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Rice (Oryza sativa L.) is both a major crop species and the key model grass for molecular
and physiological research. Mitochondria are important in rice, as in all crops, as the
main source of ATP for cell maintenance and growth. However, the practical significance
of understanding the function of mitochondria in rice is increased by the widespread
farming practice of using hybrids to boost rice production. This relies on cytoplasmic
male sterile (CMS) lines with abortive pollen caused by dysfunctional mitochondria. We
provide an overview of what is known about the mitochondrial proteome of rice seedlings.
To date, more than 320 proteins have been identified in purified rice mitochondria using
mass spectrometry. The insights from this work include a broad understanding of the
major subunits of mitochondrial respiratory complexes and TCA cycle enzymes, carbon
and nitrogen metabolism enzymes as well as details of the supporting machinery for
biogenesis and the subset of stress-responsive mitochondrial proteins. Many proteins
with unknown functions have also been found in rice mitochondria. Proteomic analysis
has also revealed the features of rice mitochondrial protein presequences required for
mitochondrial targeting, as well as cleavage site features for processing of precursors after
import. Changes in the abundance of rice mitochondrial proteins in response to different
stresses, especially anoxia and light, are summarized. Future research on quantitative
analysis of the rice mitochondrial proteomes at the spatial and developmental level, its
response to environmental stresses and recent advances in understanding of the basis of
rice CMS systems are highlighted.
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INTRODUCTION
Rice is the one of the key model plants for research and also the
major food crop in developing countries. Dramatic increases in
rice production have occurred in the past few decades through
large scale hybrid rice cultivation using cytoplasmic male sterile
(CMS) lines with abortive pollen caused by dysfunctional mito-
chondria (Eckardt, 2006; Wang et al., 2006). This tremendous
advance highlights the significance of understanding rice mito-
chondrial function. The role and nature of rice mitochondria also
takes on special significance due to its early growth in hypoxic or
even anoxic environments (Perata and Voesenek, 2007) as well as
its need for rapid mitochondrial biogenesis and function during
re-oxygenation (Millar et al., 2004; Howell et al., 2007). Mitochon-
dria contain many hundreds of different proteins that initiate or
co-ordinate the biochemical processes essential for its function.
It is estimated that while only ∼300 proteins are components
of the respiratory apparatus, up to 2000 proteins are housed in
plant mitochondria with the majority encoded in the nucleus
and transported into mitochondria as cytosolic precursor pro-
teins by the mitochondrial protein import machinery (Millar et al.,
2005; Cui et al., 2011). Because software-based subcellular target-
ing prediction offers low fidelity in actual subcellular localization
(Heazlewood et al., 2004, 2005), direct experimental analysis of
mitochondrial proteomes, including that of rice, is required to

obtain precise information on which proteins are mitochondrially
located. More broad advances in rice proteomics have been well
summarized recently (Agrawal and Rakwal, 2011). In this review,
recent research on rice mitochondrial purification, contaminant
removal, and rice mitochondrial proteomic analysis are discussed.
The rice mitochondrial protein composition, functional classifi-
cations, and features of mitochondrial protein presequences are
summarized. We also discuss the effects of the environment, in
particular anoxia and light, on rice mitochondrial proteome com-
position and how the proteome differs in CMS lines. Finally, we
propose future directions for research on the rice mitochondrial
proteome.

PURIFICATION AND PROTEOMIC ANALYSIS OF RICE
MITOCHONDRIA
Removal of contaminants, like chloroplasts, from purified rice
mitochondria is critical for downstream protein separation and
identification of mitochondrial proteins. Classically, differential
and gradient centrifugation methods based on size and den-
sity have been applied to plant mitochondrial proteomic analysis
(Kruft et al., 2001; Millar et al., 2001; Bardel et al., 2002). Using
these approaches, mitochondria have been purified on Percoll
density gradients from dark-grown rice seedlings (Heazlewood
et al., 2003) and from green rice seedlings (Kristensen et al., 2004).
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The purified mitochondria from dark-grown seedlings were then
separated using 2-D IEF/SDS-PAGE, blue native (BN)-PAGE and
122 proteins were identified using LC-MS/MS (Heazlewood et al.,
2003). In another similar study that used a sucrose gradient
for mitochondrial purification, a set of 112 non-redundant rice
mitochondrial proteins were identified after 2-D IEF/SDS-PAGE
separation1. (Komatsu, 2005). Comparison of these two studies
revealed less than 20% overlap in the two datasets of highly abun-
dant proteins, highlighting the importance of optimized methods
for mitochondria purification prior to proteomic analysis.

Free-flow electrophoresis in zone electrophoresis mode (ZE-
FFE) can be used to separate organelles based on differential
surface charge and this has allowed the comprehensive analy-
sis of Arabidopsis organellar proteomes including the exclusion
of contaminating proteins through quantitative analysis (Eubel
et al., 2007, 2008). The combination of traditional differential
and gradient centrifugation with this new FFE separation tech-
nique has allowed isolation of highly purified rice mitochondria
for proteomic analysis (Huang et al., 2009a). Quantitative anal-
ysis using differential in gel electrophoresis (DIGE) and spectral
counting have allowed the identification of contaminant proteins
removed by FFE purification (Huang et al., 2009a). The purity of
isolated mitochondria was >95% based on calculating the num-
ber of peptides from contaminant proteins compared to peptides
from mitochondrial proteins in these preparations (Huang et al.,

1http://gene64.dna.affrc.go.jp/RPD

2009a). In total, 322 proteins from FFE purified rice mitochondria
were identified through the direct analysis of trypsin-digested pep-
tides by LC-MS/MS and gel-based analysis (Huang et al., 2009a).
The annotations of rice mitochondrial protein spots on 2-D
IEF/SDS/PAGE gel are available online2 using the gel-map tool
(Klodmann et al., 2011; Senkler and Braun, 2012). Seventy-eight
proteins identified previously as components of the rice mitochon-
drial proteome (Heazlewood et al., 2003) were also in this study.
Half of the unconfirmed proteins from Heazlewood et al. (2003)
were proteins now predicted to be retrotransposon sequences with
unknown function.

THE PROTEIN COMPOSITION OF RICE MITOCHONDRIA
A refined dataset of 322 proteins allowed us to assess the func-
tional distribution of the rice mitochondrial proteome as shown
in Figure 1. There are 99 proteins identified as either compo-
nents of the five oxidative phosphorylation/respiratory complexes
or TCA cycle enzymes, representing 31% of the total set (Figure 1).
The genes encoding electron transport chain (ETC) proteins are
highly expressed across all tissues, which is consistent with the
fundamental role of mitochondria in energy production through-
out the plant. Interestingly, a series of genes encoding TCA cycle
components are highly expressed in anthers, suggesting a high
energy requirement for metabolism in this tissue (Huang et al.,
2009a). There were 64 proteins identified (20% of total set) that are

2www.gelmap.de/oryza

FIGURE 1 | Functional distribution of 322 identified rice mitochondrial

proteins. Rice mitochondria were purified from 10-day-old dark-grown
seedlings using differential and gradient centrifugation combined with surface
charged ZE-FEE mode (Huang et al., 2009a). Rice mitochondria proteins were

separated using gel-based and non-gel based methods and digested with
trypsin before identification using mass spectrometry (Huang et al., 2009a).
Rice mitochondria protein data were extracted from Supplemental Table S3 of
Huang et al. (2009a).
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thought to be involved in central carbon and nitrogen metabolism
(Figure 1), such as the inter-conversion of amino acids, pho-
torespiratory glycine oxidation, synthesis of lipids, vitamins, as
well as export of organic acids. Within this group, the iden-
tification of a 4-methyl-5-thiazole monophosphate biosynthesis
protein (Os01g11880) provided new insight into the involvement
of rice mitochondria in the process of thiamine biosynthesis.
Furthermore, the highly selective expression of genes for com-
ponents of photorespiratory glycine oxidation in leaf tissues is
consistent with the role of mitochondria in photorespiration dur-
ing photosynthesis in green tissues (Huang et al., 2009a). Proteins
involved in supporting machinery such as those for DNA replica-
tion, transcription and translation, protein import and fate, ETC
assembly as well as carriers and transporters accounted for 21%
of the total number of proteins identified. Thirty-three proteins
were listed to be involved in DNA replication, transcription, and
translation, and 19 proteins were assigned the protein import and
fate category (Figure 1). Genes encoding mitochondrial enzymes
involved in DNA replication, transcription, and translation, as
well as protein import and fate are highly expressed in early ger-
minated rice seeds as well as in suspension culture cells, consistent
with their role in mitochondrial biogenesis (Huang et al., 2009a).
Fifteen heat shock proteins and 9 putative stress response pro-
teins were also identified (Figure 1). A total of 55 proteins (17%)
were identified for which no known function has been reported
(Figure 1).

From the 313 nuclear-encoded rice mitochondrial proteins
identified, ∼65% were predicted to be located in mitochondria by
four different subcellular localization prediction software packages
(Huang et al., 2009a). The low fidelity of the prediction software
is due in part to the use of a limited number of targeting signals in
training sets for these software packages (Heazlewood et al., 2004),
which again highlights the importance of building experimental
evidence for the mitochondrial location of proteins. The number
of identified proteins involved in the ETC and TCA cycle in mono-
cotyledon rice mitochondria is similar to number of identified
in Arabidopsis mitochondrial datasets (Heazlewood et al., 2004)
and the corresponding proteins are also largely conserved (Huang
et al., 2011). Proteins involved in supporting machinery and stress
response were also conserved between the rice and Arabidopsis
datasets (Huang et al., 2011). The conservation of the proteomes
between these diverse species highlights the fundamental role of
mitochondria in energy production and metabolism in plants.

THE RICE MITOCHONDRIAL PROTEIN PRESEQUENCE AND
ITS CLEAVAGE
N-terminal presequences carry the targeting signals required to
import nuclear-encoded mitochondrial proteins and these are
cleaved off following the import process to generate mature pro-
teins (Zhang and Glaser, 2002). Analysis of the peptides derived
from the digestion of mature rice mitochondrial proteins allowed
us to experimentally identify cleavage sites and thus determine 52
rice mitochondrial presequences (Huang et al., 2009b). The aver-
age length of these presequences is 45 amino acids. The average pI
of the first 10 amino acids was 11.8 with a hydrophobicity index
of −1.4. Nearly 90% of the presequences were predicted to form α-
helices in this region (Huang et al., 2009b). These features are very

similar to those observed for Arabidopsis mitochondrial proteins
(Huang et al., 2009b).

Amongst the rice mitochondrial presequences three groups of
cleavage sites were found: -2 Arg (class I), -3 Arg (class II); and
one without any conserved Arg (class III; Figure 2). The major-
ity of presequences were -3 Arg (58%) with a smaller contingent
of -2 Arg (13%), and a surprisingly large percentage without any
conserved arginine (29%; Figure 2). In the dominating -3 Arg
group, the occurrence of Tyr/Phe/Leu at the -1 position was evenly
distributed (Figure 2), which differs from the similar Arabidopsis
-3 Arg group which predominantly features Phe at the -1 posi-
tion (Huang et al., 2009b). In yeast, an intermediate cleaving
peptidase (Icp55, P40051) removes one residue from the prese-
quence after cleavage by the mitochondrial processing peptidase
(MPP) when it contains an Arg residue at the -3 position (Vög-
tle et al., 2009). It is likely that in the mitochondria of rice and
Arabidopsis, the observed -3 Arg proteins are a consequence of an
Icp55-like cleavage, after MPP cutting by an uncharacterized pro-
tease (Figure 2). Yeast Icp55 (P40051) does have a rice ortholog
(Os12g37640; E = 2 × e−91). We have not found Os12g37640
in the rice mitochondrial protein data set (Huang et al., 2009a),
but it is predicted to be located in mitochondria by Target P and
Mitoprot II. Future functional analysis of Icp55-like peptidase in
plant mitochondria is needed to understand its role in stabilizing
mitochondrial proteins following MPP cleavage.

CHANGES IN THE RICE MITOCHONDRIA PROTEOME DURING
ENVIRONMENTAL STRESS AND PLANT DEVELOPMENT
Most rice proteomic analyses in response to environmental stresses
have been conducted at the whole tissue level in leaves or leaf
sheaths. Mitochondrial proteins contribute only ∼2–5% of total
cellular protein and this makes them difficult to quantify in whole
tissue protein extracts. For example, there no mitochondrial pro-
teins with significant changes in abundance were detected in
rice leaves or sheaths under drought (Salekdeh et al., 2002; Ali

FIGURE 2 | Sequence logo analysis of 52 rice mitochondria protein

precursors at the region of the cleavage site. The red line indicates the
cleavage sites as supported by proteomic evidence. The cleavage sites are
grouped into three classes (class II, -3 Arg; Class I -2 Arg; non-conserved
Arg, class III). The numbers on the left side represent the total sequences
identified in different groups for sequence logo analysis. Data adapted from
Huang et al. (2009b).
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and Komatsu, 2006) or infected with the fungi Rhizoctoni solani
(Lee et al., 2006). A few cases, two highly abundant mitochon-
drial proteins, both glycine dehydrogenase subunits (Os06g40940;
Os01g51410), were significantly changed after treatments of heat
(Lee et al., 2007), cold (Lee et al., 2009; Yan et al., 2006), and salt
(Kim et al., 2005). Isolated single observations of mitochondrial
proteins changing in abundance from whole tissue extracts include
pyruvate dehydrogenase (Os02g50620), NADH-ubiquinone oxi-
doreductase 75 kDa protein (Os03g50540), aconitase hydratase
(Os08g09200), dihydrolipoyl dehydrogenase (Os01g22520) after
treatment with heat (Lee et al., 2007), cold (Lee et al., 2009),
and salt (Kim et al., 2005; Chitteti and Peng, 2007). It is clear
that to obtain a more detailed picture of the mitochondrial pro-
teome in response to different environmental stresses, purified
mitochondria would be required. Using isolated rice mitochon-
dria for protein oxidation analysis, it was found that a number
of proteins are oxidized in the matrix in vivo and a group of
proteins are particularly susceptible to mild oxidation in vitro
(Kristensen et al., 2004).

The early growth habitat of rice is often hypoxic or even anoxic
(Perata and Voesenek, 2007), meaning that the role and nature
of rice mitochondria is especially interesting given their central
role in respiration. An early study showed that anoxic rice shoots
had the ability to synthesize the same range of mitochondrial
proteins as aerobic shoots as long as ATP was supplied, which
could be provided in vivo by glycolytic reactions even in the
absence of oxygen (Couée et al., 1992). Analysis of the soluble rice
mitochondrial proteome using 2-D IEF/SDS-PAGE gel separation
showed no significant difference between samples derived from
anoxic and reoxygenated coleoptiles (Millar et al., 2004). How-
ever, BN-SDS-PAGE gels of mitochondrial membrane-associated
complexes showed a very low abundance of assembled b/c1 com-
plex and cytochrome c oxidase in anoxic samples and a dramatic
increase in the abundance of these complexes after 1 day of air
adaptation (Millar et al., 2004). These results suggested that anoxic
rice does have the capacity to develop its respiratory machinery
but with a discrete and reversible blockage of full mitochondrial
biogenesis at Complex III (Millar et al., 2004). Howell et al. (2007)
showed that anoxic conditions reduced the efficiency of the general
import pathway but not the carrier import pathway in rice mito-
chondria. Rice mitochondria from anoxic seed embryos 48 h after
germination had much lower abundance of TCA cycle enzymes
and cytochrome-containing complexes of the respiration chain
(Howell et al., 2007). In a whole-cell proteomic analysis, malate
dehydrogenase and two ATP synthase subunits were lower in abun-
dance in 6-day-old anoxic coleoptiles compared to similar sized
4-day-old aerated coleoptiles (Shingaki-Wells et al., 2011). The
lower abundance of enzymes involved in the TCA cycle or ETC
agrees with the previous observation that there is a reduced respi-
ratory capacity in mitochondria isolated from anoxic coleoptiles
when compared to aerated or re-oxygenated samples (Millar et al.,
2004).

To date the analysis of rice mitochondrial integral membrane
proteins has identified seven membrane carrier proteins, one of
which was only routinely found in mitochondrial samples from
anoxic tissue (Taylor et al., 2010). Further quantitative analy-
sis of the relative abundance of this basic amino acid carrier

(BAC; Os10g42299) by QqQ SRM mass spectrometry revealed
that Os10g42299 was threefold more abundant in anoxic than
in aerated samples (Taylor et al., 2010). Along with the observed
anoxic induction of mitochondrial arginase and the accumulation
of Arg and Orn, this mitochondrial BAC is likely to play a role in
Arg metabolism during O2 deprivation (Taylor et al., 2010). Such
mitochondrial responses may contribute to the exceptional anoxia
tolerance of rice seedlings.

Decreasing the rate of photorespiration has become a key tar-
get in the further improvement of rice production (Hibberd et al.,
2008). Mitochondria are specifically involved in photorespiration
via the oxidation of glycine and the export of serine (Walker and
Oliver, 1986). The light responsiveness of mitochondrial func-
tions and the induction of photorespiration that occurs when
etiolated rice seedlings are exposed to light was recently inves-
tigated using a proteomic and metabolomic approach (Huang
et al., 2013). Specific steps in mitochondrial TCA cycle metabolism
were decreased under high light which correlates with lower res-
piration rate (Huang et al., 2013). Light treatment reduced the
abundance of mitochondrial enzymes in branched chain amino
acid metabolism, correlating with a decrease of the abundance
of a range of amino acids after a 24 h light treatment of eti-
olated shoots (Huang et al., 2013). These results have parallels
in the diurnal changes observed in mitochondrial function in
Arabidopsis shoots (Lee et al., 2010). Significant accumulation of
glycine decarboxylase (GDC) P, T subunits and serine hydrox-
ymethyltransferase were observed upon light treatment in rice
(Huang et al., 2013), which is similar to what has been observed in
pea (Walker and Oliver, 1986; Turner et al., 1993) and Arabidopsis
(Lee et al., 2010). However, the abundance of the GDC H sub-
unit protein in rice was unchanged by light, and the abundance of
GDC L subunit protein was halved under high light. The differen-
tial change in the stoichiometry of GDC subunits in rice correlates
with a fourfold increase in the photorespiration rate of low light-
treated plants compared to those treated with high light (Huang
et al., 2013).

Cytoplasmic male sterility is a fundamental part of hybrid rice
production and relies on plant lines with pollen-specific defects in
mitochondrial function (Eckardt, 2006; Wang et al., 2006). Most
CMS-associated genes in rice are chimerics composed of a frag-
ment of a normal mitochondrial gene, encoding small and low
abundance mitochondrial membrane proteins, and a novel and
disruptive sequence that influences the expression or the func-
tion of the gene product (Hanson and Bentolila, 2004; Kubo and
Newton, 2008). Quantitative proteomic analysis of CMS-related
changes in rice anthers has revealed eight proteins with abun-
dances that are at least twofold lower or higher when comparing
YTA (CMS) and YTB (isogenic fertile) lines (Sun et al., 2009).
However, none of these were mitochondrially encoded proteins.
Further quantitative analysis of the mitochondrial proteomes from
10-day-old rice seedlings has revealed a reduced abundance of
specific proteins in mitochondrial complexes, particularly com-
plex V, in the YTA line compared with the YTB line (Liu et al.,
2012). Interestingly, a sex determination TASSELSEED-2-like pro-
tein (Os07g46920) was found 3.2-fold more abundant in the CMS
line (Liu et al., 2012). Analysis of the potential links between
the increase in the amount of this protein and jasmonic acid
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metabolism has identified a lesion in the jasmonic acid synthesis
pathway during the development of microspores in CMS plants
(Liu et al., 2012).

FUTURE DIRECTIONS
The plant mitochondrial proteome is a changing entity over time,
in different tissues/organs and in response to different environ-
ments, as revealed by discoveries made in mitochondrial proteome
research of the dicotyledon model plant Arabidopsis (Sweetlove
et al., 2002; Lee et al., 2008, 2011; Tan et al., 2012). The rice
mitochondrial proteome is likely to share these dynamics based
on the analysis of rice transcript data for genes encoding mito-
chondrial proteins (Huang et al., 2009a) as well as the proteome
response to anoxia and light as discussed above. Further quan-
titative analysis of the rice mitochondria proteome will provide
an even more detailed picture of the diversification of mitochon-
drial function at the spatial and developmental levels in this key

model monocotyledonous species. A broader understanding of
the plasticity of rice mitochondria is particularly important for
obtaining more clues on the mechanism of pollen abortion in
CMS lines. Furthermore, co-expression analysis will reveal mito-
chondrial proteins with common functions to provide insights
into the regulation of rice mitochondrial biogenesis as well as the
respiratory stress response.
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