
METHODS ARTICLE
published: 22 March 2013

doi: 10.3389/fpls.2013.00039

The plant ionome revisited by the nutrient balance concept

Serge-Étienne Parent 1, Léon Etienne Parent 1*, Juan José Egozcue2, Danilo-Eduardo Rozane3,
Amanda Hernandes4, Line Lapointe5,Valérie Hébert-Gentile5, Kristine Naess6, Sébastien Marchand 1,
Jean Lafond 7, Dirceu Mattos Jr.8, Philip Barlow 9 and William Natale4

1 Équipe de Recherche en Sols Agricoles et Miniers, Department of Soils and Agrifood Engineering, Université Laval, Québec, QC, Canada
2 Department of Applied Mathematics III, Universitat Politècnica de Catalunya, Barcelona, Spain
3 Departamento de Agronomia, Universidade Estadual Paulista, Campus de Registro, São Paulo, Brasil
4 Departamento de Solos e Adubos, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
5 Centre d’Étude de la Forêt, Department of Biology, Université Laval, Québec, QC, Canada
6 Centre de Recherches Les Buissons, Pointe-aux-Outardes, QC, Canada
7 Agriculture and Agri-Food Canada, Normandin, QC, Canada
8 Centro de Citricultura Sylvio Moreira (IAC), Cordeirópolis, Säo Paulo, Brazil
9 Bio Soil and Crop Ltd, Tauranga, New Zealand

Edited by:
Richard A. Jorgensen, University of
Arizona, USA

Reviewed by:
Elizabeth Pilon-Smits, Colorado State
University, USA
Heiner Goldbach, University of Bonn,
Germany

*Correspondence:
Léon Etienne Parent, Department of
Soils and Agrifood Engineering,
Paul-Comtois Building, Université
Laval, Québec, QC G1V 0A6, Canada.
e-mail: leon-etienne.parent@
fsaa.ulaval.ca

Tissue analysis is commonly used in ecology and agronomy to portray plant nutrient sig-
natures. Nutrient concentration data, or ionomes, belong to the compositional data class,
i.e., multivariate data that are proportions of some whole, hence carrying important numer-
ical properties. Statistics computed across raw or ordinary log-transformed nutrient data
are intrinsically biased, hence possibly leading to wrong inferences. Our objective was to
present a sound and robust approach based on a novel nutrient balance concept to classify
plant ionomes. We analyzed leaf N, P, K, Ca, and Mg of two wild and six domesticated fruit
species from Canada, Brazil, and New Zealand sampled during reproductive stages. Nutri-
ent concentrations were (1) analyzed without transformation, (2) ordinary log-transformed
as commonly but incorrectly applied in practice, (3) additive log-ratio (alr) transformed as
surrogate to stoichiometric rules, and (4) converted to isometric log-ratios (ilr) arranged
as sound nutrient balance variables. Raw concentration and ordinary log transformation
both led to biased multivariate analysis due to redundancy between interacting nutrients.
The alr- and ilr-transformed data provided unbiased discriminant analyses of plant ionomes,
where wild and domesticated species formed distinct groups and the ionomes of species
and cultivars were differentiated without numerical bias. The ilr nutrient balance concept
is preferable to alr, because the ilr technique projects the most important interactions
between nutrients into a convenient Euclidean space.This novel numerical approach allows
rectifying historical biases and supervising phenotypic plasticity in plant nutrition studies.

Keywords: compositional data analysis, ionome classification, nutrient interactions, numerical biases, isometric
log-ratio, plant nutrition

INTRODUCTION
Salt et al. (2008) defined the ionome as the mineral nutrient
and trace element composition of an organism that represents
the inorganic component of cellular and organismal systems. The
need for linking plant ionomes – often referred as plant nutri-
ent signatures (Willby et al., 2001) or profiles (Tennakoon et al.,
2011) – with genetics (Conn and Gilliham, 2010) and adapta-
tion to environmental factors (Chapin, 1989) elevated the study of
mineral nutrition of plants as central topic in ecology (Aerts and
Chapin, 2000), agronomy (Bergmann, 1988), and genetics (White
and Brown, 2010).

The plant ionome is a vector of tissue analytical data gener-
ally constrained to the dry or fresh matter content. To facilitate
the analysis of complex interacting systems such as the concentra-
tion vector of plant ionomes, it is often assumed, under the ceteris
paribus assumption, that all factors but the ones being varied are
equal (Giampietro, 2004). Such assumption denies the principle
that components of a whole are inherently related to each other,

because changing a proportion inherently affects at least another
proportion. In fact, ionome data belong to the class of composi-
tional data, i.e., strictly positive data constrained to some whole,
that convey only relative information (Aitchison, 1986). Compo-
sitional data are intrinsically multivariate: each part cannot be
interpreted without being related to the others (Tolosana-Delgado
and van den Boogart, 2011). Indeed, statistics computed across
compositional data such as nutrient concentrations are inherently
biased due to redundancy, scale-dependency, and non-normal
distribution (Bacon-Shone, 2011). Compositional data analysis
provides unbiased numerical solutions to analyze plant ionomes
as self-interactive systems.

Plant growth and development depend on a balanced supply
of essential elements and this equilibrium is maintained by home-
ostatic mechanisms (Williams and Salt, 2009). Dual ratios (Wal-
worth and Sumner,1988) and stoichiometric rules (Ingestad,1987;
Körner, 2011) have been proposed to reflect nutrient interactions
controlling carbon uptake. Agronomists thus developed a large
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spectrum of dual (e.g., N/P) and amalgamated (e.g., K/[Ca+Mg])
ratios for diagnostic purposes (Bergmann, 1988). However, one
can generate D(D−1)/2 dual ratios and D(D−1)2/2 amalgamated
ratios from a D-part ionome, that actually carries D−1 degrees of
freedom (Aitchison and Greenacre, 2002; Egozcue and Pawlowsky-
Glahn, 2005). For example, an ionome including 10 elements
generates up to 45 dual nutrient ratios such as the K/Ca ratio
and up to 405 amalgamated dual ratios such as the K/(Ca+Mg)
ratio, but only nine variables are linearly independent. Researchers
realized the great difficulty of interpreting myriads of ratios and
proposed integrative empirical models such as the “Diagnosis
and Recommendation Integrated System”(DRIS) (Beaufils, 1973).
However, DRIS is noisy (Parent et al., 2012a). Although principal
component analysis (PCA) also provided a dimension reduction
method for nutrient data (Baxter et al., 2008), PCA does not tackle
the numerical biases inherent to compositional data (Aitchison,
1986).

Unfortunately, most researchers still use at fault raw con-
centration data (Lahner et al., 2003; Conn and Gilliham, 2010;
White and Brown, 2010), their ordinary log-transformation (Han
et al., 2011), or dual ratio expressions when conducting multi-
variate analyses of ionomes. But fortunately, compositional data
analysts have developed log-ratio transformations that generate
scale-invariant variables, avoid redundancy, and are free to range
in real space (Aitchison, 1986; Egozcue et al., 2003).

Parent and Dafir (1992) were, to our knowledge, the first to
correct numerical biases in DRIS using the row-centered log-ratio
(clr) transformation proposed by Aitchison (1986). The clr is com-
puted as ln(xi/g (x)), where xi is the ith component (i∈ 1 to D) and
g (x) is the geometric mean of the compositional vector. However,
matrix singularity occurs in the multivariate analysis, because the
D clr values add up to zero. As a result, one clr value must be
removed. Other log-ratio transformations can compress a D-part
composition into D–1 variables without losing information, hence
avoiding singularity problems.

Aitchison (1986) proposed using the additive log-ratio (alr)
computed as ln(xj/xA) where xj is the jth component (j∈ 1 to
D except A) and xA, the common denominator of the composi-
tional vector. The alr transformation can reflect the stoichiometric
rules used in plant physiology and nutrient management (Inges-
tad, 1987). However, alr variables are at an angle of 60˚ between
them and are thus geometrically difficult to handle (Egozcue and
Pawlowsky-Glahn, 2006).

A dual ratio between two nutrients is a dual balance, hence
removing one variable while keeping all the relevant informa-
tion. An extended balance system can be illustrated by a ternary
diagram (Lagatu and Maume, 1934) or by a mobile and its ful-
crums built according to an ad hoc scheme for several components
(Parent et al., 2012a). In compositional data analysis, balances
are expressed as log-ratio contrasts between the geometric means
of two parts or groups of parts (Egozcue and Pawlowsky-Glahn,
2005). Assigning orthogonal coefficients to contrasts allows com-
puting orthogonal balances as isometric log-ratio (ilr) in the
Euclidean space (Egozcue et al., 2003). The ilr technique was found
to be the most appropriate to describe natural patterns in geo-
chemistry (Buccianti, 2011), plant nutrition (Parent, 2011; Parent
et al., 2012c), environmental sciences (Filzmoser et al., 2009a), soil

physics (Parent et al., 2012b), chemistry and biochemistry (Par-
ent et al., 2012a), and other disciplines (Pawlowsky-Glahn and
Buccianti, 2011).

Our objective is to present an unbiased balance concept to the
plant nutrition community using data sets of fruit species, to illus-
trate and provide a robust perspective to solve the important prob-
lem of data representation when conducting multivariate analysis
of ionomes. We hypothesize that ionomes of wild (low pheno-
typic plasticity) and domesticated (high phenotypic plasticity)
species differ markedly from each other due to natural adapta-
tion or human selection pressure (Chapin, 1989). We expand the
nutrient balance concept to species and cultivars.

THEORY OF COMPOSITIONAL DATA ANALYSIS
SAMPLE SPACE
The sample space (e.g., the space of compositional data of plant
ionomes reported on dry mass basis) is defined by SD, a posi-
tive vector of D components adding up to a constant κ, such as
1 (fractions of some whole), 100% (e.g., N-P-K ternary diagram
representing an ionome subcomposition), 1000 g kg−1 (e.g., sum
of nutrient concentrations and of the filling value in an ionome),
etc. The closure operatorC computes the constant sum assignment
as follows (Egozcue and Pawlowsky-Glahn, 2006):

SD
= C (c1, c2, . . . , cD)

=

[
c1K∑D
i=1 ci

,
c2K∑D
i=1 ci

, . . . ,
cDK∑D

i=1 ci

]
(1)

where κ is the unit or scale of measurement and ci is the ith part of
a composition containing D parts. The ionome comprises analyt-
ical results as well as, optionally, undetermined concentrations of
other elements summarized by the filling value. The filling value is
computed by difference between the unit or scale of measurement
and the sum of analytical results. The sample space can be subdi-
vided into non-overlapping subspaces made of two (dual ratios),
three (ternary diagram), or more interacting components where
each subspace can be interpreted independently and coherently.

NUMERICAL BIASES
The redundancy and scale-dependency inherent to compositional
data generate spurious correlations (Pearson, 1897; Tanner, 1949;
Chayes, 1960) that distort their multivariate analysis (Aitchison,
1986). The multivariate analysis of concentration values or their
ordinary log transformation may thus lead to biased and even
meaningless results (Filzmoser et al., 2009b). These biases can be
avoided using compositional data analysis techniques (Egozcue
and Pawlowsky-Glahn, 2006; Mateu-Figueras et al., 2011).

Redundancy can be avoided by (1) sacrificing a component
for use as common denominator (alr transformation) (Aitchi-
son, 1986) or (2) using the principle of contrasts orthogonality
whereby the orthogonally arranged balances acquire linear inde-
pendence (Rodgers et al., 1984) using ilr transformation (Egozcue
et al., 2003). The isometry of ilr variables means that the geome-
try is Euclidean, which is the very basic geometry in multivariate
analysis (Egozcue and Pawlowsky-Glahn, 2006).

Scale invariance assures that data have the same covariance
structure no matter the base across which they are scaled, e.g.,
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across wet, dry, organic, mineral or macronutrient basis. Scale
invariance is required to provide a coherent interpretation of mul-
tivariate analyses of compositional data (Aitchison, 1986; Egozcue
and Pawlowsky-Glahn, 2005).

Non-normal distribution inherent to compositional data is
improved by projecting the constrained space of raw composi-
tional data into a real space of log-ratios. Because log-ratios can
take any value in the domain ±∞, alrs and ilrs can be mapped in
real space, as required under the normality assumption (Egozcue
and Pawlowsky-Glahn,2006). By comparison, confidence intervals
that may reach values <0 or beyond 100% under the normality
assumption have no physical meaning (Weltje, 2002). The log-
ratio transformation improves normal distribution compared to
raw concentrations or their ordinary log-transformation (Filz-
moser et al., 2009a). All in all, the ilr transformation is recom-
mended for conducting multivariate analyses of compositional
data (Filzmoser and Hron, 2011).

THE LOG-RATIO TRANSFORMATIONS
The alr transformation
Log transforming the P/N, K/N, Ca/N, and Mg/N ratios elaborated
by Ingestad (1987) to monitor the plant nutrition of tree seedlings
yield D−1 alr variables. The number of degrees of freedom is
reduced by using one component as common denominator. The
choice of the common denominator has no influence on multi-
variate analysis (Aitchison, 1986). In the Ingestad (1987) model,
the common basis is N concentration. The jth alr is computed as
follows:

alrj = ln
cj

N
(2)

where cj is the jth nutrient excluding N. If a tissue contains 2.50%
N and 0.15% P, the Redfield ratio (Güsewell, 2004) is 16.7 and the
corresponding alr [P/N] value is ln(0.15/2.50)=−2.81. However,
the alrs are oblique to each other and difficult to rectify (Egozcue
and Pawlowsky-Glahn, 2005).

The ilr transformation
The ilr transformation has the advantage over the alr to be geo-
metrically suited to conduct multivariate analysis (Filzmoser et al.,
2009a). Another advantage of ilrs is a special device of balances
or linearly independent ratios among nutrients called sequential
binary partition (SBP). The SBP describes the D−1 orthogonal
(geometrically independent) balances between parts and groups
of parts. The SBP is a (D−1)×D matrix, in which parts labeled
“+1” (group numerator) are balanced with parts labeled “−1”
(group denominator). A part labeled “0” is excluded from the bal-
ance between parts. The composition is partitioned sequentially
into contrasts at every hierarchically ordered row until the (+1)
and (−1) groups each contain a single part.

To establish contrast orthogonality, it is necessary to imbed
subcompositions into larger ones and assign orthogonal coeffi-
cients to each log-ratio contrast (Egozcue et al., 2003). The ilr is
computed as follows (Egozcue and Pawlowsky-Glahn, 2005):

ilrj =

√
rj sj

rj + sj
ln

g (c+j )

g (c−j )
(3)

where, in the jth row of the SBP, ilrj is the jth isometric log-ratio;√
rj sj/rj + sj is the orthogonal coefficient of the jth balance (or

log contrast) designed in the SBP; rj and sj represent the number
of parts in the +1 and −1 groups of the jth balance, respectively;
g (c+j ) is the geometric mean of components in the+1 group and

g (c−j ) is the geometric mean of components in the −1 group.

The partition between two components or groups of components
is presented as [Sr | Ss]. If a tissue contains 2.50% N and 0.15%
P, the Redfield ratio (Güsewell, 2004) is 16.7 and the ilr value is

[N |P] =
√

1
2 ln (16.7) = 1.99.

NUTRIENT BALANCES
Nutrient balances are robustly amenable to myriads of statisti-
cal techniques analysis: balances variables are non-redundant and
scale-invariant, are mapped in a real space and respect the D−1
degrees of freedom of a compositional vector. The SBP allows
the analyst to define orthogonal axes in order to focus upon
interpretable balances. In order to compare the ionomes of plant
species, a subcomposition of the compositional vector was defined
as S5

=C (N, P, K, Ca, Mg). The SBP in Table 1 formalizes bal-
ance dendrograms such as the one presented in Figure 1. In a
more intuitive but similar approach, nutrient balance could be
illustrated by a mobile-and-fulcrums design where nutrient con-
centrations in weighing pans are equilibrated according to ad hoc
nutrient balances.

There are indeed four orthogonal balances in S5 (Figure 1).
Our SBP initiator was [N, P, K | Ca, Mg] to reflect sequen-
tially the relationships between N, P, and K (Lagatu and Maume,
1934; Wilkinson et al., 2000) in agroecosystems, the Ca and
Mg composition that reflects geographical position and soil
mineralogy (Walworth and Sumner, 1987), and the Redfield
ratio that reflects the balance between two fundamental life
processes, protein, and r-RNA synthesis (Loladze and Elser,
2011).

THE AITCHISON DISTANCE
The Aitchison distance (A) between two D-part compositions is
computed as a Euclidean distance across selected ilr coordinates
as follows (Egozcue and Pawlowsky-Glahn, 2006):

A =

√√√√√D−1∑
j=1

(
Ailrj − Bilrj

)2
(4)

where Ailrj and Bilrj are the jth ilr coordinate of the composition
of two rows A and B. If one of the two rows is a null vector, A is
called the Aitchison norm.

If Euclidean geometry is not valid, arithmetic mean is likely to
be a poor estimate of data center (Filzmoser et al., 2009a). Even
after ordinary log transforming compositional data, the squared
Euclidean distance (ε2) between ordinary log-transformed com-
positions x and y, i.e., between ln(x) and ln(y), is always equal to
or greater than the squared A distance between the ilrs of com-
positions x and y (Eq. 4) as driven by the number of components

www.frontiersin.org March 2013 | Volume 4 | Article 39 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Nutrition/archive


Parent et al. Nutrient balance in ionomics

Table 1 | Sequential binary partition (SBP) elaborated to compute balances between groups of nutrients as isometric log-ratios (ilr ).

ilr SBP contrasts Balance designation r† s† Ilr computation‡

N P K Ca Mg Fv

ilr1 +1 +1 +1 −1 −1 0 [N, P, K | Ca,Mg] 3 2
√

3x2
3+2 ln g(cN cP cK )

g(ccacMg)

ilr2 +1 +1 −1 0 0 0 [N, P | K] 2 1
√

1×2
1+2 ln g(cN cP )

g(cK )

ilr3 +1 −1 0 0 0 0 [N | P] 1 1
√

1×1
1+1 ln g(cN )

g(cP )

ilr4 0 0 0 +1 −1 0 [Ca | Mg] 1 1
√

1×1
1+1 ln g(cca )

g(cMg)

Optional 1 1 1 1 1 −1 [N, P, K, Ca, Mg | F υ ] 5 1
√

5x1
5+1 ln g(cN cP cK ccacMg)

g(cFυ )

An optional balance is a computed as a contrast between the geometric mean of nutrient analyses and the filling value, computed by difference.
†r and s are counts of +1 and −1 elements in the balance, respectively, ‡g is geometric mean.

FIGURE 1 | Mobile-and-fulcrums at mass equilibration point illustrates
four hierarchically nested balances that represent a subcomposition or
subspace of nutrients in the ionome.

and their geometric means g (x) and g (y), as follows (Lovell et al.,
2011):

ε2 [ln (x) , ln
(
y
)]
= A2

+ D ×

(
ln

(
g (x)

g (y)

))2

≥ A2 (5)

Numerical biases can be measured as a positive shift from A to
ε. Note that ε2

= A2 only when g (x)= g (y). As a result, comput-
ing univariate or multivariate distances across raw or ordinary
log-transformed concentration data is geometrically irrelevant
(Aitchison, 1986).

MATERIALS AND METHODS
DATASETS
The selected fruit species were either wild (lowbush blueberry and
cloudberry) or domesticated to achieve high productivity (other
species). Nutrient data were collected for kiwifruit [Actinidia deli-
ciosa (A Chev) C F Liang et A R Ferguson var deliciosa] grown
in the North Island of New Zealand, guava (Psidium guajava),
orange (Citrus sinensis), and mango (Mangifera indica) grown in
the state of São Paulo, Brazil, and apple (Malus domestica Borkh.),
cranberry (Vaccinium macrocarpon Ait.), lowbush blueberry (Vac-
cinium angustifolium Ait.), and cloudberry (Rubus chamaemorus
L.) from the province of Quebec, Canada.

The number of observations was comparable or less com-
pared to other studies on mango (n= 525 collected in a sin-
gle year: Schaffer et al., 1988), hazelnut (n= 624 collected over
16 year: Alkoshab et al., 1988), sweet cherry (n= 475 collected
over 3 year: Davee et al., 1986), and orange (n= 3161 collected
over 21 year: Beverly et al., 1984). Leaf samples from 4 to 32
plants were composited in each plot or orchard area to min-
imize between-plant variability, compared to one tree in other
studies.

Marschner (1995) claimed that physiological age of a plant or
plant part is, next to mineral nutrient supply, the most impor-
tant factor affecting plant nutrient concentration. Across-season
samplings (e.g., Han et al., 2011) thus influence nutrient con-
centrations (Bould, 1968) as well as ratios (Güsewell, 2004).
The developmental stage for sampling occurs during phases of
minimum or indeterminate nutrient changes in the fully devel-
oped leaves (Bould, 1968). Therefore sample collection must
be completed within a short period of time to minimize sea-
sonal variability (Willby et al., 2001). Foliar samplings of fruit-
bearing shoots were performed during the reproductive stages
either at full bloom (guava, mango), after flowering (kiwifruit),
during fruit development (orange, apple), during fruit mat-
uration (cranberry, blueberry), or from fruit set to maturity
(cloudberry).

Two to three of the youngest fully expanded leaves were col-
lected from 32 vines (excluding young vines and sick leaves) on
the second lateral cane within 0 to 4 weeks in 908 commercial
“Hort 16a Gold” and “Hayward” kiwifruit orchards in the North
Island of New Zealand during the 2002–2010 period. Fruit yield
averaged 31800 kg ha−1. The climate is subtropical humid, and
soils are Andisols of volcanic origin.

Guava, mango, and orange yields and nutrient data were col-
lected in the state of São Paulo, Brazil. Thirty pairs of leaves around
each of 25 trees were composited (Quaggio et al., 1997). A survey
was conducted on 137 irrigated “Paluma” guava orchards (three
cycles per 2 years) during the 2009–2010 and 2010–2011 produc-
tion cycles. Fruit yield averaged 56155 kg ha−1. From 2009 to 2011,
leaf data were collected in 95 mango orchards where varieties
“Espada,”“Palmer,”and“Tommy”were grown. Fruit yield averaged
15700 kg ha−1. Foliar samples were collected between 1978 and
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2005 in 104 orange orchards producing the varieties “Valencia,”
“Hamlin,”“Pêra,” and “Natal.” Fruit yield averaged 49300 kg ha−1.
The climate is subtropical humid, and the soils are Oxisols and
Ultisols of basaltic origin.

Apple data of the “Morspur McIntosh” variety were obtained
from an N, P, K, Ca and Mg fertilizer trial (576 observations)
established in southwestern Quebec, Canada (Parent and Granger,
1989). Ten to 30 leaf samples were collected in the middle of
the annual growth. Fruit yield averaged 33600 kg ha−1. Climate is
temperate humid continental and soils are Spodosols of morainic
origin.

Cranberry (cv.“Stevens”) yield and nutrient data were collected
at five sites in Central Quebec, Canada (Parent and Marchand,
2006) in 2000, 2001, and 2002, for a total of 149 observations. One-
hundred leaves from current season stems were sampled randomly
in a 1-m2 plot. Berry yield averaged 28200 kg ha−1. The climate is
temperate humid continental, and soils are Spodosols of marine
origin.

Yield and nutrient of lowbush blueberry totaling 345 observa-
tions were collected from 2001 to 2006 in eight commercial fields
in northern Quebec, Canada (Lafond, 2009). Leaf tissues from
25 randomly selected stems were sampled in the 2001, 2003, and
2005 sprout (vegetative) years in 50-m2 plots and composited.
Berry yield averaged 3600 kg ha−1. The climate is cold, and soils
are Spodosols developed on deltaic deposits.

In 2009, cloudberry leaves were collected in 86 stands of con-
trasting productivity along the Lower North Shore of the St.
Lawrence River, Quebec, Canada (Hébert-Gentile et al., 2011).
Six shoots were randomly selected in 5-m2 plots. The median fruit
yield was 35 kg ha−1. The climate is cold, and soils are Histosols
developed on ombrotrophic peat lands covered with sphagnum
(wetter areas) or lichens (drier areas).

TISSUE ANALYSIS
Tissue P, K, Ca, and Mg levels in the leaves of kiwifruit were deter-
mined by plasma emission spectroscopy after microwave digestion
(Blackmore et al., 1987). Total N was determined by dry com-
bustion using a Leco CNS-2000 analyzer (Leco, St. Joseph, MI,
USA). For guava, orange and mango, tissue N was determined
by micro-Kjeldahl and P, K, Ca, and Mg by ICP-OES after diges-
tion in a mixture of nitric and perchloric acids (Bataglia et al.,
1983; Jones and Case, 1990). For apple, total N was determined
by micro-Kjeldahl and other nutrients colometrically (P) or by
AA spectrophotometry (K, Ca, Mg). For cranberry, blueberry,
and cloudberry leaves, total N was determined by micro-Kjeldahl
digestion or by Leco CNS-2000 combustion. Other elements were
quantified by colorimetry (P), AA spectrometry, or ICP-OES after
digestion in a mixture of perchloric and nitric acids (Jones and
Case, 1990).

STATISTICAL ANALYSIS
Statistical computations were conducted in the R statistical envi-
ronment (R Development Core Team, 2011). Compositional data
analysis was conducted using the R “compositions” package (van
den Boogaart et al., 2011). Multivariate outliers were removed
for robust multivariate analysis (Filzmoser et al., 2008) using
the Mahalanobis distance at a 0.01 level of significance with

the R “mvoutlier” package (Filzmoser and Gschwandtner, 2011).
Data distribution was tested with the Anderson–Darling nor-
mality test (Thode, 2002) using the “nortest” package (Gross,
2006). Spurious correlations were reported as Pearson correla-
tion coefficients. Discriminant analysis (DA) was conducted with
the R “ade4” package (Chessel et al., 2011) to compare the clas-
sification of plant nutrient signatures of wild and domesticated
species.

RESULTS
DISTRIBUTION, SCALE-DEPENDENCY, AND SPURIOUS CORRELATIONS
The Euclidean distance computed across ordinary log-
transformed concentration data was higher and more dispersed
compared to the Aitchison distance across balances (Figure 2).
This discrepancy is a measure of numerical biases in multivariate
analysis of compositional data using ordinary log transformations.

Moreover, 70% of the ilrs were normally distributed (p-
value< 0.01). The [N | P] balance was the most frequently diag-
nosed as non-normally distributed. Most other balances (84%)
were normally distributed across species. By comparison, only 33
and 35% of the raw or ordinary log-transformed concentrations
values, respectively, were normally distributed. Data distributions
of nutrient concentrations and balances (ilr) are presented in the
form of box plots in Figure 3 for the eight species. The mean of
ilr often differed between species as shown by non-overlapping
ranges.

Besides, correlation coefficients changed in magnitude, sign, or
probability level depending on the choice of the scale of nutri-
ent expressions (sum of nutrients vs. dry matter basis) (Table 2).
Scale-dependency causes a serious problem of interpretation when
statistical analyses are based on the covariance or correlation
matrix.

FIGURE 2 | Numerical biases are illustrated by the inflated Euclidean
distance across ln-transformed five nutrient concentrations compared
to ilr transformation across four balances. A.d., kiwifruit [Actmidia
deliciosa (A Chev) C F Liang et A R Ferguson var deliciosa]; C.s., orange
(Citrus sinensis); M.d., apple (Malus domestica Borkh.); M.i., mango
(Mangifera indica); P.g., guava (Psidium guajava); R.c., cloudberry (Rubus
chamaemorus L.); V.a., lowbush blueberry (Vaccinium angustifolium Ait.);
V.m., cranberry (Vaccinium macrocarpon Ait.).
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A B

FIGURE 3 | Boxplots of ionomes of eight fruit plant species (A)
across nutrient concentrations and (B) across ilr balances. A.d.,
kiwifruit [Actmidia deliciosa (A Chev) C F Liang et A R Ferguson var
deliciosa]; C.s., orange (Citrus sinensis); M.d., apple (Malus domestica

Borkh.); M.i., mango (Mangifera indica); P.g., guava (Psidium guajava);
R.c., cloudberry (Rubus chamaemorus L.); V.a., lowbush blueberry
(Vaccinium angustifolium Ait.); V.m., cranberry (Vaccinium
macrocarpon Ait.).

Table 2 | Correlation matrices of nutrient data of Malus domestica computed across two scales: dry matter content and N-P-K-Ca-Mg.

Scale Nutrients N P K Ca Mg

Data scaled on dry matter content (common expression) N 1 0.023 0.068ns 0.232** 0.271**

P 1 −0.003ns 0.138** 0.220**

K 1 −2.38** −0.205**

Ca 1 0.080ns

Mg 1

Data scaled on the sum (N+P+K+Ca+Mg) N 1 −0.029ns −0.591** −0.245** 0.293**

P 1 −0.219** −0.003ns 0.200**

K 1 −0.574** −0.455**

Ca 1 −0.017ns

Mg 1

ns, *, **: non-significant and significant at the 0.05 and 0.01 levels, respectively.

DISCRIMINANT ANALYSIS
The DAs returned different schemes whether nutrients were
expressed as raw concentrations or their ordinary log transfor-
mations (Figures 4A,B). Large semitransparent ellipses enclosing
swarms of data points represent regions that include 95% of
the theoretical distribution of canonical scores for each ionome.
The swarms of wild and domesticated species (large ellipses)

overlapped using raw concentration data, but were separated
using ordinary log transformation of concentrations. The smaller
plain white ellipses represent the confidence regions about the
mean of canonical scores at the 95% confidence level. Plain white
ellipses related to A.d. (kiwifruit) and V.a. (lowbush blueberry)
were too small to be visible. Mean nutrient signatures differed
significantly between species because the white ellipses did not
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A B

C D

FIGURE 4 | Discriminant analysis of ionomes by species using (A)
raw concentrations, (B) ln-transformed concentration values, (C)
additive log-ratios, and (D) isometric log-ratio balances. Large
semitransparent ellipses that enclose swarms of data points represent
regions that include 95% of the theoretical distribution of canonical
scores for each species. Smaller plain white ellipses represent
confidence regions about means of canonical scores at 95% confidence

level. Empty ellipses represent data swarms for wild and domesticated
species, respectively. A.d., kiwifruit [Actmidia deliciosa (A Chev) C F
Liang et A R Ferguson var deliciosa]; C.s., orange (Citrus sinensis); M.d.,
apple (Malus domestica Borkh.); M.i., mango (Mangifera indica); P.g.,
guava (Psidium guajava); R.c., cloudberry (Rubus chamaemorus L.); V.a.,
lowbush blueberry (Vaccinium angustifolium Ait.); V.m., cranberry
(Vaccinium macrocarpon Ait.).

overlap, indicating plant-specific ionomes. Eigen vectors were sim-
ilar between raw and ordinary log-transformed data, where K and
Ca loaded most on the first axis.

While DAs of the ordinary log, alr and ilr representations
led to a separation between wild and domesticated species, the
swarms of species were positioned differently in the Euclidean
space (Figures 4C,D). The unbiased alr- and ilr-based DAs were
almost identical. Differences are imputed to different outlier detec-
tion results caused by the different geometries of alr and ilr.
Figures 4C,D showed that some ionome distributions (semi-
transparent gray ellipses) overlapped, while the confidence regions
about means (white ellipses) differed significantly between species.
In the alr-based DA, [Mg | N] and [P | N] loaded the most on the
first axis. In the ilr-based DA, [N, P | K], related to nutrient man-
agement in agroecosystems, and [Ca | Mg], related to geographical
position as well as soil liming in agroecosystems, loaded the most
on the first axis. Although the way nutrient balances are arranged
into alr or ilr variables produced almost identical DAs, interpre-
tation of results depended on data representation as log ratios
and this emphasizes the importance of sound data representations
when conducting multivariate analysis of compositional data.

On the other hand, the small ellipses of species were at sig-
nificant distance from each other (p< 0.05). In a finer analysis
at cultivar level, DA of the ionomes that were averaged across

cultivars of orange and mango (Figure 5) indicated significant
differences (p< 0.05) between means of discriminant scores of
orange cv. “Hamlin” and others, and between mango cvs,“Palmer,”
and “Tommy,” indicating genotypic differences or phenotypic
adjustment of each species to local factors.

DISCUSSION
UNBIASED ANALYSIS OF PLANT IONOMES
The DAs performed using unstructured raw or ordinary log-
transformed concentration data posed serious interpretation
problems in the multivariate analysis of plant ionomes. First, the
normality assumption is violated intrinsically by the constrained
compositional space. Second, as a result of scale-dependency, the
multivariate analysis can differ by simply changing the dry mass
basis for another denominator such as the wet mass (Walworth
and Sumner, 1988) or the sum of nutrients. Third, one may con-
clude that Ca and K concentrations are the most discriminant
variables, but K concentration is inherently connected to Ca in
plant nutrition (Wilkinson et al., 2000). Indeed, K bears redun-
dant information about Ca because K and Ca interact in the
plant and are thus inherently correlated to each other: indeed,
Ca may decrease as K concentration increases in the confined
compositional space as driven by K antagonism or luxury con-
sumption (Marschner, 1995). Compositional data analysis avoids
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FIGURE 5 | Discriminant analysis of ionomes by cultivar using
isometric log-ratio balances. Large semitransparent ellipses that enclose
swarms of data points represent regions that include 95% of the theoretical
distribution of canonical scores for each cultivar. Smaller plain white ellipses
represent confidence regions about means of canonical scores at 95%
confidence level. Empty ellipses represent data swarms for mango and
orange species, respectively. Orange (Citrus sinensis): H, Hamlin; N, Natal;
P, Pera; V, Valencia. Mango (Mangifera indica); P, Palmer; T, Tommy.

redundancy by relating Ca to K in linearly independent (i.e.,
orthogonally arranged) log-ratios.

In addition to the numerical advantages of ilr discussed above,
nutrient balances also reflect nutrient interactions, which are gen-
erally neglected in the multivariate analysis of plant ionomes. The
balance concept (1) relates nutrients to each other, hence cap-
turing nutrient interactions, (2) avoids the need for the ceteris
paribus assumption of other nutrients being equal by adjusting
any nutrient or group of nutrients to others, and (3) provides a
more holistic stand-alone approach illustrated by a pan balance
design (Figure 1) and synthesized by an Aitchison or Mahalanobis
distance to facilitate interpreting nutrient inter-relationships as
looked after in the concluding remarks of recent studies (Han
et al., 2011).

PLANT NUTRIENT SIGNATURES
At ecosystem level, the soil substrate influences the distribution of
terrestrial plants while genotype adaptation and genetic manipu-
lation greatly improved crop performance in nutritionally diverse
habitats (Epstein and Bloom, 2005). Wild and domesticated fruit
species acquire: allocate nutrients differently and this must impact
on the way plant nutrition experiments are designed and nutrients
are diagnosed and managed in terms of nutrient requirements and
timeframe for observable effects of nutrient supply on ionomes.

Wild species have lesser and slower response to nutrient supply
compared to domesticated species (Lafond, 2009; Hébert-Gentile
et al., 2011). Despite similar fundamental physiological mecha-
nisms involved in nutrient acquisition, wild and domesticated
species differ markedly in nutrient allocation between roots, stems,
and the harvested part (Chapin, 1980; Jackson and Koch, 1997).
The main adaptation of wild species to infertile soils appears
to be to constrain growth rate to the resources available with-
out apparent dysfunction (Chapin, 1980). Low nutrient absorp-
tion rates allow wild species to survive in nutrient-limiting, slow

ion-diffusing, and stressful environments where low phenotypic
plasticity maintains high root-to-shoot ratios despite occasional
nutrient flushes. Domesticated species have been selected for desir-
able traits under conditions of high soil fertility and thus often
respond to low nutrient availability with very low concentrations
and visual deficiency symptoms (Chapin, 1989). Domesticated
species are most often bred for high productivity under relatively
luxurious environments, where there is little selective advantage
in efficient nutrient use, leading to high phenotypic plasticity
(Chapin, 1980, 1989). Nutrient balances are more meaningful
measures of nutrient signature in this context, because nutrient
imbalance caused by shortage of certain nutrients or luxury con-
sumption of others can be detected as large multivariate distance
from a landmark composition.

As expected, the alr- and ilr-based DA showed two broad
categories of ionomes, the wild and the domesticated ionomes.
However, this classification could be interpreted as an effect of
environmental conditions or sampling protocols rather than selec-
tion pressure, but our results did not support such hypothesis.
Lowbush blueberry is a wild species growing in Spodosols. Cran-
berry is also grown in Spodosols and fertilized similarly to lowbush
blueberry, but is much more productive due to domestication.
Both species were sampled at the same developmental stage. Cran-
berry is being selected for commercially viable traits since 1835 and
across the twentieth century (Roper and Vorsa, 1997). As a result,
the cranberry showed more acquaintance with domesticated than
wild species, as confirmed by the ilr-based DA. On the other hand,
although cranberry, apple, orange, mango, guava, and kiwifruit
were grown in very contrasting environments, their large ellipses
overlapped and were neatly separated from cloudberry and low
bush blueberry ellipses, indicating human vs. natural selection
pressure, respectively.

At cultivar level, the ionomes of cultivars of orange and mango
grown in Ultisols and Oxisols in the state of São Paulo were
differentiated by the balance model, but the cause of these dif-
ferences could not be established with the present data set. In
case of high phenotypic plasticity of genotypes to nutrient supply,
recent research in agronomy showed that plant ionomes can be
tightly supervised by balance response models and critical hyper-
ellipsoids in the Euclidean space (Hernandes et al., 2012; Parent
et al., 2012a; Marchand et al., 2013).

CONCLUSION
This paper presents a novel numerical solution to conduct unbi-
ased multivariate analyses of plant ionomes. The ilrs are orthog-
onally arranged log contrasts that rectify nutrient interactions
of interest. The use of ilr balances avoids distortion due to the
important properties of compositional data such as redundancy,
non-normal distribution, and scale-dependency. As shown in this
paper, ignoring these properties and related spurious correlations
may lead to biased multivariate analyses of plant ionomes. Our
finding is fundamental to plant nutritionists, physiologists, ecol-
ogists, and agronomists who attempt to classify or diagnose the
ionomes of wild and domesticated species. There is a need for
paradigm shift in future research. The concept of growth-limiting
nutrient concentrations, supported by the “Law of minimum” and
illustrated by Liebig’s barrel, should be replaced by a concept
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of growth-limiting nutrient balances illustrated by a pan bal-
ance design, where groups of elements are balanced optimally
in weighing pans. This robust nutrient balance concept pro-
vides a structured and holistic approach to the classification of
plant ionomes. Developing other suitable nutrient balances in
plant nutrition studies is challenging. Obviously, many studies
conducted so far in plant ionomics should be revisited. Future eco-
logical and agronomic applications of ilr compositional models
appear to be numerous.

ACKNOWLEDGMENTS
This project was funded by the Natural Sciences and Engineering
Council of Canada (CG-2254 and CRDPJ 385199–09), the Fun-
dação de Amparo à Pesquisa do Estado de São Paulo (FAPESP),
the Brazilian Coordinação de Aperfeiçoamento de Pessoal de Nivel
Superior (CAPES), the Spanish Ministry of Education and Sci-
ence (MTM2009-13272 and CSD2006-00032), and the Agència
de Gestió d’Ajuts Universitaris i de Recerca of the Generalitat de
Catalunya (2009SGR424).

REFERENCES
Aerts, R., and Chapin, F. S. (2000).

The mineral nutrition of wild
plants revisited: a re-evaluation of
processes and patterns. Adv. Ecol.
Res. 30, 1–67.

Aitchison, J. (1986). The Statistical
Analysis of Compositional Data. Lon-
don: Chapman and Hall.

Aitchison, J., and Greenacre, M. (2002).
Biplots of compositional data. J.
R. Stat. Soc. Ser. C Appl. Stat. 51,
375–392.

Alkoshab, O., Righetti, T. L., and Dixon,
A. R. (1988). Evaluation of DRIS
for judging the nutritional status of
hazelnuts. J. Am. Soc. Hortic. Sci. 113,
643–647.

Bacon-Shone, J. (2011). “A short his-
tory of compositional data analy-
sis,” in Compositional Data Analy-
sis: Theory and Applications, eds V.
Pawlowsky-Glahn and A. Buccianti
(New York: John Wiley and Sons),
3–11.

Bataglia, O. C., Furlani, A. M. C., Teix-
eira, J. P. F., Furlani, P. R., and
Gallo, J. R. (1983). Métodos de
Análise Química de Plantas. Camp-
inas: Instituto Agronômico.

Baxter, I. R., Vitek, O., Lahner, B.,
Muthukumar, B., Borghi, M., Mor-
rissey, J., et al. (2008). The leaf
ionome as a multivariable system
to detect a plant’s physiological sta-
tus. Proc. Natl. Acad. Sci. U.S.A. 105,
12081–12086.

Beaufils, E. R. (1973). “Diagnosis and
recommendation integrated system
(DRIS),” in Soil Science, Bulletin,
1 (Pietermaritzburg: University of
Natal), 1–132.

Bergmann, W. (1988). Ernährung
sstörungen bei Kulturpflanzen, 2.
Auflage. Stuttgart: Gustav Fisher
Verlag.

Beverly, R. B., Stark, J. C., Ojala, J. C.,
and Embleton, T. W. (1984). Nutri-
ent diagnosis of “Valencia” oranges
by DRIS. J. Am. Soc. Hortic. Sci. 109,
649–654.

Blackmore, L. C., Searle, P. L., and Daly,
B. K. (1987). Methods for Chemical
Analysis of Soils. New Zealand Soil
Bureau, DSIR, Scientific Report 80.
Auckland.

Bould, C. (1968). Leaf analysis as a
diagnostic method and advisory aid
in crop production. Exp. Agric. 4,
17–27.

Buccianti, A. (2011). “Natural laws gov-
erning the distribution of the ele-
ments in geochemistry: the role of
the log-ratio approach,” in Com-
positional Data Analysis: Theory
and Applications, eds V. Pawlowsky-
Glahn and A. Buccianti (New York:
John Wiley and Sons), 255–266.

Chapin, S. III. (1980). The mineral
nutrition of wild plants. Ann. Rev.
Ecol. Syst. 11, 233–260.

Chapin, S. III. (1989). Ecological aspects
of plant nutrition. Adv. Plant Nutr. 3,
161–191.

Chayes, F. (1960). On correlation
between variables of constant sum.
J. Geophys. Res. 65, 4185–4193.

Chessel, D., Dufour, A. B., and Dray,
S. (2011). ade4: Analysis of Ecolog-
ical Data: Exploratory and Euclid-
ean methods in Environmental sci-
ences. R package version 1.4–
17. Available at: http://CRAN.R-
project.org/package=ade4

Conn, S., and Gilliham, M. (2010).
Comparative physiology of elemen-
tal distributions in plants. Ann. Bot.
105, 1081–1102.

Davee, D. E., Righetti, T. L., Fallahi, E.,
and Robbins, S. (1986). An evalua-
tion of the DRIS approach for iden-
tifying mineral limitations on yield
in “Napolean” sweet cherry. J. Am.
Soc. Hortic. Sci. 111, 988–993.

Egozcue, J. J., and Pawlowsky-Glahn,
V. (2005). Groups of parts and
their balances in compositional data
analysis. Math. Geol. 37, 795–828.

Egozcue, J. J., and Pawlowsky-Glahn,
V. (2006). “Simplicial geometry for
compositional data,” in Composi-
tional Data Analysis: Theory and
Applications, eds V. Pawlowsky-
Glahn, G. Mateu-Figueras, and A.
Buccianti (London: Geological Soci-
ety of London), 145–160.

Egozcue, J. J., Pawlowsky-Glahn, V.,
Mateu-Figueras, G., and Barceló-
Vidal, C. (2003). Isometric log-
ratio transformations for composi-
tional data analysis. Math. Geol. 35,
279–300.

Epstein, W., and Bloom, A. J. (2005).
Mineral Nutrition of Plants: Princi-
ples and Perspectives, 2nd Edn. Sun-
derland, MA: Sinauer Associates.

Filzmoser, P., and Gschwandtner,
M. (2011). mvoutlier: Multivari-
ate Outlier Detection Based on
Robust Methods. R package version
1.9.4. Available at: http://CRAN.R-
project.org/package=mvoutlier

Filzmoser, P., and Hron, K. (2011).
“Robust statistical analysis,” in Com-
positional Data Analysis: Theory
and Applications, eds V. Pawlowsky-
Glahn and A. Buccianti (New York:
John Wiley and Sons), 57–72.

Filzmoser, P., Hron, K., and Reimann,
C. (2009a). Univariate statistical
analysis of environmental (compo-
sitional) data: problems and pos-
sibilities. Sci. Total Environ. 407,
6100–6108.

Filzmoser, P., Hron, K., and Reimann,
C. (2009b). Principal component
analysis for compositional data
with outliers. Environmetrics 20,
621–632.

Filzmoser, P., Maronna, R., and Werner,
M. (2008). Outlier identification in
high dimensions. Comput. Stat. Data
Anal. 52, 1694–1711.

Giampietro, M. (2004). Multi-Scale
Integrated Analysis of Agroecosystems.
Boca Raton, FL: CRC Press.

Gross, J. (2006). nortest: Five Omnibus
Tests for the Composite Hypothe-
sis of Normality. R package version
1.0. Available at: http://CRAN.R-
project.org/package=nortest

Güsewell, S. (2004). N:P ratios in ter-
restrial plants: variation and func-
tional significance. New Phytol. 164,
243–266.

Han, W. X., Fang, J. Y., Reich, P. B.,
Woodward, F. I., and Wang, Z. H.
(2011). Biogeography and variabil-
ity of eleven mineral elements in
plant leaves across gradients of cli-
mate, soil and plant functional type
in China. Ecol. Lett. 14, 788–796.

Hébert-Gentile, V., Naess, S. K., Par-
ent, L. E., and Lapointe, L. (2011).
Organo-mineral fertilization in nat-
ural peatlands of the Quebec North-
Shore, Canada: dispersion in soil and
effects on cloudberry growth and

fruit yield. Acta Agric. Scand. B Soil
Plant Sci. 61(Suppl. 1), 8–17.

Hernandes, A., Parent, S. E., Natale, W.,
and Parent, L. E. (2012). Balanc-
ing guava nutrition with fertiliza-
tion and liming. Rev. Bras. Frutic. 34,
224–1234.

Ingestad, T. (1987). New concepts on
soil fertility and plant nutrition
as illustrated by research on for-
est trees and stands. Geoderma 40,
237–252.

Jackson, L. E., and Koch, G. W. (1997).
“The ecophysiology of crops and
their wild relatives,” in Ecology in
Agriculture, ed. L. E. Jackson (San
Diego: Academic Press), 3–37.

Jones, J. B. Jr., and Case, V. W. (1990).
“Sampling, handling, and analyzing
plant tissue samples,” in Soil Test-
ing and Plant Analysis, 3rd Edn, ed.
R. L. Westerman (Madison, WI: Soil
Science Society of America, Inc.),
389–427.

Körner, C. (2011). The grand
challenges in functional plant
ecology. Front. Plant Sci. 2:1.
doi:10.3389/fpls.2011.00001

Lafond, J. (2009). Optimum leaf nutri-
ent concentrations of wild lowbush
blueberry in Quebec. Can. J. Plant
Sci. 89, 341–347.

Lagatu, H., and Maume, L. (1934). Le
diagnostic foliaire de la pomme de
terre. Ann. Éc. Natl. Agron. Montpel-
lier (France) 22, 50–158.

Lahner, B., Gong, J., Mahmoudian, M.,
Smith, E. L., Abid, K. B., Rogers,
E. E., et al. (2003). Genomic scale
profiling of nutrient and trace ele-
ments in Arabidopsis thaliana. Nat.
Biotechnol. 21, 1215–1221.

Loladze, I., and Elser, J. J. (2011). The
origins of the Redfield nitrogen-to-
phosphorus ratio are in a homoeo-
static protein-to-rRNA ratio. Ecol.
Lett. 14, 244–250.

Lovell, D., Müller, W., Tayler, J., Zwart,
A., and Helliwell, C. (2011). “Pro-
portions, percentages, ppm: do the
molecular biosciences treat compo-
sitional data right?”in Compositional
Data Analysis: Theory and Applica-
tions, eds V. Pawlowsky-Glahn and
A. Buccianti (New York: John Wiley
and Sons), 193–207.

www.frontiersin.org March 2013 | Volume 4 | Article 39 | 9

http://CRAN.R-project.org/package$=$ade4
http://CRAN.R-project.org/package$=$ade4
http://CRAN.R-project.org/package$=$mvoutlier
http://CRAN.R-project.org/package$=$mvoutlier
http://CRAN.R-project.org/package$=$nortest
http://CRAN.R-project.org/package$=$nortest
http://dx.doi.org/10.3389/fpls.2011.00001
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Nutrition/archive


Parent et al. Nutrient balance in ionomics

Marchand, S., Parent, S.-É., Deland, J.
P., and Parent, L. E. (2013). Nutrient
signature of Quebec (Canada) cran-
berry (Vaccinium macrocarpon Ait.).
Rev. Bras. Frutic. 35. (in press).

Marschner, H. (1995). Mineral Nutri-
tion of Higher Plants. New York:
Academic Press.

Mateu-Figueras, G., Pawlowsky-Glahn,
V., and Egozcue, J. J. (2011). “The
principle of working on coordi-
nates,” in Compositional Data Analy-
sis: Theory and Applications, eds V.
Pawlowsky-Glahn, and A. Buccianti
(New York: John Wiley and Sons),
31–42.

Parent, L. E. (2011). Diagnosis of the
nutrient compositional space of fruit
crops. Rev. Bras. Frutic. 33, 321–334.

Parent, L. E., and Dafir, M. (1992).
A theoretical concept of composi-
tional nutrient diagnosis. J. Am. Soc.
Hortic. Sci. 117, 239–242.

Parent, L. E., and Granger, R. L.
(1989). Derivation of DRIS norms
from a high density apple orchard
established in Quebec Appalachi-
ans. J. Am. Soc. Hortic. Sci. 114,
915–919.

Parent, L. E., and Marchand, S. (2006).
Response to phosphorus of cran-
berry on high phosphorus testing
acid sandy soils. Soil Sci. Soc. Am. J.
70, 1914–1921.

Parent, S.-É., Parent, L. E., Rozane,
D. E., Hernandes, A., and Natale,
W. (2012a). “Nutrient balance as
paradigm of plant and soil chemo-
metrics,” in Soil Fertility, ed. R. N.
Issaka (New York: InTech Publica-
tions), 83–114. Available at: http://
www.intechopen.com/books/export
/citation/BibTex/soil-fertility/nutri
ent-balance-as-paradigm-of-plant-
and-soil-chemometricsnutrient-
balance-as-paradigm-of-soil-and-

Parent, L. E., Parent, S. É., Rozane, D.
E., Amorim, D. A., Hernandes, A.,
and Natale, W. (2012b). “Unbiased
approach to diagnose the nutrient
status of guava,” in Proceedings of

the 3rd International Symposium on
Guava and other Myrtaceae ISHS
2012, Vol. 959, eds C. A. F. Santos,
S. K. Mitra, and J. L. Griffis (Acta
Horticulture), 145–159.

Parent, L. E., de Almeida, C. X., Her-
nandes, A., Egozcue, J. J., Gülser,
C., Bolinder, M. A., et al. (2012c).
Compositional analysis for an unbi-
ased measure of soil aggregation.
Geoderma 179–180, 123–131.

Pawlowsky-Glahn, V., and Buccianti, A.
(2011). Compositional Data Analysis:
Theory and Applications. New York:
John Wiley and Sons.

Pearson, K. (1897). Mathematical con-
tributions to the theory of evolution.
On a form of spurious correlation
which may arise when indices are
used in the measurement of organs.
Philos. Trans. R. Soc. Lond. B Biol. Sci.
60, 489–498.

Quaggio, J. A., Van Raij, B., and
Piza, C. T. Jr. (1997). “Frutíferas”
in Recomendações de adubação e
calagem para o Estado de São
Paulo, 2nd Edn. rev., eds B. van
Raij, H. Cantarella, J. A. Quag-
gio, and A. M. C. Furlani Bole-
tim Técnic #100 (Campinas: Insti-
tuto Agronômico/Fundação IAC),
121–125.

R Development Core Team. (2011). R:
A Language and Environment for
Statistical Computing. R Foundation
for Statistical Computing. Version
2.13.1. Available at: http://www.R-
project.org

Rodgers, J. L., Nicewander, W. A.,
and Toothaker, L. (1984). Lin-
early independent, orthogonal, and
uncorrelated variables. Am. Stat. 38,
133–134.

Roper, T., and Vorsa, N. (1997). Cran-
berry: botany and horticulture. Hor-
tic. Rev. (Am. Soc. Hortic. Sci.) 21,
215–249.

Salt, E. D., Baxter, I., and Lahner, B.
(2008). Ionomics and the study of
the plant ionome. Annu. Rev. Plant
Biol. 59, 709–733.

Schaffer, B., Larson, K. D., Sny-
der, G. H., and Sanchez, C. A.
(1988). Identification of mineral
deficiencies associated with mango
decline by DRIS. HortScience 23,
617–618.

Tanner, J. (1949). Fallacy of per-weight
and per-surface area standards, and
their relation to spurious correla-
tion. J. Phys. 2, 1–15.

Tennakoon, K. U., Chak, W. H., and
Bolin, J. F. (2011). Nutritional and
isotopic relationships of selected
Bornean tropical mistletoe–host
associations in Brunei Darus-
salam. Funct. Plant Biol. 38,
505–513.

Thode, H. C. Jr. (2002). Testing for Nor-
mality. New York: Marcel Dekker.

Tolosana-Delgado, R., and van den
Boogart, K. G. (2011). “Linear
models with compositions in R”
in Compositional Data Analysis:
Theory and Applications, eds V.
Pawlowsky-Glahn and A. Buccianti
(New York: John Wiley and Sons),
356–371.

van den Boogaart, K. G., Tolosana-
Delgado, R., and Bren, R. (2011).
Compositions: Compositional Data
Analysis. R package version 1.10-
2. Available at: http://CRAN.R-
project.org/package=compositions

Walworth, J. L., and Sumner, M.
E. (1987). The diagnosis and
recommendation integrated sys-
tem (DRIS). Adv. Soil Sci. 6,
149–188.

Walworth, J. L., and Sumner, M. E.
(1988). Foliar diagnosis: a review.
Adv. Plant Nutr. 3, 193–240.

Weltje, G. J. (2002). Quantitative analy-
sis of dentrial modes: statistically
rigourous confidence regions in
ternary diagrams and their use in
sedimentatry petrology. Earth Sci.
Rev. 57, 211–253.

White, P. J., and Brown, P. H. (2010).
Plant nutrition for sustainable devel-
opment and global health. Ann. Bot.
105, 1073–1083.

Wilkinson, S. R., Grunes, D. L., and
Sumner, M. E. (2000). “Nutrient
interactions in soil and plant nutri-
tion” in Handbook of Soil Science, ed.
M. E. Sumner (Boca Raton, FL: CRC
Press), D-89–D-112.

Willby, N. J., Pulford, I. D., and Flow-
ers, T. H. (2001). Tissue nutri-
ent signatures predict herbaceous-
wetland community responses to
nutrient availability. New Phytol.
152, 463–481.

Williams, L., and Salt, D. E. (2009).
The plant ionome coming into
focus. Curr. Opin. Plant Biol. 12,
247–249.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 07 September 2012; accepted:
13 February 2013; published online: 22
March 2013.
Citation: Parent S-É, Parent LE, Egozcue
JJ, Rozane D-E, Hernandes A, Lapointe
L, Hébert-Gentile V, Naess K, Marc-
hand S, Lafond J, Mattos D Jr, Bar-
low P and Natale W (2013) The plant
ionome revisited by the nutrient bal-
ance concept. Front. Plant Sci. 4:39. doi:
10.3389/fpls.2013.00039
This article was submitted to Frontiers in
Plant Nutrition, a specialty of Frontiers
in Plant Science.
Copyright © 2013 Parent , Parent ,
Egozcue, Rozane, Hernandes, Lapointe,
Hébert-Gentile, Naess, Marchand,
Lafond, Mattos Jr, Barlow and Natale.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in other
forums, provided the original authors
and source are credited and subject to
any copyright notices concerning any
third-party graphics etc.

Frontiers in Plant Science | Plant Nutrition March 2013 | Volume 4 | Article 39 | 10

http://www.intechopen.com/books/export/citation/BibTex/soil-fertility/nutrient-balance-as-paradigm-of-plant-and-soil-chemometricsnutrient-balance-as-paradigm-of-soil-and-
http://www.intechopen.com/books/export/citation/BibTex/soil-fertility/nutrient-balance-as-paradigm-of-plant-and-soil-chemometricsnutrient-balance-as-paradigm-of-soil-and-
http://www.intechopen.com/books/export/citation/BibTex/soil-fertility/nutrient-balance-as-paradigm-of-plant-and-soil-chemometricsnutrient-balance-as-paradigm-of-soil-and-
http://www.intechopen.com/books/export/citation/BibTex/soil-fertility/nutrient-balance-as-paradigm-of-plant-and-soil-chemometricsnutrient-balance-as-paradigm-of-soil-and-
http://www.intechopen.com/books/export/citation/BibTex/soil-fertility/nutrient-balance-as-paradigm-of-plant-and-soil-chemometricsnutrient-balance-as-paradigm-of-soil-and-
http://www.intechopen.com/books/export/citation/BibTex/soil-fertility/nutrient-balance-as-paradigm-of-plant-and-soil-chemometricsnutrient-balance-as-paradigm-of-soil-and-
http://www.R-project.org
http://www.R-project.org
http://CRAN.R-project.org/package$=$compositions
http://CRAN.R-project.org/package$=$compositions
http://dx.doi.org/10.3389/fpls.2013.00039
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Plant_Nutrition
http://www.frontiersin.org/Plant_Nutrition/archive

	The plant ionome revisited by the nutrient balance concept
	Introduction
	Theory of compositional data analysis
	Sample space
	Numerical biases
	The log-ratio transformations
	The alr transformation
	The ilr transformation

	Nutrient balances
	The aitchison distance

	Materials and methods
	Datasets
	Tissue analysis
	Statistical analysis

	Results
	Distribution, scale-dependency, and spurious correlations
	Discriminant analysis

	Discussion
	Unbiased analysis of plant ionomes
	Plant nutrient signatures

	Conclusion
	Acknowledgments
	References


