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Dormancy is an adaptive trait that enables seed germination to coincide with favorable
environmental conditions. It has been clearly demonstrated that dormancy is induced by
abscisic acid (ABA) during seed development on the mother plant. After seed dispersal,
germination is preceded by a decline in ABA in imbibed seeds, which results from ABA
catabolism through 8′-hydroxylation. The hormonal balance between ABA and gibberellins
(GAs) has been shown to act as an integrator of environmental cues to maintain dormancy
or activate germination. The interplay of ABA with other endogenous signals is however
less documented. In numerous species, ethylene counteracts ABA signaling pathways
and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects
of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle
emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive
mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action
by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common
actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates
that NO is produced rapidly after seed imbibition and promotes germination by inducing
the expression of the ABA 8′-hydroxylase gene, CYP707A2, and stimulating ethylene
production. The role of NO and other nitrogen-containing compounds, such as nitrate, in
seed dormancy breakage and germination stimulation has been reported in several species.
This review will describe our current knowledge of ABA crosstalk with ethylene and NO,
both volatile compounds that have been shown to counteract ABA action in seeds and to
improve dormancy release and germination.
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INTRODUCTION
Survival of plant species mainly relies on the sexual reproduc-
tion to give birth to new individuals. In flowering plants, the
seed is the main unit of dispersal and allows colonization of new
geographic areas. As a consequence of the double fertilization pro-
cess, a mature angiosperm seed contains a diploid embryo and
protective layers comprising the triploid endosperm, a nourish-
ing tissue for the embryo, and the seed coat of maternal origin.
During development on the mother plant, after embryogenesis
completion, reserve accumulation takes place and is followed, in
so-called orthodox seeds, by an intense dehydration leading to
low seed water content upon dispersal. In many species, a dor-
mant state is also induced during the maturation phase, preventing
pre-harvest germination and allowing seed survival until environ-
mental conditions become suitable for germination and seedling
establishment (Bentsink and Koornneef, 2008; Finkelstein et al.,
2008; North et al., 2010).

Dormancy has been defined as a developmental state in which
a viable seed fails to germinate under favorable environmental
conditions (Bewley, 1997), but different definitions and classifi-
cations have been proposed. Finch-Savage and Leubner-Metzger
(2006) summarized a classification proposed by Baskin and Baskin

(2004), based on the fact that dormancy results from physiologi-
cal and developmental (or morphological) properties of the seed.
Dormancy is therefore divided in five classes: (1) physiological
dormancy (PD) can be released by different stratification (moist
chilling) treatments depending on its depth, (2) morphological
dormancy (MD) is due to a delay of embryo development, (3)
morphophysiological dormancy (MPD) is combining both PD
and MD, (4) physical dormancy (PY) is correlated with seed coat
impermeability to water and needs disruption of the seed coat
(scarification) to be released, and finally (5) combinational dor-
mancy combining PY and PD. Most species display a non-deep PD
corresponding to a dormancy that can be released, depending on
the species, by gibberellin (GA) treatment, stratification, scarifica-
tion, or a period of dry storage (after-ripening). In this case, seeds
generally combine a coat-imposed dormancy due to the covering
layers of the seed (seed coat and endosperm) that prevent the radi-
cle protrusion, and an embryo dormancy due to its incapacity to
induce radicle growth.

When dormancy is released, seeds can germinate under favor-
able conditions, specific to each species. The germination process,
that begins with seed imbibition and finishes with a developed
plantlet, is divided in three distinct phases of water uptake. Phase
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I starts with a fast water uptake and the activation of respira-
tory metabolism and transcriptional and translational activities.
During phase II water uptake ceases, seed reserve mobilization
begins and testa rupture occurs. Later, in the third phase water
uptake resumes and endosperm rupture allows radicle protrusion;
then starts the post-germination phase with high water uptake,
mobilization of the major part of reserves and first cell divisions,
until the complete seedling development (Bewley, 1997; Nono-
gaki et al., 2010; Weitbrecht et al., 2011). Germination sensu stricto
ends with radicle protrusion. It is often described has the result-
ing consequence of the growth potential of the embryo and the
resistance of the surrounding layers. Endosperm weakening is an
essential part of the modification of seed envelopes for the progress
of germination and involves the activation of cell-wall modify-
ing enzymes (Finch-Savage and Leubner-Metzger, 2006; Endo
et al., 2012; Linkies and Leubner-Metzger, 2012). After dormancy
release, storage/imbibition of non-dormant seeds in unfavorable
conditions for germination can trigger a secondary dormancy.
This is a way to protect seeds against germination too late in the
year and induce a seasonal cycling of dormancy level in seeds
(Cadman et al., 2006; Footitt et al., 2011).

The regulation of seed dormancy and germination by the hor-
monal balance between abscisic acid (ABA) and GA, in response to
environmental signals, is well documented in a number of recent
reviews (Finkelstein et al., 2008; Seo et al., 2009; Nambara et al.,
2010; Nonogaki et al., 2010; Weitbrecht et al., 2011; Graeber et al.,
2012; Rajjou et al., 2012). The present review will describe recent
knowledge about key players in the ABA metabolism and signaling
pathways that control dormancy induction and maintenance and
convergent evidences supporting the role of two other signaling
compounds, nitric oxide (NO) and ethylene, in dormancy break-
age and germination, and their interactions with ABA metabolism
and signaling pathways.

ABA HOMEOSTASIS AND SIGNALING IN DORMANCY
CONTROL
ABA SYNTHESIS
Abscisic acid is formed by cleavage of C40 oxygenated carotenoids,
also called xanthophylls, which are produced in plastids from
C5 precursors (Ruiz-Sola and Rodríguez-Concepción, 2012). Key
genes encoding enzymes of the ABA biosynthesis pathway have
been identified through mutant selection for altered germination
phenotypes, giving further evidence of the major role of ABA in
the regulation of seed dormancy and germination (Figure 1). For
instance, the first ABA-deficient mutant, identified in Arabidopsis
thaliana, was isolated in a GA biosynthesis mutant ga1 suppres-
sor screen, on its ability to germinate in the absence of GA. It
was shown to be defective in zeaxanthin epoxidase (ZEP) activ-
ity, like a Nicotiana plumbaginifolia mutant selected later on its
early germination phenotype (Koornneef et al., 1982; Marin et al.,
1996). ZEP catalyzes the epoxidation of zeaxanthin into violax-
anthin and is encoded, in Arabidopsis, by the ABA1 gene (Audran
et al., 2001; Xiong et al., 2002). Violaxanthin is then converted into
neoxanthin, by neoxanthin synthase (NSY), likely encoded by the
Arabidopsis ABA4 gene (Dall’Osto et al., 2007; North et al., 2007).
Despite impairment in ABA4 function completely prevents neox-
anthin synthesis, the aba4 mutant exhibits no obvious dormancy

FIGURE 1 | ABA metabolism pathway. Zeaxanthin conversion into
violaxanthin is catalyzed by zeaxanthin epoxidase (ZEP). ABA4 is involved in
the synthesis of neoxanthin, which is then cis-isomerized, together with
violaxanthin, by an unknown isomerase. Carotenoid cleavage is catalyzed
by a family of 9-cis-epoxycarotenoid dioxygenases (NCED) to form
xanthoxin. Xanthoxin moves to the cytosol by an unknown mechanism and
is converted into abscisic aldehyde by a short-chain dehydrogenase
reductase (SDR1), which is then oxidized into ABA by an abscisic aldehyde
oxidase (AAO3). Sulfuration of AAO3 molybdenum co-factor by ABA3 is
necessary for enzyme activity. The 8′-hydroxylation by CYP707A enzymes
is thought to be the predominant pathway for ABA catabolism.
Hydroxy-groups of ABA and its catabolites, phaseic acid (PA), neoPA, and
dihydrophaseic acid (DPA) are targets for conjugation. ABA-glucose ester is
formed by ABA glucosyltransferases (UGT) and hydrolyzed by glucosidases,
including BG1 and BG2.

phenotype, due the formation of cis-violaxanthin by an alternate
pathway (North et al., 2007). Both cis-violaxanthin and cis-
neoxanthin cleavage gives rise to xanthoxin, the C15 aldehyde pre-
cursor of ABA. Since cis-isomerization of violaxanthin and neox-
anthin is required prior to cleavage, an unknown isomerase might
be involved. The VIVIPAROUS14 (VP14) gene in maize (Zea mays)
has been shown to encode a 9-cis-epoxycarotenoid dioxygenase
(NCED), which catalyzes the oxidative cleavage of either 9′-cis-
neoxanthin or 9-cis-violaxanthin (Schwartz et al., 1997; Tan et al.,
1997). NCED genes have been then identified in a number of other
plant species (Nambara and Marion-Poll, 2005). In Arabidopsis,
VP14-related gene family is composed of nine members, five of
which (NCED2, NCED3, NCED5, NCED6, and NCED9) encode
xanthoxin-producing enzymes (Iuchi et al., 2001; Toh et al., 2008).

In Arabidopsis plastids, ZEP is associated mainly to envelope
and slightly to thylakoid membranes (Figure 1). In contrast
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NSY/ABA4 is presumably tightly bound to the envelope since this
protein is predicted to contain four transmembrane domains and
is exclusively found in the envelope fraction (Joyard et al., 2009).
In contrast, NCED proteins have been detected either in stroma
or thylakoid membrane-bound compartments, or both (Tan et al.,
2003). In addition, recent VP14 structural analysis suggested that
this enzyme might penetrate the surface of thylakoid membrane
to access and transfer carotenoid substrates to its catalytic cen-
ter (Messing et al., 2010). The scattered location of ZEP, NSY,
and NCED suggests that the production of xanthoxin inside plas-
tids may require transport mechanisms of lipid-soluble carotenoid
molecules, which are not currently understood. Since the follow-
ing enzymatic reactions take place in the cytosol, xanthoxin is also
presumed to migrate from plastid to cytosol by a still unknown
mechanism.

Abscisic aldehyde is synthesized from xanthoxin, by an enzyme
belonging to short-chain dehydrogenase/reductase family, which
is named SDR1 and is encoded by the ABA2 gene in Arabidop-
sis (Rook et al., 2001; Cheng et al., 2002; Gonzalez-Guzman et al.,
2002). The oxidation of the ABA-aldehyde is the final step of ABA
biosynthesis, and is catalyzed by an abscisic aldehyde oxidase.
In Arabidopsis, four homologous aldehyde oxidase (AAO) genes
have been characterized, but only one of them, AAO3, encodes a
protein that has proven activity on abscisic aldehyde (Seo et al.,
2000). Activity of this molybdoenzyme requires the activation of
its molybdenum co-factor (Moco) by addition of a sulfur atom
to the Mo center, which is catalyzed by a Moco sulfurase, which
has been named ABA3 in Arabidopsis (Bittner et al., 2001; Xiong
et al., 2001).

ABA CATABOLISM
Abscisic acid inactivation is a crucial mechanism to fine-tune ABA
levels, which occurs by either oxidation or conjugation (Figure 1).
The major catabolic route is the 8′-hydroxylation of ABA by
the CYP707A subfamily of P450 monooxygenases (Kushiro et al.,
2004; Saito et al., 2004). Spontaneous 8′-hydroxy-ABA isomeriza-
tion gives rise to phaseic acid (PA), which is then converted to
dihydrophaseic acid (DPA) by a still unknown reductase. ABA
can also be hydroxylated at the C-7′ and C-9′ positions. As 8′-
hydroxylation, 9′-hydroxylation is catalyzed by CYP707A as a side
reaction, and neoPA is then formed by spontaneous isomerization
(Zhou et al., 2004; Okamoto et al., 2011). The conjugation of ABA
with glucose to form the ABA-glucose ester (ABA-GE) is catalyzed
by an ABA glucosyltransferase, and in Arabidopsis only UGT71B6
exhibits a selective glucosylation activity toward the natural enan-
tiomer (+)-ABA (Lim et al., 2005; Priest et al., 2006). Subsequent
hydrolysis of conjugates constitutes an alternative pathway for ABA
synthesis in response to dehydration stress. Two glucosidases BG1
and BG2, localizing respectively in the endoplasmic reticulum or
the vacuole, have been identified (Lee et al., 2006; Xu et al., 2012).

Deficiency in either ABA synthesis or ABA inactivation by
8′-hydroxylation leads to strong dormancy phenotypes, respec-
tively dormancy loss or strengthening (Nambara and Marion-
Poll, 2005; Seo et al., 2009; Nambara et al., 2010). In con-
trast, reports on functional analysis of mutant or overexpressing
lines in ABA conjugation or ABA-GE hydrolysis did not yet
describe the implication of these processes in dormancy control.

Nevertheless, ABA conjugation may contribute to ABA breakdown
upon germination, as shown in lettuce (Lactuca sativa; Chiwocha
et al., 2003).

ABA SIGNALING PATHWAY
Genetic analyses suggest that PYR/PYL/RCAR (pyrabactin
resistance1/PYR1-like/regulatory components of ABA receptor)
ABA receptors, clade A type 2C protein phosphatases (PP2C)
and group III sucrose non-fermenting1-related protein kinase2
(SnRK2) subfamily are essential core components of the upstream
signal transduction network that regulates ABA-responsive pro-
cesses, including dormancy and germination (reviewed in Cutler
et al., 2010). PYR/PYL/RCAR proteins constitute a 14-member
family, belonging to the START-domain superfamily, also called
Bet v I-fold (Ma et al., 2009; Park et al., 2009). ABA binding
induces receptor conformation changes allowing the formation of
a protein complex with PP2C and the inhibition of phosphatase
activity (Figure 2). The clade A PP2C, including ABA INSENSI-
TIVE1 (ABI1) and ABI2, also interact with three SnRK2 (SnRK2.2,
SnRK2.3, and SnRK2.6) and, in the absence of ABA, dephosphory-
late a serine residue whose phosphorylation is required for kinase
activity (Soon et al., 2012). When ABA is present, PP2C binding
to the receptor releases inhibition of SnRK2 activity, which can
phosphorylate downstream targets.

Other types of receptors and a large number of genes, whose
mutations alter ABA germination sensitivity, have been reported
to participate in ABA signaling. In particular, regulatory mecha-
nisms such as RNA processing, RNA/protein stability or chromatin
remodeling have an important role. However, they will not be
detailed here, since their role in ABA crosstalk with ethylene and
NO in seeds still requires further investigation. In Arabidopsis
seeds, extensive evidence including mutant phenotypes strongly
supports a central role of the PYR/PYL, PP2C, SnRK2 complex
in ABA signaling (reviewed in Cutler et al., 2010; Nambara et al.,
2010). Germination of a pyr/pyl sextuple mutant is highly insensi-
tive to ABA, as also observed for the snrk2.2 snrk2.3 snrk2.6 triple
mutant (Fujii and Zhu, 2009; Gonzalez-Guzman et al., 2012).
Moreover the snrk2 triple mutant exhibits loss of dormancy and
even seed vivipary under high humidity conditions (Nakashima
et al., 2009). Conversely, in accordance with PP2C being negative
regulators of ABA signaling, germination in triple pp2c mutants
was slower than in wild type and was inhibited by very low
ABA concentrations (Rubio et al., 2009). In contrast, the gain-
of-function mutations abi1-1 and abi2-1, which prevent PP2C
binding to PYL/PYR/RCAR, lead to ABA insensitivity and reduced
dormancy (Ma et al., 2009; Park et al., 2009).

Basic leucine zipper transcription (bZIP) factors of the ABA-
RESPONSIVE ELEMENTS (ABRE) BINDING FACTOR/ABA
RESPONSE ELEMENT BINDING FACTOR/ABA INSENSI-
TIVE5 (ABF/AREB/ABI5) clade have been shown in different
species to constitute SnRK2 downstream targets and regulate
ABRE containing genes (Johnson et al., 2002; Kobayashi et al.,
2005; Umezawa et al., 2009). Several family members are expressed
at different seed stages and exhibit partially redundant or antago-
nistic functions, and ABI5 appears to have a predominant role in
the regulation of a subset of late embryogenesis abundant (LEA)
proteins during late seed development (Bensmihen et al., 2002;
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FIGURE 2 | Interactions between ethylene, abscisic acid, and

nitric oxide signaling pathways in the regulation of seed

germination and dormancy. This scheme is based on genetic
analyses, microarray data, and physiological studies on seed
responsiveness to ABA, ethylene, or NO. ABA binding to PYR/PYL/RCAR
receptor induces the formation of a protein complex with PP2C and the
inhibition of phosphatase activity. In the absence of ABA, PP2C
dephosphorylate SnRK2. When ABA is present, PP2C binding to the receptor
releases inhibition of SnRK2 activity, which can phosphorylate downstream
targets, including ABI5-related transcription factors. Interactions between
ABI3 and ABI5 mediate transcriptional regulation of ABA-responsive genes.
Ethylene positively regulates its own biosynthesis, by acting on ACC
synthesis catalyzed by ACS and subsequent conversion to ethylene by ACO.
This last step is also subject to ABA inhibition. Ethylene is perceived by
receptors (among which ETR1) located in the endoplasmic reticulum; its
binding leads to the deactivation of the receptors that become enable to
recruit CTR1. Release of CTR1 inhibition allows EIN2 to act as a positive

regulator of ethylene signaling pathway. EIN2 acts upstream of nuclear
transcription factors, such as EIN3, EILs, and ERBPs/ERFs. Ethylene
down-regulates ABA accumulation by both inhibiting its synthesis and
promoting its inactivation, and also negatively regulates ABA signaling. In
germinating seeds, NO enhances ABA catabolism and may also negatively
regulate ABA synthesis and perception. Moreover, NO promotes both
ethylene synthesis and signaling pathway. ABA, abscisic acid; ABI3, ABA
insensitive3; ABI5, ABA insensitive5; ACC, 1-aminocyclopropane 1-carboxylic
acid; ACO, ACC oxidase; ACS, ACC synthase; CTR1, constitutive triple
response 1; CYP707A, ABA-8′-hydroxylase; EIL, EIN3-like; EIN,
ethylene-insensitive; EREBP, ethylene-responsive element binding protein;
ERF, ethylene response factor; Et, ethylene; ETR1, ethylene receptor1; NCED,
9-cis-epoxycarotenoid dioxygenase; NO, nitric oxide; PP2C, clade A type 2C
protein phosphatases; PYR/PYL/RCAR, pyrabactin resistance1/PYR1-like
/regulatory components of ABA receptor; SnRK2, group III sucrose
non-fermenting-1-related protein kinase 2; a dashed line is used when
regulatory targets are not precisely identified.

Finkelstein et al., 2005). abi5 mutation confers ABA-insensitive
germination, but it does not impair seed dormancy, suggest-
ing that other factors might be involved in dormancy induction
(Finkelstein, 1994). Nevertheless, ABI5 has been clearly proven
to act as a major inhibitor of germination processes in imbibed
seeds, notably through its up-regulation by stress-induced ABA
accumulation (Lopez-Molina et al., 2001; Piskurewicz et al., 2008).
ABI3/VIVIPAROUS1 (VP1) interacts with ABI5 for the regulation
of a number of ABA-responsive genes during seed maturation and
germination (Lopez-Molina et al., 2002; Piskurewicz et al., 2008,

2009). However, in contrast to abi5, abi3 mutants do not only
exhibit ABA-resistant germination, but also other phenotypes
including desiccation intolerance and precocious germination.
They share these maturation defects with fusca3 (fus3) and leafy
cotyledon2 (lec2) mutants, which, like abi3, carry mutations in B3
transcription factor family genes. These factors form a complex
network regulating the expression of reserve storage and LEA
genes by their binding to RY motif, and it has been suggested
that the lack of dormancy induction in mutants might indirectly
result from early seed developmental defects (Gutierrez et al., 2007;
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Finkelstein et al., 2008; Santos-Mendoza et al., 2008; Graeber et al.,
2012). Nevertheless fus3 mutation has been shown to affect ABA
levels in developing seeds (Gazzarrini et al., 2004). In addition,
ABA-specific phenotypes of abi3/vp1 mutants strongly suggest an
involvement in ABA-regulated dormancy induction, but down-
stream dormancy genes still remain elusive. Nevertheless, one of
these might be the recently identified seed dormancy4 (Sdr4) gene
in rice, which encodes a nuclear protein of unknown function
(Sugimoto et al., 2010).

The Arabidopsis DELAY OF GERMINATION1 (DOG1) gene,
whose precise function is still unknown, has been identified as
a major regulator of seed dormancy (Bentsink et al., 2006). In
accordance, protein accumulation in dry seeds well correlates
with dormancy depth, and both transcript and protein levels are
increased upon cool conditions of seed maturation, which increase
seed dormancy (Kendall et al., 2011; Nakabayashi et al., 2012).
Despite dog1 dormancy phenotypes are similar to ABA synthe-
sis and signaling mutants, current evidence suggests that DOG1
and ABA act in independent pathways. Nevertheless regulation of
dormancy depth by DOG1 requires a functional ABA signaling
pathway (Nakabayashi et al., 2012), and DOG1 has been reported
to be implicated in the ABA-mediated sugar signaling pathway,
together with ABI4, an APETALA2 transcription factor involved
in reserve mobilization at germination (Penfield et al., 2006; Teng
et al., 2008). Another mutation, named despierto (dep), also causes
dormancy loss (Barrero et al., 2010). DEP gene encodes a C3HC4
RING (Really Interesting New Gene)-finger protein, whose tar-
gets are unknown. In addition to similarity in mutant phenotypes,
expression of both DEP and DOG1 genes is maximal during late
seed development and decreases during imbibition. Moreover dep
mutation reduces DOG1 transcript levels in developing seeds and
vice versa. It also down-regulates the expression of several ABA
biosynthesis and signaling genes, including NCED6, NCED9, and
ABI3, suggesting its action in dormancy induction may involve the
ABA signaling pathway (Barrero et al., 2010).

SPATIOTEMPORAL REGULATION OF ABA LEVEL AND SIGNALING IN
DORMANCY AND GERMINATION
Abscisic acid is produced in all seed tissues (testa, endosperm,
embryo), as suggested by the spatiotemporal expression of ABA
biosynthesis genes (Lefebvre et al., 2006; Frey et al., 2012). How-
ever, ABA accumulated in seeds also originates from synthesis
in vegetative tissues and transport to the seed (Frey et al., 2004;
Kanno et al., 2010). Several ABA transporters have been recently
identified, which belong to either the ATP-binding cassette (ABC)
or nitrate transporter 1 (NRT1)/peptide transporter (PTR) fam-
ilies (Kang et al., 2010; Kuromori et al., 2010; Kanno et al., 2012).
ABC transporter G family member 25 (ABCG25) functions as a
plasma membrane ABA exporter, whereas both ABCG40 and AIT1
(ABA IMPORTER1) are plasma membrane uptake transporters.
Despite mutations in these three genes induce alterations in germi-
nation sensitivity to ABA, suggesting a possible function in seeds,
the precise contribution of any of them to either ABA supply from
mother plant to seeds or its translocation between maternal and/or
embryonic seed tissues needs further investigation. Another ABC
transporter gene, ABCG22, has been reported to be involved in
ABA-regulated water stress tolerance, but its function in ABA

transport remains uncertain (Kuromori et al., 2011). ABA levels
are maximal during mid-seed development, with a large fraction
produced in maternal tissues (Karssen et al., 1983; Kanno et al.,
2010). Maternal ABA has a major contribution to the regulation
of many aspects of seed development, but only ABA produced
by zygotic tissues at late maturation stages imposes dormancy
(Karssen et al., 1983; Frey et al., 2004).

Carotenoid cleavage by NCED and ABA inactivation by
CYP707A 8′-hydroxylase have been proven to constitute key reg-
ulatory steps for the control of ABA levels, which affect seed
dormancy and germination in response to environmental cues
(Nambara and Marion-Poll, 2005; Seo et al., 2009; Nambara
et al., 2010). Among the five Arabidopsis NCED genes, NCED6
and NCED9 exhibit the highest expression levels in develop-
ing seeds and show distinctive expression patterns. NCED6 is
specifically expressed in endosperm, whereas NCED9 expression
is detected in testa and embryo. Furthermore mutant analysis
indicated that ABA production in both embryo and endosperm
contributes to dormancy induction (Lefebvre et al., 2006; Frey
et al., 2012). In barley (Hordeum vulgare), the two HvNCED genes
also exhibit differential spatiotemporal patterns of expression. In
contrast to HvNCED2, HvNCED1 transcript levels vary depend-
ing on environmental conditions during grain development and
modulate ABA accumulation at late maturation stages (Chono
et al., 2006). ABA inactivation by CYP707A during seed matura-
tion also regulates dry seed ABA levels and dormancy depth, as
deduced from cyp707a mutant analysis (Okamoto et al., 2006).
Moreover, the seed dormancy increase under cold-maturation
conditions is not only correlated with DOG1 up-regulation, as
mentioned above, but also with CYP707A2 down-regulation
(Kendall et al., 2011).

Upon imbibition, dormancy maintenance and germination
are also regulated by both ABA catabolism and neo-synthesis. A
decrease in ABA levels at imbibition has been observed in both
dormant and non-dormant seeds in several species; neverthe-
less dormant seeds maintain higher ABA levels and in accordance
exhibit lower CYP707A transcript levels, as shown in Arabidopsis
and barley (Millar et al., 2006). Barley HvABA8’OH1 transcripts
were detected in coleorhiza cells near the root apex and Ara-
bidopsis CYP707A2 in endodermis and micropylar endosperm
next to the radicle (Millar et al., 2006; Okamoto et al., 2006).
Moreover, it is well documented in several species that unfa-
vorable light or temperature conditions prevent germination by
coordinated regulation of NCED and CYP707A gene expression
(Seo et al., 2006; Gubler et al., 2008; Toh et al., 2008; Ley-
marie et al., 2009; Argyris et al., 2011). Furthermore, dormancy
cycling by seasonal variation of soil temperature has been recently
linked to the regulation of ABA metabolism and signaling genes.
Deep dormancy in winter is correlated with increased ABA lev-
els and NCED6 expression, together with that of DOG1 and
MOTHER OF FLOWERING LOCUS T (MFT). MFT encodes a
phosphatidylethanolamine-binding protein, which is regulated by
ABI3 and ABI5, and feedback regulates ABA signaling by repressing
ABI5 (Xi et al., 2010). In contrast, shallow dormancy in summer is
correlated with a reduction in ABA levels and an up-regulation of
CYP707A2 and ABI2, which negatively regulates ABA signaling
(Footitt et al., 2011).
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In Arabidopsis, despite endosperm consists in a single cell
layer in mature seeds, convergent evidence demonstrated its
major role in ABA control of seed dormancy and germination.
Firstly, whereas the removal of whole seed coat (endosperm and
testa) releases mechanical constraints and allows development of
embryos dissected from dormant seeds, the preservation of the
endosperm after testa removal maintains dormancy (Bethke et al.,
2007a). Secondly, using a “seed coat bedding assay,” Lee et al.
(2010) showed that diffusion of endospermic ABA from dormant
seed envelopes could prevent growth of non-dormant embryos,
including those of ABA-deficient aba2 mutants. In isolated
embryos, translocated ABA was able to induce ABI5 protein accu-
mulation, whose level was correlated with dormancy maintenance.
In addition, in a previous study, ABI5 transcript was detected in the
embryo and the micropylar endosperm of imbibed seeds, suggest-
ing a role in the inhibition of both embryo growth and endosperm
rupture by ABA (Penfield et al., 2006). The tissue-specificity of
ABA sensitivity is also likely regulated by the spatiotemporal
expression of upstream ABA signaling components, as suggested
by the differential expression of PYR/PYL genes in embryo and/or
endosperm of imbibed seeds (Gonzalez-Guzman et al., 2012).

ETHYLENE BIOSYNTHESIS, SIGNALING, AND ABA
CROSSTALK IN SEED GERMINATION
ETHYLENE BIOSYNTHESIS AND SIGNALING
Ethylene biosynthesis pathway in germinating seeds is the same
as that described in other plant organs (Figure 3), in which
S-adenosyl-methionine (S-AdoMet) and 1-aminocyclopropane-
1-carboxylic acid (ACC) are the main intermediates (Yang and
Hoffman, 1984; Wang et al., 2002; Rzewuski and Sauter, 2008).
The first step of ethylene biosynthesis is the conversion of
S-AdoMet to ACC catalyzed by ACC synthase (S-adenosyl-L-
methionine methylthioadenosine-lyase, ACS), the by-product
being 5′-methylthioadenosine (MTA), which is recycled back to
methionine through the Yang cycle (Yang and Hoffman, 1984;
Kende, 1993). The second step corresponds to the oxidation of
ACC by ACC oxidase (ACO) to form ethylene, CO2, and hydrogen
cyanide (HCN). Cyanide produced during this final step of ethy-
lene synthesis is detoxified to β-cyanoalanine by β-cyanoalanine
synthase (β-CAS). Both ACS and ACO are encoded by a multigene
family. In Arabidopsis, nine active ACS genes have been char-
acterized (Yamagami et al., 2003; Wang et al., 2005; Dong et al.,
2011). Most of them can be induced by cycloheximide (ACS2,
ACS4, ACS6), wounding (ACS2, ACS4), and ethylene treatment
(ACS2, ACS6; reviewed in Wang et al., 2002). In addition, ACS6
can also be induced by cyanide (Smith and Arteca, 2000) or ozone
treatment (Vahala et al., 1998). ACO activity controls in vivo ethy-
lene production and has fundamental contribution during seed
germination (Matilla and Matilla-Vazquez, 2008; Linkies and
Leubner-Metzger, 2012).

In Arabidopsis, five membrane-localized receptors have been
identified: ethylene resistant 1 (ETR1), ETR2, ethylene response
sensor 1 (ERS1), ERS2, and ethylene insensitive 4 (EIN4; Figure 2).
Among them, ETR1 and ERS1 contain three transmembrane
domains in the N-terminus and a histidine kinase domain in
the C-terminus. In contrast, ETR2, EIN4, and ERS2 have four
transmembrane regions and a serine–threonine kinase domain in

FIGURE 3 | Ethylene biosynthesis pathway. S-adenosyl-methionine
(S-AdoMet) is synthesized from the methionine by the
S-adenosyl-methionine synthetase (SAM synthetase) with one ATP
molecule expensed per S-AdoMet synthesized. S-AdoMet is then
converted to 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC
synthase, 5′-methylthioadenosine (MTA) being a by-product. MTA is
recycled to methionine by successive enzymatic reactions involving
various intermediates (MTR, 5-methylthioribose; KMB,
2-keto-4-methylthiobutyrate), which constitute the methionine (Yang) cycle.
S-AdoMet is also the precursor of the spermidine/spermine biosynthesis
pathway. Ethylene production is catalyzed by the ACC oxidase using
ACC as substrate, and generates carbon dioxide and hydrogen cyanide.
Malonylation of ACC to malonyl-ACC (MACC) reduces ACC content and
consequently ethylene production.

the C-terminus (Kendrick and Chang, 2008). Binding of C2H4

to the receptors occurs in the hydrophobic N-terminal part of
the receptor dimer and requires a copper co-factor (Hall et al.,
2007). The signaling pathway of C2H4 is controlled by CTR1
(constitutive triple response 1), a serine–threonine protein kinase
that acts as a negative regulator, downstream of the receptor and
upstream of EIN2. C2H4 binding results in the inactivation of
the receptor–CTR1 complex, and in turn allows activation of a
kinase cascade controlling EIN2 and its transcription factors in
the nucleus such as EIN3, EIL1, ethylene-responsive element bind-
ing proteins (EREBPs)/ethylene-responsive factors (ERFs), which
activate the transcription of ethylene-responsive genes (Wang
et al., 2002; Liu et al., 2004; Rzewuski and Sauter, 2008; Yoo et al.,
2008; Stepanova and Alonso, 2009). EIN2 works downstream of
CTR1 and upstream of EIN3 (Alonso et al., 1999). Recently, Qiao
et al. (2009) demonstrated that EIN2 protein level is regulated
through its degradation by the proteasome in the presence of the
hormone via 2 F-Box proteins ETP1 and ETP2; in the presence of
C2H4, ETP1 and ETP2 levels are low, thus increasing EIN2 protein
level.

SEED RESPONSIVENESS TO EXOGENOUS ETHYLENE
The influence of ethylene on seed germination is well docu-
mented (Corbineau and Côme, 1995; Kepczynski and Kepczynska,
1997; Matilla, 2000; Matilla and Matilla-Vazquez, 2008). Ethy-
lene, ethephon (an ethylene-releasing compound), or ACC (the
precursor of ethylene) stimulate seed germination in numerous
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species, among which several parasitic plants such as Orobanche
ramosa (Chun et al., 1979) and some Striga species (Egley and
Dale, 1970; Bebawi and Eplee, 1986). Application of ethylene
promotes germination of either primary dormant or secondary
dormant seeds (Table 1). It breaks seed coat-imposed dormancy
in cocklebur (Xanthium pennsylvanicum; Katoh and Esashi, 1975;
Esashi et al., 1978), subterranean clover (Trifolium subterraneum;
Esashi and Leopold, 1969), Rumex crispus (Taylorson, 1979) and
Arabidopsis (Siriwitayawan et al., 2003), and embryo dormancy
in apple (Malus domestica; Kepczynski et al., 1977; Sinska and
Gladon, 1984), sunflower (Helianthus annuus; Corbineau et al.,
1990), and beechnut (Fagus sylvatica; Calvo et al., 2004a). It
can also overcome thermodormancy in lettuce (Abeles, 1986)
or secondary dormancy in sunflower (Corbineau et al., 1988),
Amaranthus caudatus (Kepczynski et al., 1996a), and Amaranthus
paniculatus (Kepczynski and Kepczynska, 1993). Likewise, it stim-
ulates germination of non-dormant seeds placed in non-optimal
conditions (Kepczynski and Kepczynska, 1997; Matilla, 2000). For
example, it can overcome the inhibition of germination imposed
by high temperatures (Abeles, 1986; Gallardo et al., 1991) or
osmotic agents (Negm and Smith, 1978; Kepczynski and Karssen,
1985), and alleviates the salinity effect in numerous halophytes
(Khan et al., 2009).

The stimulatory effect of exogenous ethylene increases with
hormone concentration, and the efficient concentrations range
from 0.1 to 200 μL L−1, depending on species and depth of their
dormancy. Ethylene at 1.25 μL L−1 allows 100% germination of
dormant Arabidopsis seeds incubated at 25◦C in darkness, when
dormant sunflower seeds required 12.5 μL L−1 to fully germinate

at 15◦C. Breaking of dormancy during chilling of apple seeds, or
during dry storage of sunflower achenes, results in an increasing
sensitivity to ethylene (Sinska, 1989; Corbineau and Côme, 2003).
In Stylosanthes humilis, non-dormant seeds are at least 50-fold
more sensitive to ethylene than freshly harvested dormant ones
(Ribeiro and Barros, 2006). Improvement of dormant seed ger-
mination does not require a continuous application of ethylene; a
short treatment in the presence of this compound is sufficient to
improve germination of dormant seeds in various species (Schön-
beck and Egley, 1981; Corbineau and Côme, 2003; Kepczynski
et al., 2003). Seed responsiveness to ethylene decreases during pro-
longed pre-incubation under conditions favoring the maintenance
of dormancy, probably due to an induction of a secondary dor-
mancy (Speer et al., 1974; Esashi et al., 1978; Jones and Hall, 1984;
Corbineau and Côme, 2003).

INVOLVEMENT OF ETHYLENE BIOSYNTHESIS AND SIGNALING IN SEED
GERMINATION
Ethylene production begins as the imbibition phase starts and
increases with the germination progression. Its development dif-
fers among species (reviewed in Kepczynski and Kepczynska, 1997;
Matilla, 2000; Matilla and Matilla-Vazquez, 2008), however, the
radicle protrusion through the seed coat is always associated
with a peak of ethylene release. A close relationship between
the ability to produce ethylene and seed vigor has been reported
in numerous species (Samimy and Taylor, 1983; Gorecki et al.,
1991; Khan, 1994; Chonowski et al., 1997), and ACC-dependent
C2H4 production was proposed as a marker of seed quality
(Corbineau, 2012).

Table 1 | Species whose seed dormancy is broken by ethylene or ethephon, an ethylene-releasing compound, or

1-aminocyclopropane-1-carboxylic acid (ACC).

Species Type of dormancy Reference

Amaranthus caudatus Primary and secondary dormancies Kepczynski and Karssen (1985);

Kepczynski et al. (1996a, 2003)

Amaranthus paniculatus Secondary dormancy Kepczynski and Kepczynska (1993)

Amaranthus retroflexus Primary dormancy Kepczynski et al. (1996b)

Arabidopsis thaliana Primary dormancy Siriwitayawan et al. (2003)

Arachis hypogaea Primary dormancy Ketring and Morgan (1969)

Chenopodium album Primary dormancy Machabée and Saini (1991)

Fagus sylvatica Embryo primary dormancy Calvo et al. (2004a)

Helianthus annuus Embryo primary dormancy Corbineau et al. (1990)

Secondary dormancy Corbineau et al. (1988)

Lactuca sativa Thermodormancy Speer et al. (1974)

Secondary dormancy Abeles (1986)

Pyrus malus Embryo primary dormancy Kepczynski et al. (1977);

Sinska and Gladon (1984)

Rumex crispus Primary and secondary dormancies Taylorson (1979);

Samimy and Khan (1983)

Stylosanthes humilis Primary dormancy Ribeiro and Barros (2006)

Trifolium subterraneum Primary dormancy Esashi and Leopold (1969)

Xanthium pennsylvanicum Primary and secondary dormancies Katoh and Esashi (1975);

Esashi et al. (1978)
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Ethylene production depends on both ACS activity that mod-
ulates ACC content, and the activity of ACO, the key enzyme
that converts ACC into ethylene. Evolution of ethylene pro-
duction during germination is associated with an increase in
ACO activity, as well as a progressive accumulation of ACS
and ACO transcripts, with generally a sharp increase during
endosperm rupture or/and radicle protrusion (Gomez-Jimenez
et al., 1998; Matilla and Matilla-Vazquez, 2008; Linkies et al.,
2009; Iglesias-Fernandez and Matilla, 2010; Linkies and Leubner-
Metzger, 2012). In Sisymbrium officinale, SoACS7 level is very
low during seed imbibition, a more notable expression being
detected when endosperm rupture reached 50–100%, whereas
SoACO2 expression is detected at early stages during seed imbi-
bition, and then rises during the germination process (Iglesias-
Fernandez and Matilla, 2010). Similarly, expression of PsACO1
in pea (Pisum sativum; Petruzzelli et al., 2003) and BrACO1 in
turnip (Brassica rapa; Rodriguez-Gacio et al., 2004) is maximal
at radicle emergence. In two Brassicaceae species, Arabidopsis
and Lepidium sativum, ACO1 and ACO2 have been demon-
strated to be the major ACOs involved in ethylene synthesis in
seeds (Linkies et al., 2009; Linkies and Leubner-Metzger, 2012).
In Lepidium sativum, the correlation between ACO1 and ACO2
transcript accumulation with in vivo ACO enzyme activity sug-
gests that ACO is regulated at the transcriptional level during
germination.

Ethylene has been shown to regulate its own synthesis by induc-
ing ACO transcription (Lin et al., 2009). It is required for the
stimulation of ACO gene expression in pea (Petruzzelli et al., 2000,
2003), beechnut (Calvo et al., 2004b), and turnip (Puga-Hermida
et al., 2003). In contrast, expression of SoACS7 in Sisymbrium
officinale and PsACS1 in pea is not affected (Petruzzelli et al., 2000,
2003; Iglesias-Fernandez and Matilla, 2010).

Induction of thermodormancy is often associated with a
reduced ethylene production, which may result in chickpea (Cicer
arietinum) from a greater ACC-malonyltransferase activity and
an S-AdoMet channeling toward the polyamine pathway, thus
reducing ethylene precursor availability (Martinez-Reina et al.,
1996), or also from ACO activity inhibition, as observed in
chickpea and sunflower (Corbineau et al., 1988; Gallardo et al.,
1991). Incubation at high temperature (35◦C) of lettuce seeds
induces a reduction in ethylene production (Prusinski and Khan,
1990), associated with a complete repression of LsACS1 and a
reduced expression of ACO-A (homologous to AtACO4; Argyris
et al., 2008).

In contrast, treatments (chilling, GA, HCN. . .) that break
seed dormancy often lead to an increase in ethylene produc-
tion (reviewed in Kepczynski and Kepczynska, 1997; Matilla and
Matilla-Vazquez, 2008). Cyanide treatment, which breaks embryo
dormancy in apple and sunflower, stimulates ethylene production
(Oracz et al., 2008; Gniazdowska et al., 2010). In apple 5-day-
old seedlings, it increases ACS and ACO activities (Bogatek et al.,
2004), whereas in sunflower it reduces in vivo ACC-dependent
ethylene production (i.e., in vivo ACO activity) and HaACS and
HaACO expression (Oracz et al., 2008). However, in Arabidop-
sis, cold stratification down-regulates the expression of ACOs, but
results in transient expression of ACS (Narsai et al., 2011; Linkies
and Leubner-Metzger, 2012).

Studies using inhibitors of ACS activity (AVG: amino-
ethoxyvinylglycine; AOA: amino-oxyacetic acid), ACO activity
(CoCl2; α-AIB: α-aminoisobutyric acid), or ethylene action (2,5
NBD: 2,5-norbornadiene; STS: silver thiosulfate) demonstrated
that ethylene evolved by seeds plays a promotive role in germi-
nation and dormancy breakage (Kepczynski et al., 1977, 2003;
Sinska and Gladon, 1989; Corbineau et al., 1990; Esashi, 1991;
Longan and Stewart, 1992; Gallardo et al., 1994; Hermann et al.,
2007). Conversely, application of exogenous ACC stimulates ger-
mination of various ethylene-sensitive seeds such as lettuce (Fu
and Yang, 1983), sunflower (Corbineau et al., 1990), cocklebur
(Satoh et al., 1984), Amaranthus caudatus (Kepczynski, 1986) and
Amaranthus retroflexus (Kepczynski et al., 1996b), chickpea (Gal-
lardo et al., 1994), sugar beet (Beta vulgaris; Hermann et al.,
2007). Thermodormancy in lettuce, Amaranthus caudatus and
chickpea is also reversed by exogenous ACC (Gallardo et al.,
1996; Kepczynski et al., 2003). This stimulatory effect of ACC
suggests that dormancy might be related to low C2H4 produc-
tion due to insufficient levels of endogenous ACC, i.e., low ACS
activity.

Analysis of mutant lines altered in ethylene biosynthesis and
signaling pathway demonstrated the involvement of ethylene in
regulating seed germination. Mutations in ETHYLENE RESIS-
TANT1 (ETR1) and ETHYLENE INSENSITIVE2 (EIN2) genes
result in poor germination and deeper dormancy compared to
wild type, in contrast constitutive triple response1 (ctr1) seeds ger-
minate slightly faster (Bleecker et al., 1988; Leubner-Metzger et al.,
1998; Beaudoin et al., 2000; Subbiah and Reddy, 2010). ERFs genes
might also play a key (pivotal) role in ethylene responsiveness
and germination regulation (Leubner-Metzger et al., 1998; Pir-
rello et al., 2006). In beechnut, Jimenez et al. (2005) demonstrated
that the expression of FsERF1, a transcription factor involved in
C2H4 signaling and sharing high homology with Arabidopsis ERFs,
increases during dormancy release in the presence of ethephon
or after chilling. In sunflower, ERF1 expression is fivefold higher
in non-dormant than in dormant embryos, and also markedly
stimulated by gaseous HCN, which breaks dormancy (Oracz et al.,
2008). Beechnut FsERF1 is almost undetectable in dormant seeds
incubated under high temperature conditions that maintain dor-
mancy, or in the presence of germination inhibitors, either ABA
or AOA, an inhibitor of ethylene biosynthesis, but increases dur-
ing moist chilling that progressively breaks dormancy (Mortensen
et al., 2004; Jimenez et al., 2005). In tomato (Solanum lycopersicon),
SlERF2 transcript accumulation is higher in germinating seeds
than in non-germinating ones, and its overexpression in transgenic
lines results in premature seed germination (Pirrello et al., 2006).
Interestingly, in lettuce seeds, expression of genes involved in ethy-
lene signaling (CTR1, EIN2, and ETR1) is less affected by high
temperature than that of biosynthesis genes (ACS and ACO;
Argyris et al., 2008).

CROSSTALK BETWEEN ETHYLENE AND ABA
Effect of ABA on ethylene metabolism
The antagonistic interaction between ABA and C2H4 dur-
ing germination was demonstrated in numerous species
(Leubner-Metzger et al., 1998; Beaudoin et al., 2000; Ghassemian
et al., 2000; Kucera et al., 2005; Matilla and Matilla-Vazquez,
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2008). In Arabidopsis and Lepidium sativum, ethylene counteracts
the inhibitory effects of ABA on endosperm cap weakening and
endosperm rupture (Linkies et al., 2009). ABA also increases the
ethylene requirement to release primary and secondary dorman-
cies (Kepczynski and Kepczynska, 1997; Corbineau and Côme,
2003; Kepczynski et al., 2003). Inhibition of germination by ABA
is associated with a reduction in ethylene production (Kepczyn-
ski and Kepczynska, 1997; Matilla, 2000). ABA clearly inhibits in
vivo ACO activity, and this inhibition correlates with a decreased
accumulation of ACO transcripts (Bailly et al., 1992; Petruzzelli
et al., 2000, 2003; Linkies et al., 2009). In Arabidopsis, the accumu-
lation of ACO1 transcripts in both the embryo and endosperm
during germination is inhibited by ABA, and the high levels of
ACO1 transcripts in ABA-insensitive mutants suggests the regu-
lation of ACO expression by ABA (Penfield et al., 2006; Carrera
et al., 2008; Linkies et al., 2009). In the embryo, ACO2 transcript
accumulation is also inhibited by ABA (Penfield et al., 2006). In
Lepidium sativum, inhibition of both ACO1 and ACO2 by ABA
is restricted to the endosperm cap (Linkies et al., 2009). In accor-
dance, microarray analysis in Arabidopsis aba2 mutant detected
an up-regulation of ACO transcript accumulation (Cheng et al.,
2009). Moreover, inhibition of shoot growth in tomato ABA-
deficient mutants, flacca and notabilis, and in Arabidopsis aba2
results from increased ethylene production (Sharp et al., 2000;
LeNoble et al., 2004). In contrast to pea, chickpea, Lepidium
sativum, and Arabidopsis, there is an ABA-mediated up-regulation
of ACC accumulation and ACO expression in sugar beet seeds
(Hermann et al., 2007).

Effect of ethylene on ABA metabolism and signaling
Treatment with exogenous ethylene or ACC does not affect ABA
content nor expression of genes involved in ABA biosynthesis in
Lepidium sativum (Linkies et al., 2009) and sugar beet (Hermann
et al., 2007). Nevertheless, seeds of Arabidopsis ethylene-insensitive
mutants, etr1 and ein2, exhibit higher ABA content than wild type
and consistently germinate more slowly (Kende et al., 1998; Beau-
doin et al., 2000; Ghassemian et al., 2000; Chiwocha et al., 2005;
Wang et al., 2007). ABA-GE levels are reduced in etr1–2 seeds;
increased ABA accumulation might therefore be attributed to a
decrease in ABA conjugation (Chiwocha et al., 2005). However,
ethylene may also regulate other enzymatic steps, since a microar-
ray analysis reported NCED3 up-regulation in ein2 and CYP707A2
down-regulation in etr1-1 (Cheng et al., 2009). High ABA levels in
ein2 were also associated with an up-regulation of ABA1 (Wang
et al., 2007), which was, however, not detected on microarrays
(Cheng et al., 2009).

Several reports suggest that, during germination, ethylene
not only acts on ABA metabolism to reduce ABA levels, but
also negatively regulates ABA signaling (Gazzarrini and McCourt,
2001; Kucera et al., 2005). Indeed, mutations that reduce ethy-
lene sensitivity (e.g., etr1, ein2, and ein6) result in an increase in
ABA sensitivity, while increased ethylene sensitivity in ctr1 and
eto1 reduces ABA sensitivity (Beaudoin et al., 2000; Ghassemian
et al., 2000; Brady and McCourt, 2003; Chiwocha et al., 2005;
Kucera et al., 2005; Linkies et al., 2009; Subbiah and Reddy, 2010).
Mutations in CTR1, for example, enhance the ABA insensitivity
of abi1-1 seeds, when C2H4-insensitive mutants like ein2 reduce it

(Beaudoin et al., 2000). However, no significant difference in ABA
sensitivity is observed in ein3, ein4, ein5, and ein7 (Subbiah and
Reddy, 2010).

In addition, overexpression in Arabidopsis seeds of a beechnut
tyrosine phosphatase, FsPTP1, reduces dormancy, through both
ABA signaling down-regulation and EIN2 up-regulation, suggest-
ing that the negative role of FsPTP1 in ABA signaling might result
from modulation of C2H4 signaling (Alonso-Ramirez et al., 2011).
This central role of EIN2 in mediating cross-links between hor-
monal response pathways has also been reported in plant response
to abiotic and biotic stresses (Wang et al., 2007).

Despite the existence of interactions between the ABA and ethy-
lene signaling pathways, genetic evidence indicates that they may
mainly act in parallel, since double mutants obtained by crossing
ethylene mutants (ctr1, ein1, ein3, and ein6) with the aba2 mutant
exhibit phenotypes resulting from both ABA deficiency and altered
ethylene sensitivity (Cheng et al., 2009).

NITRIC OXIDE HOMEOSTASIS, SIGNALING AND CROSSTALK
WITH ABA AND ETHYLENE
NITRIC OXIDE: CHEMICAL NATURE AND REACTIVITY
Nitric oxide is an inorganic, uncharged, gaseous free radical
that can readily diffuse through cell membranes. Upon produc-
tion, released NO can adjust to the cellular redox environment
leading to the formation of diverse biologically active com-
pounds referred to as reactive nitrogen species (RNS; Stamler
et al., 1992). Thus, its biological half-life is assumed to be in
the order of seconds depending on the redox environment and
the initial amount (Saran et al., 1990). While NO production
can be beneficial at relatively low levels, uncontrolled accumu-
lation, referred to as nitrosative stress, can result in detrimental
consequences in plant cells. A strict control of NO levels is
therefore required for cell survival. The regulation of NO biosyn-
thesis, localization, and duration along with the control of
NO removal (or storage) is therefore of paramount importance
in determining the biological consequences of NO accumula-
tion and thus for its role as secondary messenger (Besson-Bard
et al., 2008; Moreau et al., 2010; Baudouin, 2011). The chemi-
cal reactivity of NO makes it an unusual signal molecule that
can readily act on a wide range of targets, especially proteins
(Besson-Bard et al., 2008). The signal it mediates can also be
modulated along the signal transduction pathways depending on
the biological environment, thus adding to the complexity of NO
signaling.

THE DISTINCT PATHWAYS FOR NITRIC OXIDE BIOSYNTHESIS IN
PLANTS AND THEIR RELATIVE CONTRIBUTION IN SEEDS
Due to their importance as basis for NO-mediated signaling, the
biosynthesis pathways of NO in plants have been the subjects of
intense investigations during the last decade (Besson-Bard et al.,
2008; Corpas et al., 2009; Moreau et al., 2010; Gupta et al., 2011).
The existence of several sources of NO associated with enzymatic
or non-enzymatic reactions has been reported but only a few have
been completely elucidated so far. Here we will mainly focus on the
reactions proven or suggested to be relevant in the context of seed
physiology (Figure 4), as NO synthesis was previously reviewed in
Simontacchi et al. (2007) and Sirova et al. (2011).
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FIGURE 4 | Simplified overview of NO biosynthesis and homeostasis

in plant cells. This scheme is inspired from Moreau et al. (2010). Nitrate
(NO−

3 ) assimilation produces nitrite (NO−
2 ) in a reaction catalyzed by nitrate

reductase (NR). The subsequent reduction of nitrite into NO can occur
enzymatically, either through NR activity or mitochondrial electron transport
chains, and via non-enzymatic reactions (reductive pathways). Alternatively,
NO synthesis can result from oxidative reactions from hydroxylamine,
polyamines or L-arginine (L-Arg; oxidative pathways). NO synthesis from
L-Arg could account for the nitric oxide synthase-like (NOS-like) activity
detected in plants. The pool of NO is then influenced by non-symbiotic
hemoglobin 1 (nsHb1) dioxygenase activity, which converts NO into NO−

3 .
NO can also react with reduced glutathione or thiol groups leading to the
reversible formation of S-nitrosothiols (e.g., GSNO, S-nitrosoglutathione;
S-nitrosylated proteins). Red arrows highlight the so-called nitrate-NO cycle
that may take place under hypoxia. Green arrows correspond to
biosynthesis reactions while blue arrows indicate reactions involved in NO
homeostasis.

Nitric oxide synthase-like activity
In animals, NO biosynthesis is mainly catalyzed by three iso-
forms of NO synthase (NOS; Alderton et al., 2001). These enzymes
metabolize L-arginine (L-Arg) into L-citrulline and NO via the
following reaction:

L-Arg + NAD(P)H,H+ + O2 ⇒
L-citrulline + NAD(P)+ + H2O + NO

To date, despite the identification of a green alga NOS (Foresi
et al., 2010), the search for a NOS homolog enzyme in higher
plants only encountered failure, although biochemical assay high-
lighted the existence of a NOS-like activity in several plant tissues
and organelles (Fröhlich and Durner, 2011). Moreover, exogenous
application of NOS inhibitors (structural analogs of L-Arg such as
L-NAME, N-nitro-L-arginine methyl ester) significantly reduced
NO release under diverse conditions in several plant species (Craw-
ford, 2006). Using these approaches, a NOS-like activity was
detected in sorghum (Sorghum bicolor) and soybean (Glycine max)
imbibed seeds (Simontacchi et al., 2007). Nonetheless, the liability
of such proofs is now debated in light of the discovery of other
L-Arg-dependent NO synthesis pathways (Tun et al., 2006). More-
over, the recent finding that L-NAME can affect NO production

by interfering with nitrate reductase (NR) activity discredits its
use as a NOS inhibitor in plants (Rasul et al., 2012). Thus, after
more than a decade of intense research in the area and despite
the proven occurrence of L-Arg-dependent NO biosynthesis, the
mere existence of NOS is now questioned in plants (Fröhlich and
Durner, 2011).

Nitrate reductase
Apart from its well-known role in nitrate reduction and assimila-
tion, the cytosolic NR has been shown to catalyze the reduction of
nitrite to NO, using NAD(P)H as electron donor, both in vitro and
in vivo, via the following reaction (Yamasaki et al., 1999; Rockel
et al., 2002):

NAD(P)H + 3H3O+ + 2NO−
2 ⇒ NAD(P)+ + 2NO + 5H2O

In vivo, NR would be responsible at least in part for the basal level
of NO production with a low reduction efficiency (in the order of
1% of the total NR activity). However, the nitrite reductase activity
of NR (NR-NiR) can drastically increase under certain conditions
such as oxygen deprivation (Rockel et al., 2002). Overall, condi-
tions leading to NR-mediated nitrite production exceeding the rate
of nitrite removal can lead to a substantial increase in NO produc-
tion by NR. Both the nitrate and nitrite reductase activities of NR
are tightly controlled by post-translational modifications (PTM;
Lillo et al., 2004; Park et al., 2011; Wang et al., 2011). In Arabidopsis,
NR and NR-NiR activities are stimulated by sumoylation mediated
by the E3 SUMO ligase AtSIZ1 (Park et al., 2011). Furthermore,
the H2O2-induction of NO biosynthesis in Arabidopsis roots was
recently proposed to depend on mitogen-activated protein kinase
6 (MPK6)-mediated phosphorylation of one of the NR isoforms
(Ser 627 in Arabidopsis NIA2; Wang et al., 2010, 2011). Moreover,
NO was reported to inhibit NR activity in wheat leaves (Rosales
et al., 2011). In Arabidopsis seedlings, GA may also negatively reg-
ulate light-induced NR activity at post-translational level (Zhang
et al., 2011).

Distinct studies reported an implication of NR in NO-mediated
signal transduction pathways (Bright et al., 2006; Neill et al., 2008;
Gupta et al., 2011). In seeds, the NO-mediated positive effect of
NO−

2 and NO−
3 on dormancy release supports an involvement of

nitrite-dependent reductive pathways in NO biosynthesis, possibly
via NR-NiR activity or at least depending on NR activity in the
case of exogenous NO−

3 (Bethke et al., 2006b). Accordingly, NR
activity was detected concomitantly with a NOS-like activity in
soybean and sorghum embryonic axes, both enzymatic activities
appeared to parallel the accumulation of NO upon seed imbibition
(Simontacchi et al., 2007).

In Arabidopsis, NR is encoded by two homologous genes, NIA1
and NIA2 (Wilkinson and Crawford, 1991). The relative contri-
bution of these two isoforms to NO production was suggested
to differ with a possible predominant involvement of NIA1 in NO
production (Baudouin, 2011). Despite NO has been demonstrated
to break seed dormancy (Bethke et al., 2006b; Liu et al., 2009),
NR involvement in Arabidopsis seed germination remains unclear.
Two distinct research groups assessed the germination character-
istics of the nia1nia2 double mutant (also named G′4-3), obtained
by Wilkinson and Crawford (1993). In the first study, G′4-3 seeds
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were found to be less dormant than wild type seeds (Alboresi et al.,
2005), but more dormant in the second (Lozano-Juste and Leon,
2010). Differences in culture environments of mother plants, ger-
mination conditions or duration of seed storage may explain these
contrasted results (Clerkx et al., 2004; Matakiadis et al., 2009).

Polyamines and hydroxylamines
Upon exogenous application of the polyamines, spermine (spm)
and spermidine (spd), a rapid NO production from Arabidop-
sis seedlings has been observed under aerobic conditions (Tun
et al., 2006). In plants, the tri-amine Spd and tetra-amine Spm are
formed by successive additions of aminopropyl groups [result-
ing from S-AdoMet decarboxylation] to the diamine putrescine
(Put; reviewed in Wimalasekera et al., 2011a). Put can be syn-
thesized either from L-Arg (by L-Arg decarboxylase) or from
L-ornithine (by ornithine decarboxylase). However, as Arabidopsis
lacks ornithine decarboxylase activity, polyamines are exclusively
produced from L-Arg (Hanfrey et al., 2001). Thus, NO biosyn-
thesis from polyamines can be considered as a L-Arg-dependent
pathway in Arabidopsis.

Plant cells are also able to produce NO through hydroxylamine
oxidation and this reaction is promoted by reactive oxygen species
(ROS) accumulation (Rümer et al., 2009). Thus, NO might be
responsible for the positive effect of exogenous hydroxylamines
on seed germination (Hendricks and Taylorson, 1974). However,
the relevance of such pathway to NO synthesis remains unclear.

Nitric oxide production in the apoplast
The existence of a root specific plasma membrane nitrite-NO
reductase (Ni-NOR) was reported in tobacco (Nicotiana tabacum;
Stöhr et al., 2001). This enzyme would catalyze the reduction of
nitrite into NO in the apoplast and could act in tandem with a
plasma membrane-bound NR (PM-NR; Eick and Stöhr, 2012).
Its implication has been proposed in several physiological pro-
cesses in roots (Stöhr and Stremlau, 2006), but has not been so far
investigated in seeds.

The non-enzymatic reduction of nitrite to NO can also occur
under acidic pH and could be promoted by the presence of
reductants (Mallick et al., 2000):

2HNO2 ⇒ NO + NO2 + H2O ⇒ 2NO + 2O2 + H2O

This non-enzymatic reaction may be of paramount importance in
seeds as an intense NO production was observed during early Ara-
bidopsis seed imbibition next to the aleurone layer (Liu et al., 2009).
Sodium nitroprusside (SNP) releases dormancy by generating
both NO and cyanide. In C24 dormant seeds, the cell imperme-
able NO scavenger, cPTIO (2-(4-carboxyphenyl)phenyl-4,4,5,5-
tetramethylimidazoline-1-oxyl 3-oxide), was demonstrated to
efficiently impede SNP dormancy release, suggesting that the
apoplast might be either an important pathway for NO movement
or a site for NO production (Bethke et al., 2006b).

Mitochondrial respiration
Depending on the oxygen availability, several hemeproteins can
either act as NO scavengers or NO producers. In hypoxic mito-
chondria, deoxyhemeproteins can catalyze a NR-independent

nitrite reduction into NO using electrons from the electron trans-
port chain (Planchet et al., 2005). The re-oxidation of NO into
nitrite can then occur either non-enzymatically inside the mito-
chondria, or in the cytosol, through the nicotinamide adenine
dinucleotide phosphate (NADPH)-dependent dioxygenase activ-
ity of class-1 non-symbiotic hemoglobin (nsHb1) that metabolizes
NO into nitrate, which is subsequently reduced into nitrite by NR
(Igamberdiev and Hill, 2004; Perazzolli et al., 2004). These reac-
tions constitute the so-called hemoglobin-NO cycle (displayed
in red in Figure 4; Igamberdiev et al., 2010). nsHb1 proteins
participate in NO scavenging, thereby playing an essential role
in NO homeostasis. Accordingly, modulation of nsHb1 expres-
sion in plants was shown to directly impact NO levels at distinct
developmental stages including in seeds (Hebelstrup and Jensen,
2008; Thiel et al., 2011) and in diverse environmental conditions
(Dordas, 2009; Cantrel et al., 2011).

The very active mitochondrial respiration upon seed imbibition
may result in an oxygen consumption exceeding the atmospheric
diffusion, thus leading to localized hypoxia in germinating seeds
(Benamar et al., 2008). In such conditions, nitrite-dependent NO
production may occur in mitochondria and modulate respira-
tion through reversible NO-mediated inhibition of cytochrome
c oxidase (COX), thereby regulating oxygen consumption to
avoid anoxia (Benamar et al., 2008). Therefore, this nitrite-
dependent NO biosynthesis in mitochondria may be of significant
importance in germinating seeds. However, its possible role in
NO-mediated dormancy release has not yet been established.

Overall, current evidence supports the co-existence of several
distinct NO biosynthesis pathways in seeds. Their relative con-
tribution is probably highly dependent on both oxygen and ROS
levels that may change along the time-course of imbibition. Fur-
ther investigations will be required to elucidate the regulation of
NO accumulation during seed imbibition.

S-nitrosoglutathione: a reversible “storage” pool of nitric oxide?
As for plant hormones, any mechanism directly influencing NO
levels besides biosynthesis pathways may have a pivotal role in
the regulation of NO signaling. In particular, since NO can react
with reduced glutathione (GSH) to form S-nitrosoglutathione
(GSNO), GSNO has been proposed to constitute a storage and
transport form for NO in plants and seeds (Sakamoto et al.,
2002). Such modulation of NO storage pool would have a signif-
icant impact on NO levels. GSNO can further be metabolized by
the GSNO reductase (GSNOR). Accordingly, gsnor mutants have
multiple phenotypes suggesting GSNOR involvement in several
growth and developmental processes including seed germination
(Lee et al., 2008; Holzmeister et al., 2011; Kwon et al., 2012).

MOLECULAR TARGETS OF NITRIC OXIDE IN SEEDS
Due to its chemical nature, NO is highly reactive and can interact
with diverse molecules in plant cells. A number of NO-regulated
genes have been identified in plants (Besson-Bard et al., 2009).
These genes encode proteins involved in a wide range of functions
from signal transduction to stress responses. However, the main
challenge remains to pinpoint the direct molecular targets of NO,
which are still poorly documented in plants. However, it is gen-
erally assumed that proteins constitute direct relevant NO targets.
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Besides its capacity to bind to transition metals of metallopro-
teins, NO can cause protein PTM, such as cysteine S-nitrosylation
or tyrosine nitration (Moreau et al., 2010). These modifications
remain poorly characterized in plants and particularly in seeds.
However, as discussed below, there is strong experimental evi-
dence indicating that NO signaling in seeds could principally rely
on PTM of specific proteins (Delledonne, 2005).

Many S-nitrosylated proteins identified in plants are implicated
in various metabolic processes (Lindermayr et al., 2005; Abat et al.,
2008; Romero-Puertas et al., 2008; Tanou et al., 2009; Palmieri
et al., 2010). In dry Arabidopsis seeds, a β-subunit of the mito-
chondrial ATP synthase complex was found to be S-nitrosylated,
suggesting that NO could participate in the regulation of the
seed energy status (Arc et al., 2011). In wheat seeds, a parallel
increase in NO and protein S-nitrosylation was reported during
sensu stricto germination (Sen, 2010). At least 13 modified proteins
were detected, but not identified. In recalcitrant Antiaris toxicaria
seeds, desiccation impedes subsequent germination by enhanc-
ing H2O2 accumulation (Bai et al., 2011). This stress is associated
with an increased carbonylation and a reduced S-nitrosylation
of the antioxidant enzymes of the ascorbate-GSH pathway. Con-
versely, NO pre-treatments promote germination of desiccated
seeds through PTM pattern reversion that enhances antioxidant
enzyme activities (Bai et al., 2011). The balance between carbony-
lation and S-nitrosylation of these proteins was proposed to act
as molecular switch tuning their activity according to the redox
environment (Lounifi et al., 2013).

CROSSTALK BETWEEN NO, ETHYLENE, AND ABA
In stomatal guard cells, ABA-induced stomatal closure is medi-
ated by the successive accumulation of ROS and NO, acting as
secondary messengers in ABA signaling (Neill et al., 2008). Even
though similar actors are present in seeds, the picture is quite dif-
ferent, as both ROS and NO counteract ABA-inhibition of seed
dormancy release and germination (Bethke et al., 2006b; Liu et al.,
2010). This obvious discrepancy of NO action between seeds and
stomata highlights the specificity of the seed signaling pathways
(Figure 2).

In imbibed seeds, the application of ABA biosynthesis
inhibitors, fluridone or norflurazon, reduces ABA neo-synthesis
and promotes dormancy release and germination. In tomato seeds,
the NO scavenger, cPTIO, was shown to prevent germination
stimulation by fluridone (Piterkova et al., 2012). Conversely, in
dormant Arabidopsis C24 seeds, SNP enhances the positive effect
of norflurazon on germination and also decreases seed sensitiv-
ity to exogenous ABA (Bethke et al., 2006a). Taken together, these
results suggest that NO reduces both ABA accumulation and sensi-
tivity. In agreement, pharmacological experiments demonstrated
that NO enhances CYP707A2 gene expression in Arabidopsis seeds
(Liu et al., 2009). Indeed, during the first stage of seed imbibition,
a rapid accumulation of NO, possibly at the endosperm layer, was
suggested as required for rapid ABA catabolism and dormancy
breaking. A similar NO accumulation during imbibition was also
observed in germinating seeds from other species (Simontacchi
et al., 2007). Recently, in Arabidopsis, NO was suggested to act
upstream of GA in a signaling pathway leading to vacuolation of
protein storage vacuoles in aleurone cells, a process inhibited by

ABA (Bethke et al., 2007a). Since the growth of isolated embryos
was unaffected by NO donors or scavengers, the endosperm layer
might be the primary site of NO synthesis and action in seeds, and
in accordance was shown to perceive and respond to NO (Bethke
et al., 2007a). Besides its effect on the hormonal balance, it has
been speculated that NO may accelerate flux through the pen-
tose phosphate pathway by indirectly increasing the oxidation of
NADPH (Hendricks and Taylorson, 1974; Bethke et al., 2007b).
An increase in glucose catabolism via this pathway may in turn
promote dormancy release (Roberts and Smith, 1977).

Several lines of evidence suggest that NO crosstalk with ABA
and ethylene may involve protein modifications. Among the pro-
teins recently identified as candidates for a regulation by tyrosine
nitration in Arabidopsis seedlings (Lozano-Juste et al., 2011), at
least two may be involved in the interplay between ABA and
NO in seeds. The first one is the Moco sulfurase ABA3 that cat-
alyzes the conversion from the de-sulfo to the sulfo form of the
Moco (Wollers et al., 2008). The de-sulfo form of Moco (also
call the “oxo” form) is the co-factor of NR, involved in nitrite
and NO generation in plants while the sulfo form is the co-
factor of the aldehyde oxydase required for the last step of ABA
synthesis (Mendel, 2007). If proven, modulation of ABA3 activ-
ity by nitration could affect the equilibrium between ABA and
NO production in plants. The second protein is the E3 SUMO
ligase AtSIZ1 recently demonstrated to stimulate NR and NR-
NiR activities, and negatively regulate ABA signaling by ABI5
sumoylation (Miura et al., 2009; Park et al., 2011). Thus, such
modifications could have an important impact in seeds. Similarly,
PTM contribution in the NO regulation of ethylene action has
been also reported. In Arabidopsis, the up-accumulation of NO
under hypoxia stimulates ethylene biosynthesis, possibly through
PTM of key enzymes such as ACS and ACO by S-nitrosylation
(Hebelstrup et al., 2012). In contrast, ethylene biosynthesis can
be reversibly inhibited by NO through S-nitrosylation of methio-
nine adenosyltransferase (MAT), leading to the reduction of the
S-AdoMet pool (Lindermayr et al., 2006).

S-AdoMet is the precursor of ethylene and polyamines, thus
a negative feedback regulation may exist between ethylene and
the polyamine-dependent NO biosynthesis. Consistently, NO
and ethylene accumulation are negatively correlated in ripe
fruits (Manjunatha et al., 2012). In addition, exogenous Spm
was shown to reduce ethylene production in apple seeds (Sin-
ska and Lewandowska, 1991). Accordingly, an antagonism may
exist between a positive polyamine effect mediated by NO and a
negative effect due to a competition with ethylene biosynthesis
for S-AdoMet. Furthermore, a copper amine oxidase (CuAO1)
involved in polyamine catabolism has also been shown to regulate
NO biosynthesis and participate to ABA signaling (Wimalasekera
et al., 2011b). Indeed, seedlings of Arabidopsis cuao1 mutant are
impaired in both polyamine and ABA-induced NO synthesis, and
mutant seeds also display a reduced sensitivity to exogenous ABA
during germination (Wimalasekera et al., 2011b).

As mentioned above, in Brassicaceae species, ethylene positively
regulates seed germination by stimulating the weakening and rup-
ture of seed testa and endosperm by counteracting the inhibitory
action of ABA on radicle protrusion (Linkies et al., 2009). In
apple embryos, inhibition of ethylene biosynthesis prevents the
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promotion of dormancy release and germination by NO donors
(Gniazdowska et al., 2007). Dormancy breaking of apple seeds by
NO induces a transient production of ROS, stimulating ethylene
accumulation thanks to an increase in both ACS and ACO activity
(Gniazdowska et al., 2010). NO may also act on ethylene signal-
ing since EREBPs were described as a class of transcription factors
induced by NO (Parani et al., 2004). Moreover during tobacco
seed germination, EREBP-3 that is transiently induced just before
endosperm rupture is stimulated by ethylene and inhibited by ABA
(Leubner-Metzger et al., 1998). Therefore, a synergic link seems to
exist, at different levels, between NO and ethylene during seed
germination, that counteracts ABA action.

CONCLUSION
Significant advances have been recently obtained in the under-
standing of the ABA and ethylene metabolism and signaling
pathways. In contrast, current knowledge on NO biosynthe-
sis, signaling and action is far too incomplete, especially in
seeds, and would require further investigation. Future research
efforts should also lead to the identification of downstream tar-
get genes of signaling components, in order to fully understand
how ABA is able to induce and maintain dormancy, or ethylene
to stimulate germination. Moreover unraveling the role of post-
translational mechanisms will be particularly crucial to developing
a deeper understanding of hormonal pathways and deciphering
NO regulatory network.

Nitric oxide and ethylene crosstalk with ABA involves inter-
actions at multiple levels in metabolism and signaling path-
ways. It would be important to discriminate the hierar-
chy among these signaling pathways, identify major regula-
tory nodes and determine whether the environmental fac-
tors, which regulate germination and dormancy, modulate this
hierarchy.

Moreover, control of seed dormancy and germination involves
distinct physiological processes, in tissues of different origin, to
achieve a coordinated regulation of embryo arrest or growth
and surrounding structure maintenance or rupture. Although
hormonal signaling networks in seeds and whole plants share
common components, sets of specific regulatory factors, among
which only few are known, are likely working in restricted seed
territories. Current research combining genetic tools and recent
technologies including microdissection, transcriptome profiling,
high-throughput proteomics, metabolomics, and system biol-
ogy, should help to identify missing regulatory components
and unravel complex interactions between signal transduction
pathways.
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