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Next generation DNA sequencing technologies are driving increasingly rapid, affordable and
high resolution analyses of plant transcriptomes through sequencing of their associated
cDNA (complementary DNA) populations; an analytical platform commonly referred to
as RNA-sequencing (RNA-seq). Since entering the arena of whole genome profiling
technologies only a few years ago, RNA-seq has proven itself to be a powerful tool with
a remarkably diverse range of applications, from detailed studies of biological processes
at the cell type-specific level, to providing insights into fundamental questions in plant
biology on an evolutionary time scale. Applications include generating genomic data
for heretofore unsequenced species, thus expanding the boundaries of what had been
considered “model organisms,” elucidating structural and regulatory gene networks,
revealing how plants respond to developmental cues and their environment, allowing a
better understanding of the relationships between genes and their products, and uniting
the “omics” fields of transcriptomics, proteomics, and metabolomics into a now common
systems biology paradigm. We provide an overview of the breadth of such studies and
summarize the range of RNA-seq protocols that have been developed to address questions
spanning cell type-specific-based transcriptomics, transcript secondary structure and gene
mapping.
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INTRODUCTION
Next generation sequencing (NGS) is underpinning an ongoing
revolution in the life sciences and it is now difficult to identify
areas of biology that are not already being profoundly affected by
the massive amounts of high quality DNA sequence information
that has been generated cost-effectively and efficiently, thanks to
the rapid advancement of sequencing technologies. Plant biol-
ogy is naturally no exception to this revolution; indeed the ease
of genetic analyses in many plant species and the value of crop
species have made plant science an especially fertile area for many
of the “omics” technologies. Plant scientists are rapidly moving
on from a decade where the first genome sequence of a plant,
that of Arabidopsis thaliana (The Arabidopsis Genome Initia-
tive, 2000), provided the major impetus for monumental forays
into plant molecular investigations, to the present day where the
growing number of sequenced plant genomes1 is driving bio-
logical and evolutionary discovery across the plant taxonomic
range.

In parallel with this explosion of genome sequence information,
NGS has changed the scope and scale of transcriptome analysis and
gene expression studies. RNA-sequencing (RNA-seq) technolo-
gies, which apply the principles of NGS to the complementary
DNAs (cDNAs) derived from transcript populations, were first
used to study plants only a few years ago (Weber et al., 2007)
and now provide ready access to high resolution transcriptome
information to an extent that was once unimaginable. This is

1http://genomevolution.org/wiki/index.php/Sequenced_plant_genomes

exemplified by the 1KP project2, which aims to sequence the tran-
scriptomes of 1,000 plant species, and is just one of many current
initiatives that are radically expanding the breadth and depth of
our understanding of plant gene expression and evolution. Due to
its accuracy and the ease of meaningful comparisons of samples
not necessarily generated together, or even as part of the same
experiment, RNA-seq is replacing other methods of quantifying
transcript expression, including cDNA- and expressed sequenced
tag (EST)-based microarray platforms (Alba et al., 2004), as it over-
comes many of their limitations (for an overview of RNA-seq
technologies and comparisons with previous transcript detec-
tion technologies, see Wang et al., 2009). For example, RNA-seq
approaches have an open architecture, meaning that they are not
restricted to detecting only those transcripts that are represented
on microarrays, and also exhibit more extreme upper and lower
limits of detection, which allows more accurate quantification of
differential transcript expression, as well as the identification of
low-abundance transcripts. Furthermore, no previous genome
sequence knowledge is necessary, as RNA-seq data sets them-
selves can be used to create sequence assemblies for subsequent
mapping of RNA-seq reads, along with the potential for detecting
exon/exon boundaries, alternative splicing and novel transcribed
regions in a single sequencing run. However, despite these advan-
tages, RNA-seq profiling platforms come with their own practical
challenges. Existing RNA-seq techniques generate large numbers
of relatively short reads for a particular transcript and so the

2http://www.onekp.com
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accurate assembly and annotation of the huge amounts of data
generated by each run is still computationally difficult (Schliesky
et al., 2012). Moreover, various biases can be introduced during
the RNA fragmentation step prior to library construction, and
cDNA fragmentation enriches the reads mapping the 3′ end of
transcripts (Wang et al., 2009).

Nonetheless, RNA-seq has emerged as a remarkable enabling
technology that is increasingly being adopted by plant researchers
from a broad range of disciplines and examples of some of the
associated applications and fields of research are presented in this
review.

IMPROVING GENOME ANNOTATION WITH
TRANSCRIPTOMIC DATA
More than a decade after the publication of the first draft of
the A. thaliana genome sequence (The Arabidopsis Genome Ini-
tiative, 2000) its annotation continues to be improved. Large
amounts of Sanger sequencing-generated EST data provided the
initial basis for gene identification and expression profiling (Zhu
et al., 2003), but such data are expensive and time consuming to
generate, are inherently biased against low-abundance transcripts
and are typically enriched in transcript termini (Filichkin et al.,
2010). RNA-seq circumvents these limitations and provides accu-
rate resolution of splice junctions and alternative splicing events.
For example, a survey of the Arabidopsis transcriptome using
single-base resolution Illumina-generated reads identified thou-
sands of novel alternatively spliced transcripts and indicated that at
least 42% of intron-containing genes are alternatively spliced (Fil-
ichkin et al., 2010). This percentage is considerably higher than
previous estimations and is even greater (61%) when only the
multiexonic genes are sampled (Marquez et al., 2012). Similarly,
approximately 48% of rice (Oryza sativa) genes show alternative
splicing patterns (Lu et al., 2010), although more species need to
be analyzed to determine whether this proportion is common.
Mining RNA-seq data in search of transcription start site (TSS)
variation is also improving gene structure annotation and alterna-
tive TSSs have been detected in ∼10,000 loci through analyses of
full-length Arabidopsis and rice cDNAs (Tanaka et al., 2009). RNA-
seq analysis also helps elucidate full-length transcript sequences,
as has been demonstrated in a study where ∼10% of the untrans-
lated region (UTR) boundaries of rice genes could be extended
(Lu et al., 2010).

An ideal genome annotation would identify both genes that
show invariant transcript sequences and those that exhibit alter-
native splicing, and additionally link these events to specific spatial,
temporal, developmental, and/or environmental cues. Efforts in
this direction are already underway and, as an example, it has been
reported that abiotic stress in Arabidopsis can increase or decrease
the proportions of apparently unproductive isoforms for some key
regulatory genes, supporting the hypothesis that alternative splic-
ing is an important mechanism in the regulation of gene function
(Filichkin et al., 2010).

For many heterozygous and out-crossing species, genome
sequencing and annotation can only be considered complete once
the breadth of intra-species polymorphism is also considered. The
high quality reference genome of A. thaliana is based on the eco-
type Columbia (Col-0). It has been reported that polymorphisms

between different A. thaliana accessions is relatively high, with one
single nucleotide polymorphism (SNP) every ∼200 bp (Ossowski
et al., 2008). The complete re-sequencing of the transcriptomes
and annotation of different accessions may thus help interpret the
functional consequences of polymorphism (Gan et al., 2011). To
this end, utilizing genomic and transcriptomic data for in silico
gene prediction results in a more reliable annotated genome, with
information on SNPs, insertion/deletions (indels), splice variants
and expression variation. Furthermore, with its greater sensitiv-
ity, RNA-seq enables the detection of antisense transcripts and
transcribed intergenic regions; topics that are discussed further
in Section “Identifying and Characterizing Novel Non-Coding
RNAs.”

GENERATING GENOMIC AND ENABLING PROTEOMIC
RESOURCES FOR “NON-MODEL” SPECIES
Despite the recent upsurge in published plant genome sequences,
they still represent a very small fraction of plant taxonomic diver-
sity and the availability of transcriptomic information based on
Sanger sequence-derived ESTs is similarly sparse, rendering the
study of “non-model” species challenging. The very large genomes
often encountered in plants, frequently associated with high
sequence repeat regions, makes de novo sequencing of the tran-
scriptome an attractive alternative to generate genetic resources
for species that are of considerable biological interest for reasons
that relate to factors such as their evolutionary significance or eco-
nomic importance. Examples of recent such initiatives include
fern (Der et al., 2011), eucalyptus (Mizrachi et al., 2010), garlic
(Sun et al., 2012), pea (Franssen et al., 2011), chestnut (Barakat
et al., 2009), chickpea (Garg et al., 2011), olive (Alagna et al., 2009),
safflower (Lulin et al., 2012), and Japanese knotweed (Hao et al.,
2011). The annotation of genes identified by de novo sequencing
typically relies on identifying homologs, and ideally orthologs, in
species with an annotated genome if no appropriate EST databases
are available. An example of such annotation, using a pre-existing
EST database associated with the species of interest, was reported
for melon (Dai et al., 2011). Use of the annotated genome of a
close-related species (e.g., Barrero et al., 2011) is preferable, but if
none is available, the A. thaliana genome sequence is still widely
regarded as the “gold standard” and can be extremely valuable
to this end (e.g., Bräutigam et al., 2011). Further confirmation
can then be sought by interrogating additional plant databases
(e.g., Dassanayake et al., 2009; Edwards et al., 2012), although this
depends on the standard of annotation and care should be taken
that the database of interest is of high quality.

De novo RNA-seq to identify genetic polymorphisms also has
great potential as a platform for molecular breeding, wherein mul-
tiple cultivars or close-related species with variations in traits of
interest are sequenced and genetic variation is identified. This then
allows the generation of molecular markers to facilitate progeny
selection and molecular genetics research. As an example of this
approach, the identification of 12,000 single sequence repeats
(SSRs) in a single RNA-seq analysis of sesame (Zhang et al., 2012)
increased the number of known SSRs from 80 to several thousand
with, on average, one genic-SSR per ∼8 kb. Similarly, Haseneyer
et al. (2011) sampled the transcriptomes of five winter rye inbred
lines to identify 5,234 SNPs, which were then incorporated in
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a high-throughput SNP genotyping array, further demonstrat-
ing the value of RNA-seq as a tool for advanced molecular
breeding.

Another striking example of the value of RNA-seq as an
enabling technology is its application to advance the field of
proteomics. High-throughput mass spectrometry-based protein
identification relies on the availability of an extensive DNA
sequence database in order to match experimentally determined
peptide masses with the theoretical proteome generated by com-
putationally translating transcripts. Indeed, the lack of extensive
plant DNA sequence information and related resources is likely a
contributing factor in the relatively slow progress in the arena of
plant proteomics compared with proteome studies of other organ-
isms for which high quality sequence has long been available.
Lopez-Casado et al. (2012) recently demonstrated that RNA-
seq-based transcriptome profiling can provide an effective data
set for proteomic analysis of non-model organisms by de novo
assembly of 454-based ESTs derived from the pollen of tomato
(Solanum lycopersicum) and two wild relatives. Approximately the
same number of proteins was identified when using either the
RNA-seq-derived database, generated through a few 454 pyrose-
quencing runs, or a highly curated community database of tomato
sequences generated over more than a decade. This suggests that
RNA-seq will be invaluable in facilitating protein identification
and that proteome studies need no longer be so taxonomically
restricted.

CHARACTERIZING TEMPORAL, SPATIAL, REGULATORY, AND
EVOLUTIONARY TRANSCRIPTOME LANDSCAPES
As with previous large-scale transcript profiling platforms, includ-
ing microarrays, RNA-seq is increasingly being adopted to exam-
ine transcriptional dynamics during various aspects of plant
growth and development. For example, an analysis of the tran-
scriptome of grape (Vitis vinifera) berries during three stages
of development identified >6,500 genes that were expressed
in a stage-specific manner (Zenoni et al., 2010). Evidence of
even greater transcriptomic complexity was provided by the
detection of 210 and 97 genes that undergo alternative spic-
ing in one or two stages, respectively. Similarly, Wang et al.
(2012) analyzed the transcriptome of radish (Raphanus sativum)
roots at two developmental stages and found >21,000 genes
to be differentially expressed, including genes strongly linking
root development with starch and sucrose metabolism and with
phenylpropanoid biosynthesis. The radish genome has yet to be
sequenced, but comparative sequence analysis of the radish RNA-
seq data and the Brassica rapa genome sequence lead to the
discovery of 14,641 SSRs.

Most RNA-seq analyses target whole organs, or sets of organs,
which inherently prevents the identification of cell or tissue type
transcripts, and thus spatially coordinated structural and regula-
tory gene networks. Furthermore, transcripts that are expressed at
extremely low levels, or that are specific to an uncommon cell type
in a complex organ or tissue, may be diluted below the limit of
detection. Accordingly, RNA-seq analysis of discrete tissues or cell
types has the potential to both yield an important level of spatial
information and substantially increase the depth of sequence cov-
erage. As an example, Chen et al. (2010) detected more than 1,000

genes that are specifically or preferentially expressed in Arabidopsis
male meiocytes that had been isolated by mechanically disrupting
anthers with forceps and collecting the released meiocytes with a
capillary pipette. However, acquiring tissue or cell-specific sam-
ples with any degree of precision and minimal contamination is
often technically difficult, although several methods have been
developed to facilitate this. For example, a cell type gene expres-
sion map of an Arabidopsis root was achieved by generating a
set of transgenic Arabidopsis lines expressing green fluorescent
protein (GFP) driven by various root cell type-specific promot-
ers, digesting entire roots with cell wall degrading enzymes and
fractionating the resulting protoplasts into distinct pools using
an automated cell sorter (Birnbaum et al., 2003). The constituent
root cell type-related transcriptomes were then analyzed using a
microarray, providing a high resolution profile of the spatial vari-
ation in the root transcriptome. An alternative approach, which
requires no prior genetic transformation or cell wall digestion, is
laser capture microdissection (LCM), where a laser is used to excise
and isolate samples from tissue sections with micron-scale resolu-
tion. This technique has been effectively used by plant researchers
in conjunction with microarray analysis (Nakazono et al., 2003;
Cai and Lashbrook, 2008; Agustí et al., 2009; Brooks et al., 2009;
Matas et al., 2010). More recently, Matas et al. (2011) used LCM
in combination with RNA-seq (454 pyrosequencing) analysis to
profile the transcriptomes of the five principal tissues of the devel-
oping tomato fruit pericarp. Approximately 21,000 unigenes were
identified, of which more than half showed ubiquitous expres-
sion, while other subsets showed clear cell type-specific expression
patterns, providing insights into numerous aspects of fruit biol-
ogy. A similar number of genes was identified in an LCM-based
study of the ontogeny of maize (Zea mays) shoot apical meris-
tems using RNA-seq coupled with Illumina-based NGS (Takacs
et al., 2012). Interestingly, 59% of the transcripts were detected
in all the samples, comprising the apical domains along a devel-
opmental gradient from maize embryos to seedlings; a value that
is very similar to the percentage of unigenes present in all tissues
of the tomato fruit (57%) reported by Matas et al. (2011), and
the proportion of ubiquitously detected transcripts in the root
cell sorting analysis (Birnbaum et al., 2003). RNA-seq profiling
analyses of a number of mammalian tissues have also indicated
a high proportion of ubiquitously expressed transcripts, which
may indicate that this is a common feature of eukaryotes
(Ramsköld et al., 2009).

In addition to studies focusing on transcriptional changes dur-
ing development, RNA-seq has already shown itself to be a highly
effective strategy to study plant responses and adaptations to
abiotic and biotic stresses. For example, by analyzing RNA-seq
data derived from sorghum (Sorghum bicolor) plants treated with
abscisic acid (ABA) or polyethylene glycol, in conjunction with
published transcriptome analysis for Arabidopsis, maize, and rice,
Dugas et al. (2011) discovered >50 previously unknown drought-
responsive genes. Similarly, RNA-seq was used to reveal massive
changes in metabolism and cellular physiology of the green alga
Chlamydomonas reinhardtii when the cells become deprived of
sulfur, and to suggest molecular mechanisms that are used to toler-
ate sulfur deprivation (González-Ballester et al., 2010). Equivalent
high resolution gene expression information has also resulted from

www.frontiersin.org April 2013 | Volume 4 | Article 66 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Systems_Biology/archive


“fpls-04-00066” — 2013/3/28 — 8:51 — page 4 — #4

Martin et al. Plant RNA-seq analysis

studies of plant responses to pathogens and the complexities of the
metabolic pathways associated with plant defense mechanisms.
Published examples to date include a transcriptomic analysis
of the infection of sorghum by the fungus Bipolaris sorghicola
(Mizuno et al., 2012) and an investigation into the defense
mechanisms of soybean that provide resistance to Xanthomonas
axonopodis, by comparing resistant and susceptible near-isogenic
lines (Kim et al., 2011).

As well as its applications to study spatial and temporal
transcriptome dynamics, RNA-seq is also a potentially valuable
tool to advance studies of plant evolution and polyploidy. As
an illustration, a comparison of the leaf transcriptome of an
allopolyploid relative of soybean with those of the two species
that contributed to its homoelogous genome, allowed the deter-
mination of the contribution of the different genomes to the
transcriptome (Ilut et al., 2012). Another study analyzed the tran-
scriptome of nine distinct tissues of three species of the Poaceae
family (Davidson et al., 2012) to determine whether ortholo-
gous genes from these three species exhibit the same expression
patterns. Knowledge of parental imprinting has also been sub-
stantially advanced by deep transcriptome surveys. Despite the
discovery of genetic imprinting in maize 40 years ago, only seven
maize imprinted genes were reported before large-scale transcrip-
tomic sequencing was applied to maize endosperm, leading to
the discovery of 179 imprinted genes and 38 imprinted long ncR-
NAs (lncRNAs; Zhang et al., 2011). Studies of the embryo and
endosperm of Arabidopsis and rice similarly increased the num-
bers of known imprinted genes and showed that imprinting is
primarily endosperm-specific (Gehring et al., 2011; Hsieh et al.,
2011; Luo et al., 2011).

We note that the studies cited in this section highlight the
tremendous diversity of RNA-seq applications and the breadth
of research fields in which it is being adopted, and the purpose is
to provide examples, rather than a comprehensive list.

IDENTIFYING AND CHARACTERIZING NOVEL NON-CODING
RNAs
Small RNAs (sRNAs) play important roles in gene post-
transcriptional regulation (Baulcombe, 2004; Zamore and Haley,
2005) and there is great interest in developing techniques to com-
prehensively profile sRNA populations. In silico analysis provides
a rapid way to identify putative sRNA genes (Chen et al., 2003,
2011; Hirsch et al., 2006) but RNA-seq technology represents an
excellent means for sRNA discovery and validation. Indeed, deep
sequencing of sRNAs has already been extensively used to find
new sRNAs and especially microRNAs (miRNAs; Lu et al., 2005;
Moxon et al., 2008; Szittya et al., 2008; Pantaleo et al., 2010; Song
et al., 2010; Ferreira et al., 2012, Xia et al., 2012).

Characterization of miRNAs regulatory functions is likely to
be facilitated by determining tissue-specific expression pattern,
as shown by Breakfield et al. (2012) where RNA-seq was used to
identify sRNAs from five Arabidopsis root tissues. Some sRNAs
were expressed in all five tissues while others were tissue-specific,
and some fluctuations in miRNA expression were also observed
across developmental zones. In addition, growing numbers of
RNA-seq studies are revealing the spatial and temporal differ-
ential expression of sRNAs in plant organs (Hirsch et al., 2006;

Moxon et al., 2008; Pantaleo et al., 2010; Calviño et al., 2011). The
availability of high-throughput RNA-seq data allowed Yang et al.
(2012) to mine these databases and discover that ∼12% of 354
high-confidence miRNA binding sites identified in Arabidopsis
are affected by alternative splicing. The frequency of alternative
slicing at miRNA binding sites is significantly higher than that
at other regions, suggesting that alternative splicing is a signif-
icant regulatory mechanism. Small ncRNAs (sncRNAs) are also
implicated in abiotic stresses and many miRNAs and other sRNAs
have been shown to be differentially expressed under phosphate
starvation in Arabidopsis roots and shoots (Hsieh et al., 2009), or
under cold conditions (Zhang et al., 2009). The large amounts
of data easily generated by RNA-seq also enable comparisons of
sRNA populations between species, as demonstrated by Moxon
et al. (2008), who found two tomato miRNAs that were previously
believed to be specific to Arabidopsis or moss. In contrast to the
numerous studies of plant sRNAs, far less is known about lncRNAs
(>200 nt), especially in plants, and few plant lncRNAs have been
characterized to date (Au et al., 2011; Kim and Sung, 2011; Zhu
and Wang, 2012). Those that have been identified did not involve
RNA-seq and so this represents an area with great potential for
discovery.

Finally, sRNAs have been recently characterized in the context
of association with epigenome modifications, including cyto-
sine methylation of genomic DNA. While the majority of such
work has involved animal systems, whole genome methylation
analysis of epigenetic variation in Arabidopsis and rice embryo
development, combined with sRNA analysis of the same tissues,
confirmed a link between demethylation of certain gene promoters
and associated miniature inverted repeats with changes in sRNA
abundance (Cokus et al., 2008; Lister et al., 2008; Zemach et al.,
2010). Interestingly, while promoter demethylation of tomato
ripening genes was also recently described, it did not occur in
conjunction with notable changes in sRNAs (Zhong et al., 2013).
Genome-scale analyses of gene and sRNA expression via RNA-
seq, combined with whole genome methylation analyses are now
facilitating the exploration of epigenomes in ways that could not
have been considered prior to these high-throughput sequencing
technologies.

FROM CO-EXPRESSION NETWORKS TO INTEGRATIVE DATA
ANALYSIS
Sequencing whole transcriptomes provides a high degree of detail,
but deriving useful biological information from a long list of
expressed genes is typically not trivial. One approach to using
such information to develop and refine hypotheses is to con-
struct networks of co-expressed genes and to use gene ontology
(GO) information to help highlight important gene candidates as
critical components of functional networks. Many such “guilt-by-
association” gene co-expression networks have been constructed
based on microarray data (Manfield et al., 2006; Mao et al., 2009;
Childs et al., 2011; Tohge and Fernie, 2012) and are now being
more widely adopted to evaluate RNA-seq data (Dugas et al.,
2011; Iancu et al., 2012; Li et al., 2012). Indeed, the broad
dynamic range of transcript level detection allowed by RNA-seq
profiling, and particularly the detection of low-abundance tran-
scripts, facilitates meaningful discrimination between different
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FIGURE 1 | dUTP-based strand-specific RNA-seq. Strand-specificity is achieved by the second-strand cDNA incorporating dUTPs instead of dTTPs. Digestion
of dUTPs by uracil-DNA glycosylase (UGDase) prevents this strand from being PCR amplified, conferring single-strand specificity.

strengths of association in correlation analyses (Iancu et al., 2012).
The correlations between different genes forming the expression
network are therefore more robust and the overall expression
network quality is generally superior to that generated using
microarrays.

Gene ontology enrichment analysis of RNA-seq data often illus-
trates the complexity of interacting pathways. For example, in a

study of abiotic stress responses in maize, transcripts associated
with numerous GO classifications were affected by drought treat-
ment, including the categories “carbohydrate metabolic process,”
“response to oxidative stress,” and “cell division,” among others
(Kakumanu et al., 2012). The authors also showed that variations
in GO term representation between organs can also provide valu-
able information and specifically, the drought-treated fertilized
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FIGURE 2 | Bulked segregant analysis (BSA) using RNA-seq. Wild-type
and mutant plants from different genetic backgrounds are crossed. In this
example, four SNPs are listed with SNP 2 being closely related to the
mutation to map. A plant from the F1 generation is selfed to generate the
F2 segregating population. Mutant and non-mutant plants are processed
independently and the BSA analysis allows visualization of the probability of
each SNP marker being in complete linkage disequilibrium with the
mutated gene.

maize ovary exhibits a massive decrease of mRNAs involved in
cell division and cell cycle, which could be the direct cause of the
previously observed embryo abortion under drought conditions.

Functional networks can be made more robust by integrating
multiple data types and various studies have coupled RNA-seq
with proteomics and/or metabolomics, characterizing the appar-
ent downstream consequences of transcript level variation. An
example of such a “systems” study involved a comparative anal-
ysis of the transcriptome, proteome, and targeted metabolome
of soybean seeds from transgenic lines with suppressed expres-
sion of the storage proteins glycinin and conglycinin (Schmidt
et al., 2011). This study showed no direct correlation between
the levels of transcripts, proteins, and metabolites. Conversely,
a significant correlation was found between the high expres-
sion of fatty acid synthesis genes and the high oil content in
oil palm mesocarp (Bourgis et al., 2011). These studies further
demonstrate the value of characterizing biological processes from
multiple “omics” perspectives, each of which can provide insights

FIGURE 3 | Double-stranded RNA-seq. A total RNA sample is isolated
and single-stranded RNA is digested with a single-strand-specific
ribonuclease. The reads generated from the strand-specific cDNA library
are aligned to the genomic sequence and intra or inter-molecular pairing
can be inferred based on the strand specificity of the mapped reads.

into different regulatory mechanisms. Surveying the metabolome
and transcriptome in parallel can also help identify candidate
genes involved in complex metabolic pathways. For example,
Desgagné-Penix et al. (2012) took advantage of several opium
poppy (Papaver somniferum) cultivars with known differential lev-
els of benzylisoquinoline alkaloids (BIAs) and used a combination
of RNA-seq and mass spectrometry to pinpoint key regulatory
steps of the almost completely defined morphine biosynthetic
pathway, leading to the discovery of candidate genes implicated
in BIA metabolism.

These examples show that the integration of transcriptomics,
proteomics, and metabolomics can expose complex biological and
biochemical interactions, paving the way to elucidate relation-
ships between genotype and phenotype. Even greater resolution
can be achieved by targeting tissues instead of whole organs
(Rogers et al., 2012).

A GROWING PORTFOLIO OF RNA-seq ANALYTICAL
STRATEGIES
RNA-seq technologies can be adapted to answer-specific biolog-
ical questions. Four different adaptations or applications are
described here.
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STRAND-SPECIFIC RNA-seq
Standard RNA-seq methods do not discriminate between the DNA
strands on which the RNAs are encoded. However, the ability to
map a transcript to its specific coding strand is desirable as it
improves transcript mapping accuracy by identifying non-coding
antisense transcripts that may be involved in regulation at the mes-
senger or at the chromatin levels (Ponting et al., 2009; Liu et al.,
2010), helps determine the relative expression level of two genes
on opposite DNA strands as well as their exact length, and allows
the identification of the transcribed strand of ncRNAs. Levin et al.
(2010) compared seven library construction methods to enable
strand-specific RNA-seq analysis and overall, a dUTP method
(Parkhomchuk et al., 2009) was the most accurate and has the
advantage of being compatible with paired-end sequencing. This
method has been successfully applied to plant RNA-seq with adap-
tations rendering it low-cost and high-throughput (Wang et al.,
2011; Zhong et al., 2011). In short, the first cDNA strand is syn-
thesized with dNTP while dUTP is incorporated in the second
cDNA strand. After end repair, A-tailing and adaptor ligation,
the dUTP-containing strand is digested and the remaining strand
is PCR-amplified conferring strand specificity (Figure 1). As an
example of the value of strand information, a study of tomato
gene expression showed that while the majority of genes in the
tissues analyzed had effectively the same expression profiles when
analyzed by either double-stranded or strand-specific RNA-seq,
approximately 5% of transcripts were associated with misleading
results when assayed by double-stranded RNA-seq (dsRNA-seq)
alone (Zhong et al., 2011).

BULKED SEGREGANT RNA-seq
Liu et al. (2012) demonstrated the application of RNA-seq for
bulked segregant analysis (BSA) by mapping the maize mutant
gene gl3. Transcriptome profiling is applied to a pool of two sam-
ples generated by mixing a bulk of mutant and wild-type (WT)
plants (Figure 2). The mapping of the mutated gene is based
on genetic linkage where linkage disequilibrium between mark-
ers and the causal gene is determined by quantifying the allelic
frequencies between the two samples, giving the map position
of the gene responsible for the mutant phenotype. Fine map-
ping of the mutated gene is facilitated by the RNA-seq data as
its expression will often be down-regulated compared to the WT
pool. Additionally, the SNPs linked to the mutated gene can be
used for chromosome walking. Using RNA-seq for this purpose
has therefore numerous advantages: (i) having a reference genome
is not a prerequisite as de novo assembly of the transcriptome based
on the RNA-seq data is sufficient; (ii) markers can be generated
from the experimental data; and (iii) differential expression pro-
files between the mutant and the WT are generated at no extra cost.
Furthermore, this approach can be modified to perform genome-
wide association (GWAS) studies, accelerating breeding initiatives
by providing markers targeting both genetic sequence (e.g., SNPs)
and gene expression, using them to identify the genomic regions
associated with the traits of interest (Harper et al., 2012).

DOUBLE-STRANDED RNA-seq
Secondary structures of RNAs are central to their function, mat-
uration, and regulation; however, little is known about the

FIGURE 4 | Differential RNA-seq. (A) 5′ monophosphorylated chloroplastic
mature transcripts are degraded with Terminator 5′-phosphate-dependent
exonuclease (TEX) in the TEX treatment, enriching the sample with
pre-mRNAs. The 5′ ends of the pre-mRNAs are enriched in the treated
sample because they are protected by the triphosphate and the TEX
treatment removes degraded mRNAs (Sharma et al., 2010). The enrichment
can be enhanced by shearing the RNA before the TEX treatment.
Sequencing reads starting exactly at the same nucleotide position in the
exonuclease treatment denote the transcription start site. (B) Example of
localization of different TSS. TSS, transcription start site; gTSS, gene TSS;
iTSS, internal TSS; aTSS, antisense TSS; oTSS, orphan TSS.

double-stranded features of most RNAs. Zheng et al. (2010)
reported an experimental strategy to survey RNA secondary struc-
tures in an analysis of the double-stranded species of RNAs from
Arabidopsis flower buds. Specifically, the authors sequenced only
the double-stranded RNAs (dsRNAs) and the double-stranded
segments of RNAs by digesting the single-stranded RNAs with
a ribominus treatment prior to library construction (Figure 3). As
expected, highly structured RNA classes (e.g., rRNA, tRNA, and
snRNA) were highly represented in the reads but, interestingly,
other regions of various mRNAs, including introns, exons, and 5′
and 3′ UTRs were also present, indicating the presence of mRNA
secondary structures. Moreover, the double-stranded regions of
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the introns, 3′ and 5′ UTRs appeared to be conserved, suggest-
ing a common function. Notably, certain regions of the genome
appear to be responsible for producing more dsRNAs than oth-
ers, with transposable elements representing nearly 60% of these
“hotspots.”

DIFFERENTIAL RNA-seq
Differential RNA-seq (dRNA-seq) is based on a comparison of a
terminator exonuclease treated RNA sample with its non-treated
counterpart (Figure 4). The treatment removes the processed
transcripts by degrading 5′ monophosphate RNAs, which are
characteristic of prokaryotic RNAs, and the primary unprocessed
transcripts are not affected due to the presence of a 5′ triphos-
phate. By comparing the maps of the reads derived from each
sample, TSSs of operons are identified. dRNA-seq was first used
to examine the transcriptome of the human pathogen Helicobac-
ter pylori (Sharma et al., 2010) and subsequently in studies of
various prokaryotes, including the plant pathogen Pseudomonas
syringae (Filiatrault et al., 2011). This method was used to map
TSSs of barley chloroplastic RNAs (Zhelyazkova et al., 2012) and
was possible as they have the same 5′ monophosphate struc-
ture as prokaryotic RNAs, reflecting the endosymbiotic origin
of chloroplasts. Four categories of TSSs were identified in this
study: gTSSs (g: gene) located within 750 nucleotides upstream
of annotated genes (the majority of TSSs); iTSSs (i: internal)
located within annotated genes and giving rise to sense tran-
scripts; aTSSs (a: antisense) giving rise to antisense transcripts;

and oTSSs (o: orphan) located in intergenic regions. The anal-
ysis revealed that some individual transcriptional units of the
chloroplastic operons can be transcribed individually as suggested
by iTSSs and that ∼35% of chloroplastic genes have aTSSs or
oTSSs, providing evidence of extensive ncRNAs synthesis in
chloroplasts.

CONCLUDING REMARKS
RNA-sequencing is now well-established as a versatile platform
with applications in an ever growing number of fields of plant
biology research. Ongoing developments in sequencing technolo-
gies, such as increased read lengths, greater numbers of reads
per run, and advanced computational tools to facilitate sequence
assembly, analysis, and integration with orthogonal data sets
will further accelerate the breadth and frequency of its adop-
tion by plant scientists. An important issue that still needs to be
addressed is the inherent bias introduced by the different steps
of library construction and so the tantalizing prospect of direct
RNA-seq (Ozsolak and Milos, 2011) has great promise in this
regard.

ACKNOWLEDGMENTS
Funding to Jocelyn K. C. Rose and James J. Giovannoni for research
in this area is provided by the NSF Plant Genome Research Pro-
gram (DBI-0606595), and NSF EAGER award (Plant Genome
Research Program) and the New York State Office of Science,
Technology and Academic Research (NYSTAR).

REFERENCES
Agustí, J., Merelo, P., Cercós, M., Tadeo,

F. R., and Talón, M. (2009). Compar-
ative transcriptional survey between
laser-microdissected cells from lami-
nar abscission zone and petiolar cor-
tical tissue during ethylene-promoted
abscission in citrus leaves. BMC Plant
Biol. 9:127. doi: 10.1186/1471-2229-
9-127

Alagna, F., D’Agostino, N., Torchia, L.,
Servili, M., Rao, R., Pietrella, M., et al.
(2009). Comparative 454 pyrose-
quencing of transcripts from two
olive genotypes during fruit devel-
opment. BMC Genomics 10:399. doi:
10.1186/1471-2164-10-399

Alba, R., Fei, Z., Payton, P., Liu, Y.,
Moore, S. L., Debbie, P., et al. (2004).
ESTs, cDNA microarrays, and gene
expression profiling: tools for dis-
secting plant physiology and develop-
ment. Plant J. 39, 697–714.

Au, P. C. K., Zhu, Q.-H., Dennis, E. S.,
and Wang, M.-B. (2011). Long non-
coding RNA-mediated mechanisms
independent of the RNAi pathway
in animals and plants. RNA Biol. 8,
404–414.

Barakat, A., Diloreto, D. S., Zhang,
Y., Smith, C., Baier, K., Powell,
W. A., et al. (2009). Comparison
of the transcriptomes of American
chestnut (Castanea dentata) and Chi-
nese chestnut (Castanea mollissima)

in response to the chestnut blight
infection. BMC Plant Biol. 9:51. doi:
10.1186/1471-2229-9-51

Barrero, R. A., Chapman, B., Yang, Y.,
Moolhuijzen, P., Keeble-Gagnère, G.,
Zhang, N., et al. (2011). De novo
assembly of Euphorbia fischeriana
root transcriptome identifies pros-
tratin pathway related genes. BMC
Genomics 12:600. doi: 10.1186/1471-
2164-12-600

Baulcombe, D. (2004). RNA silencing in
plants. Nature 431, 356–363.

Birnbaum, K., Shasha, D. E., Wang,
J. Y., Jung, J. W., Lambert, G. M.,
Galbraith, D. W., et al. (2003). A
gene expression map of the Ara-
bidopsis root. Science 302, 1956–
1960.

Bourgis, F., Kilaru, A., Cao, X., Ngando-
Ebongue, G.-F., Drira, N., Ohlrogge,
J. B., et al. (2011). Comparative tran-
scriptome and metabolite analysis of
oil palm and date palm mesocarp that
differ dramatically in carbon parti-
tioning. Proc. Natl. Acad. Sci. U.S.A.
108, 12527–12532.

Bräutigam, A., Kajala, K., Wullen-
weber, J., Sommer, M., Gagneul,
D., Weber, K. L., et al. (2011).
An mRNA blueprint for C4 photo-
synthesis derived from comparative
transcriptomics of closely related C3
and C4 species. Plant Physiol. 155,
142–156.

Breakfield, N. W., Corcoran, D. L.,
Petricka, J. J., Shen, J., Sae-Seaw,
J., Rubio-Somoza, I., et al. (2012).
High-resolution experimental and
computational profiling of tissue-
specific known and novel miRNAs
in Arabidopsis. Genome Res. 22,
163–176.

Brooks, L. III, Strable, J., Zhang,
X., Ohtsu, K., Zhou, R., Sarkar,
A., et al. (2009). Microdissec-
tion of shoot meristem functional
domains. PLoS Genet. 5:e1000476.
doi: 10.1371/journal.pgen.1000476

Cai, S., and Lashbrook, C. C. (2008).
Stamen abscission zone transcrip-
tome profiling reveals new candidates
for abscission control: enhanced
retention of floral organs in trans-
genic plants overexpressing Ara-
bidopsis ZINC FINGER PROTEIN2.
Plant Physiol. 146, 1305–1321.

Calviño, M., Bruggmann, R., and
Messing, J. (2011). Characterization
of the small RNA component of
the transcriptome from grain and
sweet sorghum stems. BMC Genomics
12:356. doi: 10.1186/1471-2164-
12-356

Chen, C., Farmer, A. D., Langley, R.
J., Mudge, J., Crow, J. A., May,
G. D., et al. (2010). Meiosis-specific
gene discovery in plants: RNA-Seq
applied to isolated Arabidopsis male
meiocytes. Plant Biol. 10, 280.

Chen, C.-J., Zhou, H., Chen, Y.-Q.,
Qu, L.-H., and Gautheret, D. (2011).
Plant noncoding RNA gene dis-
covery by “single-genome compar-
ative genomics”. Bioinformatics 17,
390–400.

Chen, C.-L., Liang, D., Zhou, H.,
Zhuo, M., Chen, Y.-Q., and Qu,
L.-H. (2003). The high diversity of
snoRNAs in plants: identification and
comparative study of 120 snoRNA
genes from Oryza sativa. Nucleic Acids
Res. 15, 2601–2613.

Childs, K. L., Davidson, R. M., and
Buell, C. R. (2011). Gene coexpres-
sion network analysis as a source
of functional annotation for rice
genes. PLoS ONE 6:e22196. doi:
10.1371/journal.pone.0022196

Cokus, S. J., Feng, S., Zhang, X., Chen,
Z., Merriman, B., Haudenschild, C.
D., et al. (2008). Shotgun bisul-
phite sequencing of the Arabidop-
sis genome reveals DNA methylation
patterning. Nature 452, 215–219.

Dai, N., Cohen, S., Portnoy, V., Tzuri,
G., Harel-Beja, R., Pompan-Lotan,
M., et al. (2011). Metabolism of solu-
ble sugars in developing melon fruit:
a global transcriptional view of the
metabolic transition to sucrose accu-
mulation. Plant Mol. Biol. 76, 1–18.

Dassanayake, M., Haas, J. S., Bohn-
ert, H. J., and Cheeseman, J.
M. (2009). Shedding light on

Frontiers in Plant Science | Plant Systems Biology April 2013 | Volume 4 | Article 66 | 8

http://www.frontiersin.org/Plant_Systems_Biology/
http://www.frontiersin.org/Plant_Systems_Biology/archive


“fpls-04-00066” — 2013/3/28 — 8:51 — page 9 — #9

Martin et al. Plant RNA-seq analysis

an extremophile lifestyle through
transcriptomics. New Phytol. 183,
764–775.

Davidson, R. M., Gowda, M., Moghe,
G., Lin, H., Vaillancourt, B., Shiu, S.-
H., et al. (2012). Comparative tran-
scriptomics of three Poaceae species
reveals patterns of gene expression
evolution. Plant J. 71, 492–502.

Der, J. P., Barker, M. S., Wickett, N.
J., Depamphilis, C. W., and Wolf, P.
G. (2011). De novo characterization
of the gametophyte transcriptome
in bracken fern, Pteridium aquil-
inum. BMC Genomics 12:99. doi:
10.1186/1471-2164-12-99

Desgagné-Penix, I., Farrow, S. C., Cram,
D., Nowak, J., and Facchini, P. J.
(2012). Integration of deep transcript
and targeted metabolite profiles for
eight cultivars of opium poppy. Plant
Mol. Biol. 79, 295–313.

Dugas, D. V., Monaco, M. K., Olsen,
A., Klein, R. R., Kumari, S., Ware,
D., et al. (2011). Functional annota-
tion of the transcriptome of Sorghum
bicolor in response to osmotic stress
and abscisic acid. BMC Genomics
12:514. doi: 10.1186/1471-2164-
12-514

Edwards, C. E., Parchman, T. L., and
Weekley, C. W. (2012). Assembly,
gene annotation and marker develop-
ment using 454 floral transcriptome
sequences in Ziziphus celata (Rham-
naceae), a highly endangered, florida
endemic plant. DNA Res. 19, 1–9.

Ferreira, T. H., Gentile, A., Vilela, R. D.,
Costa, G. G. L., Dias, L. I., Endres,
L., et al. (2012). microRNAs asso-
ciated with drought response in the
bioenergy crop sugarcane (Saccha-
rum spp.). PLoS ONE 7:e46703. doi:
10.1371/journal.pone.0046703

Filiatrault, M. J., Stodghill, P. V., Myers,
C. R., Bronstein, P. A., Butcher, B.
G., Lam, H., et al. (2011). Genome-
wide identification of transcriptional
start sites in the plant pathogen Pseu-
domonas syringae pv. tomato str.
DC3000. PLoS ONE 6:e29335. doi:
10.1371/journal.pone.0029335

Filichkin, S. A., Priest, H. D., Givan, S.
A., Shen, R., Bryant, D. W., Fox, S. E.,
et al. (2010). Genome-wide mapping
of alternative splicing in Arabidopsis
thaliana. Genome Res. 20, 45–58.

Franssen, S. U., Shrestha, R. P.,
Brautigam, A., Bornberg-Bauer, E.,
and Weber, A. P. M. (2011).
Comprehensive transcriptome anal-
ysis of the highly complex Pisum
sativum genome using next gener-
ation sequencing. BMC Genomics
12:227. doi: 10.1186/1471-2164-
12-227

Gan, X., Stegle, O., Behr, J., Steffen, J.
G., Drewe, P., Hildebrand, K. L., et al.

(2011). Multiple reference genomes
and transcriptomes for Arabidopsis
thaliana. Nature 477, 419–423.

Garg, R., Patel, R. K., Jhanwar, S.,
Priya, P., Bhattacharjee, A., Yadav,
G., et al. (2011). Gene discovery and
tissue-specific transcriptome analy-
sis in chickpea with massively paral-
lel pyrosequencing and web resource
development. Plant Physiol. 156,
1661–1678.

Gehring, M., Missirian, V., and
Henikoff, S. (2011). Genomic
analysis of parent-of-origin allelic
expression in Arabidopsis thaliana
seeds. PLoS ONE 6:e23687. doi:
10.1371/journal.pone.0023687

González-Ballester, D., Casero, D.,
Cokus, S., Pellegrini, M., Merchant,
S. S., and Grossman, A. R. (2010).
RNA-seq analysis of sulfur-deprived
Chlamydomonas cells reveals aspects
of acclimation critical for cell sur-
vival. Plant Cell 22, 2058–2084.

Hao, D. C., Ge, G. B., Xiao, P. G.,
Zhang, Y. Y., and Yang, L. (2011).
The first insight into the tissue spe-
cific taxus transcriptome via illumina
second generation sequencing. PLoS
ONE 6:e21220. doi: 10.1371/jour-
nal.pone.0021220

Harper, A. L., Trick, M., Higgins, J.,
Fraser, F., Clissold, L., Wells, R., et al.
(2012). Associative transcriptomics
of traits in the polyploid crop species
Brassica napus. Nat. Biotechnol. 30,
798–802.

Haseneyer, G., Schmutzer, T., Seidel, M.,
Zhou, R., Mascher, M., Schön, C.-C.,
et al. (2011). From RNA-seq to large-
scale genotyping: genomics resources
for rye (Secale cereale L.). BMC Plant
Biol. 11:131. doi: 10.1186/1471-2229-
11-131

Hirsch, J., Lefort,V., Vankersschaver, M.,
Boualem, A., Lucas, A., Thermes, C.,
et al. (2006). Characterization of 43
non-protein-coding mRNA genes in
Arabidopsis, including the MIR162a-
derived transcripts. Plant Physiol.
140, 1192–1204.

Hsieh, L.-C., Lin, S.-I., Shih, A. C.-C.,
Chen, J.-W., Lin, W.-Y., Tseng, C.-
Y., et al. (2009). Uncovering small
RNA-mediated responses to phos-
phate deficiency in Arabidopsis by
deep sequencing. Plant Physiol. 151,
2120–2132.

Hsieh, T.-F., Shin, J., Uzawa, R., Silva,
P., Cohen, S., Bauer, M. J., et al.
(2011). Regulation of imprinted gene
expression in Arabidopsis endosperm.
Proc. Natl. Acad. Sci. U.S.A. 108,
1755–1762.

Iancu, O. D., Kawane, S., Bottomly,
D., Searles, R., Hitzemann, R., and
McWeeney, S. (2012). Utilizing RNA-
seq data for de-novo coexpression

network inference. Bioinformatics 28,
1592–1597.

Ilut, D. C., Coate, J. E., Luciano, A. K.,
Owens, T. G., May, G. D., Farmer,
A., et al. (2012). A comparative tran-
scriptomic study of an allotetraploid
and its diploid progenitors illustrates
the unique advantages and challenges
of RNA-seq in plant species. Am. J.
Bot. 99, 383–396.

Kakumanu, A., Ambavaram, M. M. R.,
Klumas, C., Krishnan, A., Batlang,
U., Myers, E., et al. (2012). Effects of
drought on gene expression in maize
reproductive and leaf meristem tissue
revealed by RNA-seq. Plant Physiol.
160, 846–867.

Kim, E.-D., and Sung, S. (2011). Long
noncoding RNA: unveiling hidden
layer of gene regulatory networks.
Trends Plant Sci. 17, 16–21.

Kim, K. H., Kang, Y. J., Kim, D. H.,
Yoon, M. Y., Moon, J. K., Kim, M.
Y., et al. (2011). RNA-seq analysis
of a soybean near-isogenic line car-
rying bacterial leaf pustule-resistant
and -susceptible alleles. DNA Res. 18,
483–497.

Levin, J. Z., Yassour, M., Adiconis,
X., Nusbaum, C., Thompson, D.
A., Friedman, N., et al. (2010).
Comprehensive comparative analysis
of strand-specific RNA sequencing
methods. Nat. Methods 7, 709–715.

Li, W., Dai, C., Liu, C.-C., and Zhou,
X. J. (2012). Algorithm to identify
frequent coupled modules from two-
layered network series: application to
study transcription and splicing cou-
pling. J. Comput. Biol. 19, 710–730.

Lister, R., O’Malley, R. C., Tonti-
Filippini, J., Gregory, B. D., Berry,
C. C., Millar, A. H., et al. (2008).
Highly integrated single-base reso-
lution maps of the epigenome in
Arabidopsis. Cell 133, 523–536.

Liu, F., Marquardt, S., Lister, C.,
Swiezewski, S., and Dean, C. (2010).
Targeted 3′ processing of antisense
transcripts triggers Arabidopsis FLC
chromatin silencing. Science 327,
94–97.

Liu, S., Yeh, C.-T., Tang, H. M.,
Nettleton, D., and Schnable, P. S.
(2012). Gene mapping via bulked
segregant RNA-seq (BSR-Seq). PLoS
ONE 7:e36406. doi: 10.1371/jour-
nal.pone.0036406

Lopez-Casado, G., Covey, P. A.,
Bedinger, P. A., Mueller, L. A.,
Thannhauser, T. W., Zhang, S., et al.
(2012). Enabling proteomic stud-
ies with RNA-seq: the proteome of
tomato pollen as a test case. Pro-
teomics 12, 761–774.

Lu, C., Singh Tej, S., Luo, S., Hau-
denschild, C. D., Meyers, B. C., and
Green, P. J. (2005). Elucidation of the

small RNA component of the tran-
scriptome. Science 309, 1567–1569.

Lu, T., Lu, G., Fan, D., Zhu, C., Li,
W., Zhao, Q., et al. (2010). Func-
tion annotation of the rice transcrip-
tome at single-nucleotide resolution
by RNA-seq. Genome Res. 20, 1238–
1249.

Lulin, H., Xiao, Y., Pei, S., Wen, T.,
and Shangqin, H. (2012). The first
illumina-based de novo transcrip-
tome sequencing and analysis of saf-
flower flowers. PLoS ONE 7:e38653.
doi: 10.1371/journal.pone.0038653

Luo, M., Taylor, J. M., Spriggs, A.,
Zhang, H., Wu, X., Russel, S., et al.
(2011). A genome-wide survey of
imprinted genes in rice seeds reveals
imprinting primarily occurs in the
endosperm. PLoS Genet. 7:e1002125.
doi: 10.1371/journal.pgen.1002125

Manfield, I. W., Jen, C.-H., Pinney, J.
W., Michalopoulos, I., Bradford, J. R.,
Gilmartin, P. M., et al. (2006). Ara-
bidopsis co-expression tool (ACT):
web server tools for microarray-based
gene expression analysis. Nucleic
Acids Res. 34, 504–509.

Mao, L., Van Hemert, J. L., Dash, S., and
Dickerson, J. A. (2009). Arabidop-
sis gene co-expression network and
its functional modules. BMC Bioin-
formatics 10:346. doi: 10.1186/1471-
2105-10-346

Marquez, Y., Brown, J. W. S., Simp-
son, C., Barta, A., and Kalyna, M.
(2012). Transcriptome survey reveals
increased complexity of the alterna-
tive splicing landscape in Arabidopsis.
Genome Res. 22, 1184–1195.

Matas, A. J., Agustí, J., Tadeo, F. R.,
Talón, M., and Rose, J. K. C. (2010).
Tissue specific transcriptome pro-
filing of the citrus fruit epidermis
and subepidermis using laser cap-
ture microdissection. J. Exp. Bot. 61,
3321–3330.

Matas, A. J., Yeats, T. H., Buda,
G. J., Zheng, Y., Chatterjee, S.,
Tohge, T., et al. (2011). Tissue-
and cell-type specific transcriptome
profiling of expanding tomato fruit
provides insights into metabolic
and regulatory specialization and
cuticle formation. Plant Cell 23,
3893–3910.

Mizrachi, E., Hefer, C. A., Ranik, M.,
Joubert, F., and Myburg, A. A. (2010).
De novo assembled expressed gene
catalog of a fast-growing eucalyptus
tree produced by Illumina mRNA-
Seq. BMC Genomics 11:681. doi:
10.1186/1471-2164-11-681

Mizuno, H., Kawahigashi, H., Kawa-
hara, Y., Kanamori, H., Ogata,
J., Minami, H., et al. (2012).
Global transcriptome analysis
reveals distinct expression among

www.frontiersin.org April 2013 | Volume 4 | Article 66 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Systems_Biology/archive


“fpls-04-00066” — 2013/3/28 — 8:51 — page 10 — #10

Martin et al. Plant RNA-seq analysis

duplicated genes during sorghum-
Bipolaris sorghicola interaction.
BMC Plant Biol. 12:121. doi:
10.1186/1471-2229-12-121

Moxon, S., Jing, R., Szittya, G., Schwach,
F., Rusholme Pilcher, R. L., Moul-
ton, V., et al. (2008). Deep sequenc-
ing of tomato short RNAs identifies
microRNAs targeting genes involved
in fruit ripening. Genome Res. 18,
1602–1609.

Nakazono, M., Qiu, F., Borsuk, L. A.,
and Schnable, P. S. (2003). Laser-
capture microdissection, a tool for
the global analysis of gene expression
in specific plant cell types: identifica-
tion of genes expressed differentially
in epidermal cells or vascular tissue
of maize. Plant Cell 15, 583–596.

Ossowski, S., Schneeberger, K., Clark,
R. M., Lanz, C., Warthmann, N., and
Weigel, D. (2008). Sequencing of nat-
ural strains of Arabidopsis thaliana
with short reads. Genome Res. 18,
2024–2033.

Ozsolak, F., and Milos, P. M. (2011).
RNA sequencing: advances, chal-
lenges and opportunities. Nat. Rev.
Genet. 12, 87–98.

Pantaleo, V., Szittya, G., Moxon, S.,
Miozzi, L., Moulton, V., Dalmay,
T., et al. (2010). Identification of
grapevine microRNAs and their tar-
gets using high-throughput sequenc-
ing and degradome analysis. Plant J.
62, 960–976.

Parkhomchuk, D., Borodina, T.,
Amstislavskiy, V., Banaru, M., Hallen,
L., Krobitsch, S., et al. (2009). Tran-
scriptome analysis by strand-specific
sequencing of complementary DNA.
Nucleic Acids Res. 37, e123.

Ponting, C. P., Oliver, P. L., and Reik,
W. (2009). Evolution and functions
of long noncoding RNAs. Cell 136,
629–641.

Ramsköld, D., Wang, E. T., Burge, C.
B., and Sandberg, R. (2009). An
abundance of ubiquitously expressed
genes revealed by tissue transcrip-
tome sequence data. PLoS Comput.
Biol. 5:e1000598. doi: 10.1371/jour-
nal.pcbi.1000598

Rogers, E. D., Jackson, T., Mous-
saieff, A., Aharoni, A., and Benfey,
P. N. (2012). Cell type-specific tran-
scriptional profiling: implications for
metabolite profiling. Plant J. 70,
5–17.

Schliesky, S., Gowik, U., Weber, A.
P. M., and Bräutigam, A. (2012).
RNA-seq assembly –are we there
yet? Front. Plant Sci. 3:220. doi:
10.3389/fpls.2012.00220

Schmidt, M. A., Barbazuk, W. B., Sand-
ford, M., May, G., Song, Z., Zhou,
W., et al. (2011). Silencing of soy-
bean seed storage proteins results
in a rebalanced protein composi-
tion preserving seed protein content
without major collateral changes in
the metabolome and transcriptome.
Plant Physiol. 156, 330–345.

Sharma, C. M., Hoffmann, S., Dar-
feuille, F., Reignier, J., Findeiß, S.,
Sittka, A., et al. (2010). The primary
transcriptome of the major human
pathogen Helicobacter pylori. Nature
464, 250–255.

Song, C., Wang, C., Zhang, C., Korir,
N. K., Yu, H., Ma, Z., et al. (2010).
Deep sequencing discovery of novel
and conserved microRNAs in trifo-
liate orange (Citrus trifoliata). BMC
Genomics 11:431. doi: 10.1186/1471-
2164-11-431

Sun, X., Zhou, S., Meng, F., and
Liu, S. (2012). De novo assembly
and characterization of the garlic
(Allium sativum) bud transcriptome
by Illumina sequencing. Plant Cell 31,
1823–1828.

Szittya, G., Moxon, S., Santos, D. M.,
Jing, R., Fevereiro, M. P. S., Moulton,
V., et al. (2008). High-throughput
sequencing of Medicago truncatula
short RNAs identifies eight new
miRNA families. BMC Genomics
9:593. doi: 10.1186/1471-2164-9-593

Takacs, E. M., Li, J., Du, C., Pon-
nala, L., Janick-Buckner, D., Yu, J.,
et al. (2012). Ontogeny of the maize
shoot apical meristem. Plant Cell 24,
3219–3234.

Tanaka, T., Koyanagi, K. O., and Itoh, T.
(2009). Highly diversified molecular
evolution of downstream transcrip-
tion start sites in rice and Arabidopsis.
Plant Physiol. 149, 1316–1324.

The Arabidopsis Genome Initiative.
(2000). Analysis of the genome
sequence of the flowering plant
Arabidopsis thaliana. Nature 408,
796–815.

Tohge, T., and Fernie, A. R.
(2012). Co-expression and co-
responses: within and beyond tran-
scription. Front. Plant Sci. 3:248. doi:
10.3389/fpls.2012.00248

Wang, L., Si, Y., Dedow, L. K., Shao,
Y., Liu, P., and Brutnell, T. P. (2011).
A low-cost library construction pro-
tocol and data analysis pipeline for
Illumina-based strand-specific mul-
tiplex RNA-seq. PLoS ONE 6:e26426.
doi: 10.1371/journal.pone.0026426

Wang, S., Wang, X., He, Q., Liu, X., Xu,
W., Li, L., et al. (2012). Transcriptome

analysis of the roots at early and late
seedling stages using Illumina paired-
end sequencing and development of
EST-SSR markers in radish. Plant Cell
Rep. 31, 1437–1447.

Wang, Z., Gerstein, M., and Snyder,
M. (2009). RNA-Seq: a revolution-
ary tool for transcriptomics. Nat. Rev.
Genet. 10, 57–63.

Weber, A. P. M., Weber, K. L., Carr,
K., Wilkerson, C., and Ohlrogge, J.
B. (2007). Sampling the Arabidopsis
transcriptome with massively parallel
pyrosequencing. Plant Physiol. 144,
32–42.

Xia, R., Zhu, H., An, Y.-q., Beers, E.
P., and Zongrang, L. (2012). Apple
miRNAs and tasiRNAs with novel
regulatory networks. Genome Biol.
13, R47.

Yang, X., Zhang, H., and Li, L.
(2012). Alternative mRNA process-
ing increases the complexity of
microRNA-based gene regulation in
Arabidopsis. Plant J. 70, 421–431.

Zamore, P. D., and Haley, B. (2005).
Ribo-gnome: the big world of small
RNAs. Science 309, 1519–1524.

Zemach, A., Kim, M. Y., Silva, P.,
Rodrigues, J. A., Dotson, B., Brooks,
M. D., et al. (2010). Local DNA
hypomethylation activates genes in
rice endosperm. Proc. Natl. Acad. Sci.
U.S.A. 107, 18729–18734.

Zenoni, S., Ferrarini, A., Giacomelli,
E., Xumerle, L., Fasoli, M., Malerba,
G., et al. (2010). Characterization
of transcriptional complexity during
berry development in Vitis vinifera
using RNA-Seq. Plant Physiol. 152,
1787–1795.

Zhang, H., Wei, L., Miao, H., Zhang,
T., and Wang, C. (2012). Develop-
ment and validation of genic-SSR
markers in sesame by RNA-seq. BMC
Genomics 13:316. doi: 10.1186/1471-
2164-13-316

Zhang, J., Xu, Y., Huan, Q., and
Chong, K. (2009). Deep sequenc-
ing of Brachypodium small RNAs at
the global genome level identifies
microRNAs involved in cold stress
response. BMC Genomics 10:449. doi:
10.1186/1471-2164-10-449

Zhang, M., Zhao, H., Xie, S., Chen, J.,
Xu, Y., Wang, K., et al. (2011). Exten-
sive, clustered parental imprinting of
protein-coding and noncoding RNAs
in developing maize endosperm.
Proc. Natl. Acad. Sci. U.S.A. 108,
20042–20047.

Zhelyazkova, P., Sharma, C. M., Först-
ner, K. U., Liere, K., Vogel, J.,
and Börner, T. (2012). The primary

transcriptome of barley chloroplasts:
numerous noncoding RNAs and
the dominating role of the plastid-
encoded RNA polymerase. Plant Cell
24, 123–136.

Zheng, Q., Ryvkin, P., Li, F.,
Dragomir, I., Valladares, O., Yang,
J., et al. (2010). Genome-wide
double-stranded RNA sequencing
reveals the functional significance
of base-paired RNAs in Arabidop-
sis. PLoS Genet. 6:e1001141. doi:
10.1371/journal.pgen.1001141

Zhong, S., Fei, Z., Chen, Y.-R., Zheng, Y.,
Huang, M., Vrebalov, J., et al. (2013).
Single-base resolution methylomes
of tomato fruit development reveal
epigenome modifications associated
with ripening. Nat. Biotechnol. 31,
154–159.

Zhong, S., Joung, J.-G., Zheng, Y.,
Chen, Y.-R., Liu, B., Shao, Y.,
et al. (2011). High-throughput illu-
mina strand-specific RNA sequenc-
ing library preparation. Cold Spring
Harb. Protoc. 8, 940–949.

Zhu, Q.-H., and Wang, M.-B. (2012).
Molecular functions of long non-
coding RNAs in plants. Genes 3,
176–190.

Zhu, W., Schlueter, S. D., and Bren-
del, V. (2003). Refined annotation
of the Arabidopsis genome by com-
plete expressed sequence tag map-
ping. Plant Physiol. 132, 469–484.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 05 February 2013; accepted: 10
March 2013; published online: 01 April
2013.
Citation: Martin LBB, Fei Z, Giovan-
noni JJ and Rose JKC (2013) Catalyz-
ing plant science research with RNA-seq.
Front. Plant Sci. 4:66. doi: 10.3389/fpls.
2013.00066
This article was submitted to Frontiers
in Plant Systems Biology, a specialty of
Frontiers in Plant Science.
Copyright © 2013 Martin, Fei, Gio-
vannoni and Rose. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License, which permits use, distribution
and reproduction in other forums, pro-
vided the original authors and source
are credited and subject to any copy-
right notices concerning any third-party
graphics etc.

Frontiers in Plant Science | Plant Systems Biology April 2013 | Volume 4 | Article 66 | 10

http://dx.doi.org/10.3389/fpls.2013.00066
http://dx.doi.org/10.3389/fpls.2013.00066
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Plant_Systems_Biology/
http://www.frontiersin.org/Plant_Systems_Biology/archive

	Catalyzing plant science research with RNA-seq
	Introduction
	Improving genome annotation with transcriptomic data
	Generating genomic and enabling proteomic resources for "non-model" species
	Characterizing temporal, spatial, regulatory, and evolutionary transcriptome landscapes
	Identifying and characterizing novel non-coding RNAs
	From co-expression networks to integrative data analysis
	A growing portfolio of RNA-seq analytical strategies
	Strand-specific RNA-seq
	Bulked segregant RNA-seq
	Double-stranded RNA-seq
	Differential RNA-seq

	Concluding remarks
	Acknowledgments
	References


