
“fpls-04-00042” — 2013/3/8 — 8:55 — page 1 — #1

MINI REVIEW ARTICLE
published: 11 March 2013

doi: 10.3389/fpls.2013.00042

Genetic basis of cytokinin and auxin functions during root
nodule development
Takuya Suzaki1,2*, Momoyo Ito1 and Masayoshi Kawaguchi1,2

1 Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
2 Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan

Edited by:

Mohammad Miransari, Sharif
University of Technology, Iran

Reviewed by:

Florian Frugier, Centre National de la
recherche Scientifique, France
Marco Villanueva, Instituto de
Ciencias del Mar y Limnología de la
Universidad Nacional Autónoma de
México, Mexico
Li Luo, Institute of Plant Physiology
and Ecology, Shanghai Institutes for
Biological Sciences, Chinese
Academy of Sciences, China

*Correspondence:

Takuya Suzaki, Division of Symbiotic
Systems, National Institute for Basic
Biology, Nishigonaka 38, Myodaiji,
Okazaki, 444-8585 Aichi, Japan.
e-mail: tsuzaki@nibb.ac.jp

The phytohormones cytokinin and auxin are essential for the control of diverse aspects
of cell proliferation and differentiation processes in plants. Although both phytohormones
have been suggested to play key roles in the regulation of root nodule development, only
recently, significant progress has been made in the elucidation of the molecular genetic
basis of cytokinin action in the model leguminous species, Lotus japonicus and Medicago
truncatula. Identification and functional analyses of the putative cytokinin receptors LOTUS
HISTIDINE KINASE 1 and M. truncatula CYTOKININ RESPONSE 1 have brought a greater
understanding of how activation of cytokinin signaling is crucial to the initiation of nodule
primordia. Recent studies have also started to shed light on the roles of auxin in the
regulation of nodule development. Here, we review the history and recent progress of
research into the roles of cytokinin and auxin, and their possible interactions, in nodule
development.
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INTRODUCTION
Legumes (Fabaceae) are well-known for their ability to form nod-
ules on their roots through symbiotic interaction with soil bacteria
(rhizobia), a relationship termed “root nodule symbiosis.” Within
the nodules, the rhizobia fix gaseous nitrogen and make it available
to the host plants as a nitrogen source; in turn, the plants provide
a carbon source for the rhizobia. Nodule development is a form
of cellular reprogramming in which host receptors in the root epi-
dermis respond to rhizobia-derived nodulation (Nod) factors by
ultimately inducing the dedifferentiation of some root cortical cells
(Szczyglowski et al., 1998; Oldroyd et al., 2011). These activated
cortical cells subsequently proliferate to form nodule primordia.
Nodule organogenesis proceeds further following the invasion of
nodule primordia by rhizobia via specialized structures called
infection threads (Murray, 2011). Thus, the analysis of nodula-
tion is not only of interest to researchers studying plant–microbe
interactions, but also may contribute to our understanding of
mechanisms underlying de novo organogenesis in plants.

Elucidation of the roles and functions of phytohormones is
crucial to understanding plant development (Durbak et al., 2012).
Two of these phytohormones, cytokinin and auxin, are well-
known as key players in the regulation of cell proliferation and
differentiation processes. In Arabidopsis thaliana, the roles of these
phytohormones and their crosstalk during lateral root (LR) devel-
opment have been broadly characterized (Benková and Bielach,
2010; Bishopp et al., 2011). Auxin is involved in the positive
regulation of LR development: establishment of a local auxin
response at LR founder cells results from polar auxin transport
and maintenance of the local auxin maximum at the root apex

(Benková et al., 2003; Marhavý et al., 2013). In contrast, cytokinin
acts as a negative regulator of LR initiation through promoting
the expression of auxin signaling inhibitors (Laplaze et al., 2007;
Bielach et al., 2012).

Most of the early studies on the hormonal control of nodulation
adopted a physiological approach using a variety of leguminous
and rhizobial species. More recently, the advances in genetic tech-
niques have led to a greater focus on model legumes such as
Lotus japonicus and Medicago truncatula. In this review, we sum-
marize past and recent studies, mainly from the latter species,
on the actions of cytokinin and auxin in the control of nodule
development.

ROLE OF CYTOKININ DURING NODULE DEVELOPMENT
Forty years ago, Libbenga et al. (1973) reported that exoge-
nous application of cytokinin and auxin to pea root cortical
explants induced cell proliferation at positions where nodules were
expected to initiate. Other early studies found that some rhi-
zobial species could secrete cytokinin-like compounds affecting
plant development in soybean (Phillips and Torrey, 1972; Sturte-
vant and Taller, 1989). Later, Cooper and Long (1994) reported
the important observation that the nodulation-deficient pheno-
type of a Rhizobium mutant could be partially suppressed by the
introduction of a gene involved in trans-zeatin secretion. In their
experiment, they found that nodules formed by alfalfa roots were
devoid of bacteria, suggesting that while cytokinin has the ability
to form nodules, bacterial infection is not affected by cytokinin.
Thus, cytokinin may specifically function in nodule organogenesis
and not in the rhizobial infection process. After the identification
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of the Nod factor as a bona fide regulator of nodulation (Spaink
et al., 1991; Truchet et al., 1991), various studies investigated the
similarities among cytokinin, rhizobial-inoculation, and Nod fac-
tor with respect to their effects on nodulation. With respect to
the expression patterns of some early nodulin genes, the identi-
ties of the proliferating cortical cells induced by cytokinin appear
identical to those induced by rhizobial-inoculation or Nod fac-
tor treatment in alfalfa and white clover (Bauer et al., 1996; Fang
and Hirsch, 1998; Mathesius et al., 2000). Expression of EARLY
NODULIN 40 (ENOD40), the first gene reported to have the
ability to induce cortical cell division in M. truncatula (Charon
et al., 1997), is also activated by cytokinin. These early studies
carried out in various legume species reported that nodulation
did not progress any further following the stimulation of cortical
cell proliferation by cytokinin treatment. Under particular experi-
mental conditions, however, it is possible to stimulate formation of
bulges with the appearance of nodule-like primordia by applica-
tion of cytokinin to roots of L. japonicus (Heckmann et al., 2011).
Interestingly, the frequency of formation of these structures varies
among Lotus species, suggesting that there may be an inter-species
difference in cytokinin responses.

IDENTIFICATION OF KEY COMPONENTS OF
NODULATION-RELATED CYTOKININ SIGNALING
In L. japonicus, mutation at any of three spontaneous nodule
formation loci (snf1, snf2, or snf4) can cause the formation of
nodule-like structures (spontaneous nodules) in the absence of
rhizobia (Tirichine et al., 2006b). The histological, physiological,
and molecular features of spontaneous nodules resemble those
of rhizobia-induced nodules; the major difference is the presence
of infection threads and infected cells in the latter. The obser-
vation of spontaneous nodules has also been reported in some
ecotypes of alfalfa, although the cause remains unknown (Truchet
et al., 1989).

The genetic study of cytokinin function during nodule devel-
opment has been facilitated by use of a mutation at the snf2
locus that is associated with spontaneous nodule development.
This dominant snf2 mutant has a gain-of-function mutation of
LOTUS HISTIDINE KINASE 1 (LHK1), which encodes a protein
closely related to the Arabidopsis cytokinin receptor, CYTOKININ
RESPONSE 1 (CRE1)/ARABIDOPSIS HISTIDINE KINASE 4
(Inoue et al., 2001; Tirichine et al., 2007). The mutant histidine
kinase receptor can activate an Escherichia coli two-component
phosphorelay system without exogenous cytokinin treatment; this
observation suggests that cytokinin-induced signaling is consti-
tutively activated in the snf2 mutant. L. japonicus plants carrying
a loss-of-function mutation of LHK1 and M. truncatula plants
with mutation of CRE1 (MtCRE1), the functional homolog
of LHK1, are insensitive to cytokinin and show a nodulation-
deficient phenotype (Gonzalez-Rizzo et al., 2006; Murray et al.,
2007; Plet et al., 2011). These observations strongly indicate
that activation of cytokinin signaling is essential for nodule
development.

In a downstream part of the cytokinin receptor pathway, a
series of two-component phosphorelay systems activate B-type
response regulators (RRs), which have a DNA-binding domain
and can directly regulate a number of cytokinin primary response

genes. Among the cytokinin primary response genes, A-type RRs
are believed to act as negative regulators of cytokinin signaling
(Heyl and Schmülling, 2003). In M. truncatula, expression of
MtRR1 (B-type) and MtRR4 (A-type) is induced by inoculation
with rhizobia (Gonzalez-Rizzo et al., 2006). MtCRE1 and MtRR4
are expressed at proliferating cortical cells during nodule devel-
opment, and the upregulation of MtRR4 expression is dependent
on MtCRE1 (Lohar et al., 2006; Plet et al., 2011), suggesting that
MtRR4 is involved in nodule development in a downstream part
of the MtCRE1 signaling pathway. At present, no loss-of-function
mutants of nodulation-related RRs have been identified. However,
in M. truncatula, analyses of the loss- and gain-of-function effects
of ETHYLENE RESPONSE FACTOR REQUIRED FOR NODULE
DIFFERENTIATION (EFD) showed that it negatively regulates
nodulation, potentially through the activation of MtRR4 (Vernié
et al., 2008). This is consistent with the suggestion that MtRR4
acts as a negative regulator of nodule development. In addition,
the expression of other A-type RRs can be induced by Nod factor
treatment in M. truncatula (Op den Camp et al., 2011). Surpris-
ingly, under the experimental conditions used, MtRR4 was not
activated by the Nod factor, suggesting that there might be differ-
ent downstream responses between rhizobial-inoculation and Nod
factor treatment. Furthermore, constitutive activation of MtRR9,
a newly identified A-type RR, induces cortical cell proliferation,
implying that MtRR9 may have a positive role in the forma-
tion of nodules (Op den Camp et al., 2011). MtRR9 function in
cytokinin signaling should be, however, clarified by investigation
of the effects of loss- and gain-of-function mutations on cytokinin
sensitivity.

Ariel et al. (2012) recently reported that MtRR1 could bind to
the MtRR4 promoter, suggesting that MtRR1 directly controls the
expression of MtRR4. Interestingly, electrophoretic mobility shift
and chromatin immunoprecipitation assays identified NODU-
LATION SIGNALING PATHWAY 2 (NSP2) as a direct target of
MtRR1. NSP2 encodes a GRAS-type transcription factor that is
required for the positive regulation of nodule development (Kaló
et al., 2005; Heckmann et al., 2006; Murakami et al., 2006; Ariel
et al., 2012). Mutation of the putative MtRR1-binding sites of the
NSP2 promoter abolished nodulation-related activation of NSP2,
suggesting that these cis-elements are essential for NSP2 expres-
sion. The regulatory mechanism for NSP2 expression is currently a
vibrant area of research in plant–microbe interactions; recent evi-
dence indicates that expression of NSP2 is negatively regulated by
microRNA 171 (miR171; De Luis et al., 2012; Lauressergues et al.,
2012). Expression of miR171 is induced not only during nodule
development but also by cytokinin in an MtCRE1-dependent man-
ner, and the expression pattern is negatively correlated with that
of NSP2 (Ariel et al., 2012). Thus, cytokinin signaling may have a
dual mode for regulating NSP2 expression: it can directly activate
NSP2 transiently and then repress its expression through activa-
tion of miR171 expression (Figure 1). Ariel et al. (2012) found
that MtRR1 additionally appears to directly regulate a basic helix-
loop-helix transcription factor (bHLH476), and that insertion of
a Tnt1 retrotransposon into bHLH476 led to reduced nodula-
tion. This observation suggests that bHLH476 positively regulates
nodulation. Another candidate MtRR1 target is M. truncatula
CYTOKININ OXIDASE 1 (MtCKX1), which is involved in negative
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FIGURE 1 | Model depicting auxin- and cytokinin-mediated signaling

pathways involved in nodule development. To develop this model, we
combined data from studies using L. japonicus and M. truncatula. Based on
the observation that NSP2 is required for the induction of NIN (Murakami
et al., 2006), we placed NIN downstream of NSP2. Since control of PIN
proteins (PINs) localization seems to occur in the downstream part of the
cytokinin signaling pathway (Plet et al., 2011) and NIN has an ability to
induce localized auxin responses (Suzaki et al., 2012), we suggest that the
site of PINs regulation is downstream of NIN. A putative shoot-derived
inhibitor (SDI) is proposed as a negative regulatory signal of nodule
development mediated by the AON mechanism involving HAR1/SUNN,
KLV, and nodulation-related CLE peptides (CLEs) (Ferguson et al., 2010;
Kouchi et al., 2010). Here, we suggest that SDI might inhibit cytokinin and
auxin actions. Proven and putative regulation points are indicated by intact
lines and dotted lines, respectively. See text for more detailed explanations
of the model.

regulation of cytokinin signaling (Ariel et al., 2012). MtRR1 binds
directly to the MtCKX1 promoter in an MtCRE1-dependent man-
ner. CKX genes have a negative effect on nodule development and
their overexpression causes a reduction in the number of nodules
(Lohar et al., 2004). Overall, these findings indicate that cytokinin
signaling not only positively regulates nodule development but
also may control itself through a negative feedback mechanism
that may involve CKX1 (Figure 1).

Double mutant analyses using snf2 and nodulation-deficient
mutants indicate that NODULE INCEPTION (NIN) is also
involved in the positive regulation of nodule development in
a downstream part of the LHK1-dependent cytokinin signaling
pathway. The nin mutation suppresses snf2-dependent sponta-
neous nodule formation (Tirichine et al., 2007). Expression of NIN
is strongly activated during nodulation and is induced by cytokinin
in an LHK1/MtCRE1-dependent manner (Schauser et al., 1999;
Murray et al., 2007; Heckmann et al., 2011; Plet et al., 2011). In
addition, NIN has the ability to induce cortical cell proliferation
in L. japonicus; constitutive activation of the gene induces cortical
cell proliferation in the absence of rhizobia (Suzaki et al., 2012;
Soyano et al., 2013). Details of the mechanism of the potential
interaction between cytokinin signaling and NIN activation await
clarification.

RELATIONSHIP BETWEEN CYTOKININ SIGNALING AND
AUTOREGULATION OF NODULATION
It has been demonstrated that legumes have a negative regu-
latory mechanism termed autoregulation of nodulation (AON)
that moderates the number of nodules (Caetano-Anollés and
Gresshoff, 1991; Oka-Kira and Kawaguchi, 2006; Ferguson et al.,
2010; Kouchi et al., 2010). In L. japonicus and M. truncatula, a
key component of AON is long-distance communication between
the root and shoot that is mediated through the receptor-like
kinases HYPERNODULATION ABERRANT ROOT FORMA-
TION 1 (HAR1)/SUPER NUMERIC NODULES (SUNN) and
KLAVIER (KLV) in the shoot and the potential root-derived
signals L. japonicus CLE-ROOT SIGNAL 1/2 (LjCLE-RS1/2) or
MtCLE12/13 (Krusell et al., 2002; Nishimura et al., 2002; Schn-
abel et al., 2005; Okamoto et al., 2009; Miyazawa et al., 2010;
Mortier et al., 2010). Mutation of HAR1 or KLV causes a
hypernodulation phenotype in L. japonicus; moreover, these
mutations have an additive effect on snf2-dependent sponta-
neous nodule formation (Wopereis et al., 2000; Tirichine et al.,
2007; Miyazawa et al., 2010), suggesting that AON acts in paral-
lel to the cytokinin signaling pathway that includes LHK1. The
expression of nodulation-related CLE genes is induced upon
rhizobial-inoculation (Okamoto et al., 2009; Mortier et al., 2010),
and it has recently been shown that such activation is abol-
ished in the presence of cre1 and nin mutations in M. truncatula
(Mortier et al., 2012). Thus, the CLE peptides may be produced
in the downstream part of the cytokinin signaling pathway that
involves NIN. Several studies have demonstrated that nodulation
is strongly suppressed when the CLE genes are constitutively acti-
vated (Okamoto et al., 2009; Mortier et al., 2010, 2012). In order
to further understand the potential feedback regulation between
cytokinin signaling and AON, it will be necessary to determine
the effects of CLE expression on snf2-dependent spontaneous
nodulation.

RELATIONSHIP BETWEEN AUXIN AND GENETIC PATHWAYS
THAT CONTROL NODULE DEVELOPMENT
Allen et al. (1953) were the first to show that exogenous applica-
tion of polar auxin transport inhibitors to alfalfa roots induced
formation of nodule-like structures in the absence of rhizobia.
Subsequent investigations on the expression of early nodulin genes
and of their expression profiles during pseudonodules develop-
ment suggest that they are similar to rhizobia-induced nodules in
the genus Medicago (Hirsch et al., 1989; Hirsch and Fang, 1994;
Rightmyer and Long, 2011). An auxin reporter analysis using the
GH3 promoter showed that the Nod factor is able to perturb auxin
flow in white clover (Mathesius et al., 1998). Furthermore, defi-
ciency in flavonoids, which act to inhibit auxin transport, causes
a reduction in nodule number in M. truncatula (Wasson et al.,
2006). Overall, these observations suggest that alteration of the
auxin flow affects nodule development, thereby implicating auxin
in this process.

Recently, the highly active synthetic auxin-responsive element
DR5 has been used in combination with a nuclear-localized green
fluorescent protein (GFP) as a reporter to examine auxin response
patterns during L. japonicus nodule development (Suzaki et al.,
2012). The analysis revealed that auxin responses during nodule
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development exclusively occur in proliferating cortical cells, as also
reported by previous studies using the GH3 promoter (Pacios-
Bras et al., 2003; Takanashi et al., 2011). An auxin response was
also observed in cyclops mutants, in which infection threads fail to
reach cortical cells (Yano et al., 2008). Thus, formation of infection
threads may not be required for initiation of the auxin response.
During actinorhizal nodule formation in Casuarina glauca, the
localized accumulation of auxin is mediated by AUX1-like carriers
and is correlated with the cellular infection by bacteria (Péret et al.,
2007; Perrine-Walker et al., 2010). Localized auxin responses are
induced during snf2-dependent spontaneous nodule formation,
suggesting that cytokinin signaling has a role in the produc-
tion of these responses (Suzaki et al., 2012). A localized auxin
response is also observed during spontaneous nodule development
mediated by a gain-of-function mutation of the Ca2+/calmodulin-
dependent protein kinase (CCaMK; Suzaki et al., 2013), which is
responsible for decoding Ca2+ signals during nodulation (Glea-
son et al., 2006; Tirichine et al., 2006a; Hayashi et al., 2010; Madsen
et al., 2010; Shimoda et al., 2012). Since accumulation of MtPIN
proteins, coding putative auxin efflux carriers, appears to be
negatively regulated by MtCRE1-dependent cytokinin signaling
(Plet et al., 2011), the regulation of the polar localization of some
PIN proteins may be required for the establishment of localized
auxin responses. In A. thaliana, cytokinin inhibits the initiation of
LR development by blocking the expression of PIN genes in LR
founder cells (Laplaze et al., 2007). Thus, the negative regulation
of PIN auxin carriers by cytokinin might be conserved in nod-
ule and LR development. In legumes, cytokinin promotes nodule
development (as described above) but also inhibits LR formation
(Lohar et al., 2004; Gonzalez-Rizzo et al., 2006). During forma-
tion of spontaneous structures induced by constitutive activation
of NIN, localized auxin responses are also induced in L. japonicus
(Suzaki et al., 2012). Thus, it is highly likely that localized auxin
responses occur not only downstream of CCaMK and LHK1 but
also of NIN (Figure 1). This interpretation is consistent with the
observation that the nin mutation has no effect on pseudonodule
formation induced by auxin transport inhibitors (Rightmyer and
Long, 2011).

Recently, a DR5 reporter analysis in har1 mutants of L. japon-
icus indicated that HAR1 may negatively regulate auxin responses
during nodule development (Suzaki et al., 2012). Abnormal auxin
transport may underlie the higher auxin response in har1 mutants
as sunn mutants have an increased auxin transport from the shoot
to the root (van Noorden et al., 2006). In addition, in nodulation-
deficient roots resulting from the constitutive activation of LjCLE

genes, perturbation of cortical cell proliferation is accompanied by
the disappearance of auxin responses (Suzaki et al., 2012). Thus, it
is possible that AON may negatively regulate nodule development
through controlling auxin responses (Figure 1).

FUTURE PERSPECTIVES
As we show in this mini-review, significant progress has been
made recently in our understanding of how and when cytokinin
and auxin act in the various genetic pathways that control nodule
development. Although auxin has a longer history than cytokinin
with respect to research into root nodule symbiosis, there is com-
paratively little known of its role in nodule development due
to a dearth of auxin-related mutants involved in nodulation.
In M. truncatula, however, the characterization of the Mtpin1
(smooth leaf margin 1) nodulation-phenotype may help remedy
this situation (Zhou et al., 2011). Additionally, characterization
of mutants created by retrotransposon mutagenesis (LORE1 in
L. japonicus and Tnt1 in M. truncatula; Fukai et al., 2012; Pis-
lariu et al., 2012; Urbański et al., 2012) should accelerate genetic
studies of nodule development. In the current model of nod-
ule development, it is proposed that auxin accumulates in the
incipient nodule primordia under the control of auxin transport
(Figure 1). However, we cannot rule out the possibility of de novo
auxin production as expression of a putative auxin biosynthe-
sis gene is activated during nodule development in L. japonicus
(Suzaki et al., 2012). With regard to cytokinin, a recent study
has shown that activation of some genes involved in cytokinin
biosynthesis, degradation, and conjugation is correlated with
nodule development in M. truncatula (Moreau et al., 2011). In
addition to studies of plant phytohormones, it is possible that
investigation of auxin- and cytokinin-like compounds derived
from the rhizobia may provide new insights into nodule develop-
ment. Some species of rhizobia do not possess genes to synthesize
Nod factors but instead might use cytokinin-like compounds to
establish root nodule symbiosis (Giraud et al., 2007). In order
to elucidate how cytokinin and auxin are provided during nod-
ule development, it will be necessary to investigate the functions
of host and rhizobial genes involved in the production of these
phytohormones.
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