum infiltration buffer to
compensate for Tween-20 used for the Magnaporthe inoculation.

CONCLUSIONS AND FUTURE PERSPECTIVES
To date, over 30 secretome studies in more than 10 plant species
have shown that hundreds of proteins are secreted into the
apoplast. The relatively simple procedure to isolate secretome sam-
ples together with the fact that it constitutes the interface between
the plant cell and its environment makes it an excellent frac-
tion for identification of biomarkers for signal and stress cues,
and highly suitable for monitoring biotic interactions. Secretome
studies have firmly established the presence of a substantial level
of secreted proteins lacking signal peptides and indicated a large
degree of plant species specificity in the composition of secreted
proteins. A transition from SSC to in planta systems have taken
place, but comparative organ-specific studies are still lacking and
little is known about the changes in the secretome during plant
developmental stages, which are known to affect both metabolism,
signaling pathways and resistance levels. Finally, no global study

has been done of glycosylation of secreted proteins and little is
known of PTMs, such as oxidation, in this fraction. To identify
putative effector targets in the secretome, reliable quantitative
proteomics will be crucial, since a down-regulation of a pro-
tein upon pathogen attack might indicate regulation by pathogen
effectors.

Recent technical advances such as improved databases, e.g.,
based on RNA-seq data, and increased sensitivity of mass spec-
trometers will aid in the identification of specific isoforms. The
regulation of single gene family members important in ecological
and agricultural systems can now be dissected even in non-model
species. Furthermore, the high through-put of SRM-MS will
enable processing of large sample numbers, e.g., by so called eco-
proteomics in field-grown material exposed to complex, natural
environments, and influenced by multiple organisms. Overall, we
are closer than ever to global analyses of plant secretomes similar
to what we have seen for some prokaryotes.
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