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Abiotic stresses such as low water availability and high salinity are major causes of cereal
crop yield losses and significantly impact on sustainability. Wheat and barley are two
of the most important cereal crops (after maize and rice) and are grown in increasingly
hostile environments with soil salinity and drought both expected to increase this century,
reducing the availability of arable land. Barley and wheat are classified as glycophytes
(salt-sensitive), yet they are more salt-tolerant than other cereal crops such as rice and
so are good models for studying salt tolerance in cereals. The exploitation of genetic
variation of phenotypic traits through plant breeding could significantly improve growth of
cereals in salinity-affected regions, thus leading to improved crop yields. Genetic variation
in phenotypic traits for abiotic stress tolerance have been identified in land races and wild
germplasm but the molecular basis of these differences is often difficult to determine due
to the complex genetic nature of these species. High-throughput functional genomics
technologies, such as transcriptomics, metabolomics, proteomics, and ionomics are
powerful tools for investigating the molecular responses of plants to abiotic stress. The
advancement of these technologies has allowed for the identification and quantification of
transcript/metabolites in specific cell types and/or tissues. Using these new technologies
on plants will provide a powerful tool to uncovering genetic traits in more complex species
such as wheat and barley and provide novel insights into the molecular mechanisms of
salinity stress tolerance.
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INTRODUCTION
Abiotic stresses such as drought, salinity, extreme temperatures
and nutrient deficiency, and toxicity are major causes of plant
stress and agriculture yield losses. With an increase in the loss of
arable land due to drought and salinity it is imperative that we
increase the crop yield per hectare. In terms of worldwide produc-
tion maize, rice, wheat, and barley are the four most important
crops (844, 672, 650, and 123 MT, respectively, 20101. Wheat
and barley are grown in increasingly hostile environments with
soil salinity and drought both expected to increase this century
reducing the availability of arable land. With the global population
expected to reach nine billion by 2050 2 an increase in global agri-
culture productivity will be needed to meet the increase in demand
for global food supply. Around 80% of human food produced is
comprised of crops, with this dominated by the cereals that com-
prise 50% of global food production (Langridge and Fleury, 2011).
Since the 1960s global cereal production has undergone a linear
increase of 30% per year (Tester and Langridge, 2010).However,
in order to meet the required increase in food production, crop
productivity will need to increase by 38% annually. To achieve
this increase in food production it will be imperative to look for
genetic improvement of crops, not only by using traditional plant
breeding methods but also genetic modification technologies.

1http://faostat.fao.org
2http://www.fao.org/wsfs/world-summit/en/

Complex traits such as an increased tolerance to abiotic stresses
are multi-genic and thus are difficult to identify. The improve-
ment of crops is largely dependent on exploiting genetic variation
and this has been achieved in the past through traditional plant
breeding methods (Langridge and Fleury, 2011). One approach to
elucidate abiotic stress tolerance mechanisms is to identify natu-
rally occurring genetic variation within a crop species by screening
varieties, wild genotypes and landraces (Roy et al., 2011b). The
use of forward genetics is a powerful approach to study traits
contributing to abiotic stress tolerance, however, it is crucial
that reliable and accurate quantitative phenotyping methods are
employed to assist in the identification of these traits. In recent
years, phenomics technologies have become much more advanced
and high-throughput, non-destructive measurements can now be
made to assist in accurate phenotyping (reviewed in Roy et al.,
2011b). In conjunction, recent advances in high-throughput func-
tional genomics technologies such as next generation sequencing
(NGS), transcriptomics, metabolomics, and proteomics make
it possible to use a systems biology approach to understand
the response to environmental stress. In this review we will
discuss the use of high-throughput functional genomics tech-
nologies to understand salinity stress tolerance mechanisms in
plants focussing on cereal crops. Most functional genomics stud-
ies have used the model plant Arabidopsis and very few studies
have been conducted on more genetically complex plant species
such as wheat. However, with the rapid development of functional
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genomic tools we can now use this technology to identify abi-
otic stress tolerance mechanisms in cereal crops. We also highlight
the need to use both spatial and temporal resolution to elucidate
the molecular response to salinity (and other abiotic stresses).
These studies will lead to a greater understanding of the plant
response to salinity stress and thus the integration of this data
will contribute to improving our ability to generate salt-tolerant
crops.

GENETIC VARIATION INSALT STRESS TOLERANCE IN CEREAL
CROPS
Different plant species have a wide ranging capacity for salt tol-
erance from the very sensitive species (glycophytes) such as the
model plant Arabidopsis to the very tolerant halophyticspecies
such as Atriplex spp. (saltbush). Cereal crops are classified as gly-
cophytes, however, different crop species can also have different
capacities and mechanisms to tolerate salt stress, for example,
rice is more sensitive than both barley and wheat(Munns and
Tester, 2008). Within a species there can also be naturally occuring
genetic variation in salt tolerance and this can be exploited for
breeding of salt-tolerant crops (Roy et al., 2011b). It has been pro-
posed that the temporal response of plantsto soil salinity occurs
in two separate phases that have been termed as osmotic and
ionic (Munns, 2002).The early phase (hours to days) is described
as an osmotic stress, due to the low water potentialaround the
roots, in response to saline soils and/or water deficit. Osmotic
stress is described as a shoot ion independent stress and can result
in cell dehydration and loss of cell turgor pressure, and can be
characterized phenotypically by a reduction in root elongation,
inhibition of photosynthesis and a reduction in shoot growth
(Munns and Tester, 2008).In contrast, ionic stress occurs at a
later stage (usually after weeks or months) and is a result of the
accumulation of toxic concentrations of Na+ and Cl− in the cell
cytoplasm resulting in decreased growth and yield. In response to
salt stress, crop plants have evolved the following three tolerance
mechanisms – (1) osmotic stress tolerance: ability to maintain
water uptake and growth, (2) Na+ exclusion: exclusion of toxic
ions from the shoot tissues, and (3) tissue tolerance: compart-
mentalisation of toxic ions into the vacuole or specific tissues
(Munns and Tester, 2008).

One approach to identify adaptive traits to abiotic stresses is
to screen for genetic diversity in populations (Figure 1). Genetic
variation in salt tolerance has been shown inmany cereal crops
including barley (Shavrukov et al., 2010) and wheat (James et al.,
2008; Rahnama et al., 2011).The focus of most research for
enhancing salt tolerance in plants has concentrated on the mech-
anisms that control Na+ exclusion (Munns and Tester, 2008).
For example, in a study on durum wheat genotypes, a wide
genetic variation was observed in their ability to exclude Na+
that was not present in modern cultivars (Munns et al., 2000).
This led to the identification of two major genes for Na+ exclu-
sion, Nax1 and Nax2 (Lindsay et al., 2004; James et al., 2006).
The intergression of Nax2 from the parent line, Triticum mono-
coccum, into durum wheat produced a salt-tolerant phenotype
(James et al., 2012).

It was originally thought that there was very little evidence of
genetic variation in osmotic stress tolerance (Munns et al., 1995),

so this area of research has largely been neglectedand there are
limited studies reporting genetic variation in osmotic stress tol-
erance within a cereal species. A number of recent studies have
identified genetic variation in osmotic stress tolerance by measur-
ing shoot traits. In a study of 12 Triticum monococcum accessions,
non-destructive assays were developed to distinguish the three
mechanims of salinity tolerance; osmotic tolerance, Na+ exclusion
and tissue tolerance (Rajendran et al., 2009). Different accessions
appear to use different combinations of the three tolerance mech-
anisms to increase their salinity tolerance. This information can
now be used for forward genetic screens to identify the molecular
basis of these tolerance mechanims.

Stomatal conductance is known to be reduced immediately
upon exposure of the roots to salinity, so the plant must be
responding systemically to the osmotic impact.For example, in
a screen of 50 durum varieties and landraces, two- to threefold
differences in stomatal conductance were observed and higher
stomatal conductance positively correlated with relative growth
rate (James et al., 2008). Despite a number of recent phenotypic
studies, the molecular mechanisms for osmotic stress tolerance
remain unknown. Osmotic stress is initially detected by the roots
upon exposure to a low water potential (either as a result of water
deficit or salinity). There are few studies decribing genetic varia-
tion in the root growth response to osmotic stress, mainly due to
the difficulties associated with visualizing and phenotyping roots
(Gewin, 2010; Richards et al., 2010; Zhu et al., 2011). One exam-
ple of genetic variation in root growth has been shown by the
measurement ofroot elongation rate of eight barley genotypes
(including barley cultivars, a landrace and wild barley) in response
to the early component of salinity stress. In this study the wild
barley, Hordeum vulgare ssp. spontaneum, was identified as the
most tolerant (Shelden et al., 2013). The identification of genetic
variation in root phenotypes will provide important information
for future genetic characterisation and molecular studies to eluci-
date the molecular pathways involved in the early phase of salinity
tolerance.

UTILIZING FUNCTIONAL GENOMICS APPROACHES TO
ELUCIDATE PLANT STRESS RESPONSES
Functional genomics approaches such as genomics, transcrip-
tomics, metabolomics, proteomics, and ionomics, have been
extensively used to evaluate abiotic stress tolerance mechanisms
in plants (Cramer et al., 2011). These platforms can be uti-
lized to improve our ability to discover the genes and path-
ways that control specific traits in response to abiotic stress
(Figure 1).

Plants are complex organisms with many different tissue and
cell types and the interaction between these tissues and cells
requires complex regulation. To gain a greater understanding
of the complexities of cell-specific regulation, an increase in the
sensitivity of functional genomic tools are required. To date, func-
tional genomics approaches have mainly been utilized for studies
of whole organs such as leaves and roots (Widodo et al., 2009),
thus it is possible that important changes in both metabolites and
gene expression go undetected because they are diluted out by
the surrounding tissue. Combining a forward genetics approach
with spatially resolved ‘omics approaches may greatly improve our
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FIGURE 1 | Proposed strategy for the integration of physiology and systems biology to gain insights into abiotic stress responses in cereals and the

future development of abiotic stress tolerant crops.

chances of discovering gene candidates leading to the generation
of abiotic stress tolerant crops.

ADVANCEMENTS IN FUNCTIONAL GENOMICS TECHNIQUES
FOR SPATIAL RESOLUTION
TRANSCRIPTOMICS
Microarrays were the first available method for genome wide tran-
script expression profiling and have been used extensively in plant
biology. Microarrays have been extensively used to generate tran-
scriptional profiles in response to abiotic stresses in a range of
plant species including, but not limited to, Arabidopsis (Kreps
et al., 2002), Vitis vinifera L. (grapevine; Cramer et al., 2007)
and Hordeum vulgare L. (barley; Walia et al., 2006). Studies of
the transcriptional response to salt stress have been conducted
in barley (Ueda et al., 2004, 2006; Walia et al., 2006, 2007; Gru-
ber et al., 2009) and the model cereal Brachypodium (Kim et al.,
2012) but due to the polyploidy genome, studies of wheat are
more limited (Kawaura et al., 2006, 2008; Mott and Wang, 2007;
Jamil et al., 2011; Garg et al., 2013).As the technology of microar-
rays and cell separation techniques has become more advanced
it has become possible to do spatial profiling of plant tissues

and cell-specific studies (Brady et al., 2007; Dinneny et al., 2008;
Spollen et al., 2008). Cell-type specific transcript studies have been
conducted in many plant species including Arabidopsis and the
cereals maize, rice, barley, and soybean using microarrays (Pu
and Brady, 2010; Long, 2011; Rogers et al., 2012). Despite a large
number of microarray experiments, very few have led to the
identification of stress tolerance pathways (Deyholos, 2010).

High-throughput, deep sequencing technology (RNA-Seq)
provides a new strategy to detect and accurately quantitate changes
in the transcriptome. NGS is still in its infancy in plant biol-
ogy but is expected to supercede microarray based approaches as
the technology becomes more developed. NGS technology is a
powerful tool for gene expression profiling and has been used suc-
cessfully in a number of organisms including mammalian systems
(Mortazavi et al., 2008), yeast (Nagalakshmi et al., 2008) and plants
(Lister et al., 2008) to show transcriptional activity. The use of NGS
technology for expression studies is becoming more popular with
studies reported in the model plant Arabidopsis (Weber et al., 2007)
and several cereal species including Glycine max L. (soybean; Fan
et al., 2013), Lolium perenne L. (perennial ryegrass; Studer et al.,
2012), Triticum aestivum (wheat) endosperm (Gillies et al., 2012),
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Zea mays (maize; Li et al., 2010), Sorghum bicolor (sorghum; Dugas
et al., 2011), Panicum virgatum L. (switchgrass; Wang et al., 2012)
and the extremophile Thellungiella parvula (Dassanayake et al.,
2011). Studies now show that RNA-Seq provides better quan-
titation and accuracy than microarrays (Jain, 2012). Theuse of
RNA-Seq in plant biology has been comprehensively reviewed and
will therefore not be reviewed here (Jain, 2011, 2012). There are
only very few studies published utilizing NGS to study abiotic
stress responses in plants (Deyholos, 2010). These include stud-
ies on salt stress (Molina et al., 2008; Fan et al., 2013), cold stress
(Tamura and Yonemaru, 2010) and drought stress (Dugas et al.,
2011; Dong et al., 2012; Vidal et al., 2012).

With the availability of a number of cereal genomes includ-
ing Barley Sequencing Consortium (2012), sorghum (Paterson
et al., 2009), maize (Schnable et al., 2009), rice (Project, 2005),
and the cereal model Brachypodium (Vogel et al., 2010) it is now
possible to use this information to conduct large scale NGS tran-
scriptomic experiments in cereal crops. For example, in a study
on Sorghum bicolor, RNA-Seq technology was utilized in com-
bination with the sorghum genome sequence to analyze the root
and shoot transcriptome in response to osmotic stress and abscisic
acid (ABA; Dugas et al., 2011). The study identified over 28,000
unique genes that were transcriptionally regulated in response to
osmotic stress and ABA. A collection of drought-regulated gene
networks and transcription factors were identified that can provide
a basis for further studies. The data in this study was also com-
pared to other sequenced transcriptomes including maize, rice
and Arabidopsis, identifying more than 50 differentially expressed
drought responsive gene orthologs. The lack of fully sequenced
genomes in plants with larger, more complex genomes, such as
wheat (hexaploid), present many difficulties for these types of
‘omics studies. Utilizing these new technologies in combination
with the completed genome sequences of cereals will providea
powerful tool to uncovering genetic traits in more complex species
such as wheat.

PROTEOMICS
Proteomic studies of the response to salt stress have been con-
ducted in many plant species including the cereals rice (Oryza
sativa), wheat (Triticum durum and Triticum aestivum), barley
(Hordeum vulgare), and maize (Zea mays; reviewed in Zhang
et al., 2012). A number of comprehensive reviews describing pro-
teomic responses to abiotic stress are available and therefore will
not be reviewed here (Kosova et al., 2011; Roy et al., 2011a; Zhang
et al., 2012). Single cell proteomic studies have been successful
in mammalian systems where cells can be cultured to increase
the starting material (Schirle et al., 2003; Diks and Peppelenbosch,
2004), but there are relatively few examples of single cell proteomic
studies in plants, and especially in cereals, due to the difficulties
in obtaining enough material. Single cell-type proteomic anal-
yses have been reported for Arabidopsis guard cells (Zhao et al.,
2008), trichomes (Wienkoop et al., 2004; Kryvych et al., 2011)
and pollen (Holmes-Davis et al., 2005), soybean (Glycine max)
root hairs (Wan et al., 2005) and tobacco (Nicotiana tabacum)
trichomes (Amme et al., 2005). Tissue specific proteomic stud-
ies of the response to salinity include a comprehensive proteomics
study of rice anthers (Sarhadi et al., 2012) wheat root seedlings

(Guo et al., 2012) and rice plasma membranes (Cheng et al., 2009).
Kamal et al. (2012) analyzed wheat chloroplast protein abundance
only and correlated their salt-responsive behavior to numerous
physiological parameters. However, in most of these studies
only a small number of salt-responsive proteins were identified
(Zhao et al., 2008).

METABOLOMICS
Metabolites are the building blocks for structural and enzymatic
molecules and carry the energy required for growth and mainte-
nance of living cells. Metabolites are a key link between genetic
information and a phenotype and are a measure of the physiologi-
cal state of an organism. In the past decade enormous efforts have
been made to develop high-throughput and untargeted method-
ologies to analyze as many metabolites as possible. The resulting
relatively new field of metabolomics uses a set of sophisticated ana-
lytical biochemistry tools for the identification and quantification
of metabolites. The application of bioinformatics and statisti-
cal tools allows the extraction and analysis of multivariate data
sets supporting biological interpretation. An inherent challenge
of metabolomics derives from the fact that the metabolome is
a simple descriptor for what is, in fact, huge chemical diversity.
Hundreds and hundreds of compounds with different physical
and chemical properties such as molecular weight, molecular size,
polarity, stability, volatility, solubility, and many more, require the
development of comprehensive and/or complementary extraction,
separation, detection, and quantification techniques (Beckles and
Roessner, 2012). A number of analytical technologies, including
chromatographic separation techniques, such as liquid and gas
chromatography, coupled to mass spectrometry and nuclear mag-
netic resonance (NMR) spectroscopy have been successfully used
to analyze metabolites in many different organisms, tissues and
biofluids (Roessner and Beckles, 2009).

Metabolomic analysis has been used extensively to study abiotic
stress responses in plants (Urano et al., 2010; Obata and Fernie,
2012). Due to the importance of salinity and drought stress in
agriculture, many metabolomic studies have been conducted on
agriculturally important crops to gain insight into the effect of
such stress on metabolic activity. Analyzing genotypes that have
differing phenotypic responses to abiotic stress (sensitive vs. tol-
erant) will help elucidate the specific metabolic changes that are
contributing to the increased tolerance of a genotype. For exam-
ple, in a study conducted on two genotypes of barley that differ
in salt tolerance, it was found that the landrace Sahara accumu-
lates higher levels of metabolites involved in cellular protection
in the leaves, corresponding with higher leaf Na+ concentrations
compared to the less tolerant genotype, Clipper (Widodo et al.,
2009).

To date, most metabolomics analyses have been carried out on
bulked tissues (e.g., whole roots or leaves) due to sensitivity lev-
els of the technologies employed. This means that the metabolic
profile of different tissue and cell types, each likely to be charac-
terized by a specific metabolite profile or a particular response to
environmental or genetic stimuli, have to be measured together.
Instrumentation with increased sensitivity will help substantially,
but a major problem remains, that it is often difficult or even
impossible to separate and isolate tissue types or single cell types
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from plant tissues. The first success of a single cell metabolomics
approach has been reported in a study of Arabidopsis where
cryo-sectioning was used to preserve cellular structures. Specific
cell types were cut and collected using laser micro-dissection to
obtain a sufficient number of cells to allow the detection of about
68 major metabolites by gas chromotography/mass spectrome-
try (GC-MS; Schad et al., 2005). In future, it may be possible
to develop cell-type specific protoplasts that can be cultured to
increase the amount of tissue for analysis (Keerberg et al., 2011).
However, one issue in any such metabolomics analysis is that pro-
toplasts are cell-wall free cells and their generation and culture may
affect the physiological state of the cells and therefore the range
and concentration of metabolites.

An important aim of the characterization of metabolites in
plants is to understand the spatial distribution of single metabo-
lites. Initial such analyses have includedindole-3-acetic acid (IAA)
in Arabidopsis roots (Petersson et al., 2009) or ATP in Vicia faba
embryos (Borisjuk et al., 2003), but these studies are now being
extended to as many metabolites as possible. A very promis-
ing new approach to the spatial analysis of both proteins and
metabolites is to raster across thin tissue slices and ionize any com-
pound (peptides following proteolytic digestion or metabolites)
using matrix-assisted laser desorption ionization (MALDI) cou-
pled with analysis of every ionized molecule in a mass spectrometer
(Kaspar et al., 2011). This technique, although not having cellu-
lar resolution, allows the determination of tissue-type metabolite
distributions. This approach has been well developed for lipids
(Vrkoslav et al., 2010; Horn et al., 2012) since they are easily ion-
ized, while efforts are now being made to optimize this approach
for proteins/peptides (Grassl et al., 2011) and small molecules
(Jun et al., 2010; Lee et al., 2012; Peukert et al., 2012). However,
there are currently no reports in the literature on applications
of metabolomics to the spatial analysis of salinity responses in
plants. Therefore this approach provides the potential to monitor
the cell and tissue specific adaptation mechanisms in cereals and
provide novel ideas for the development of more tolerant crop
genotypes. Techniques such as laser micro-dissection (Yi et al.,
2012), fluorescence-activated cell sorting (FACS; (Borges et al.,
2012; Evrard et al., 2012) or MALDI based mass spectral imag-
ing (Kaspar et al., 2011) may pave the way for such highly spatially
resolved analyses.

IONOMICS
The high-throughput analysis of elemental compositions is called
ionomics and has been extensively used in the plant sciences
for screening mutant collections, forward and reverse genetics
approaches and investigating mechanisms of elemental or ion
uptake, transport, compartmentalisation and exclusion (Baxter,
2009). In the area of abiotic stress research, elemental profiling
provides a way to investigate a plant’s response to salinity, nutri-
ent deficiencies and toxicities or hyper-accumulation. There are
13 minerals essential to all plants, including macronutrients, such
as N and P, and micronutrients such as Na, K, B, Mn, Fe, and Ca.
Several mineral deficiencies lead to dramatic growth retardation
and possibly death, but excess amounts of some minerals can also
be toxic. In both cases, plant metabolism is dramatically affected;
plants are able to develop mechanisms in order to cope with either

deficiency or toxicity. Analysis of the elemental composition is not
only important when studying effects of high salt on a plant but
also when identifying mechanisms of adaptation and tolerance
to any osmotic stress such as drought. Some ions have hygro-
scopic properties and therefore are utilized to retain water in the
cell in order to sustain turgor pressure upon osmotic stress such
as water deficiency. There have been many reports on the effects
of the expression of ion transporters in plants; studies aimed at
determining the function of those transporters (Horie et al., 2009;
Jiang et al., 2010; Xue et al., 2011) or increasing tolerance to either
salinity or nutrient deficiencies or toxicities (Hauser and Horie,
2010; Plett and Moller, 2010; Horie et al., 2011; Mian et al., 2011).

The simultaneous analysis of the major macro-elements and
many of the microelements can be achieved using inductively
coupled plasma spectroscopy or optical emission spectroscopy
coupled with mass spectrometry (ICP-MS and OES-MS, respec-
tively). With appropriate sample preparation methods, these
techniques allow the analysis of between 12 and 20 elements and
ions simultaneously (Baxter, 2009). However, in most studies bulk
tissue (e.g., leaves or roots) is extracted for elemental analysis, thus
giving no information about spatial distribution of elemental com-
position. Emerging technologies that allow image distributions
of elemental composition of biological tissues have now become
available for plant tissue sections. Laser ablation inductively cou-
pled plasma mass spectrometry (LA-ICP-MS) is a very sensitive
and efficient technique that produces three-dimensional images
of spatial element distributions in thin biological tissue sections
(Becker, 2010). This well advanced technique for the analysis of
elemental distributions in human or animal tissue sections allows
the reconstruction of three-dimensional atlases of spatial concen-
trations of elements (Hare et al., 2012). In the plant sciences this
technique has not been utilized extensively but it is easy to envisage
using it in numerous productive applications.

EXAMPLES OF SPATIALLY RESOLVED ‘OMICS FOR IDENTIFYING
ABIOTIC STRESS TOLERANCE MECHANISMS IN CEREALS
There are very few examples of using spatially resolved func-
tional genomics technologies to identify abiotic stress tolerance
mechanisms in cereal crops. Utilizing emerging high resolution
technologies to profile changes in a defined region of the plant
could lead to novel insights into the molecular mechanisms of
abiotic stress tolerance. The Arabidopsis root has been used as a
model for understanding the mechanisms of cell-specific processes
and has been extensively reviewed by Dinneny (2010). The devel-
opment of green fluorescent protein (GFP) reporter lines enabled
the characterization of 14 different cell types in the Arabidopsis
root, revealing a complex pattern of spatial control of biological
functions (Brady et al., 2007). The advancement of these technolo-
gies and our current understanding from model systems such as
Arabidopsis can now be utilized to increase our understanding of
more complex plant systems such as the cereal crops. This will
allow development of crops with enhanced tolerance mechanisms
to environmental stresses.

The importance of using spatial resolution for ‘omics stud-
ies of abiotic stress has been shown in a study on maize roots
in response to water deficit (Yamaguchi and Sharp, 2010). The
maize primary root has been extensively studied as a model crop
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system for understanding the root growth response to water deficit.
Physiological studies demonstrated that the response to osmotic
stress is not uniform in the apical region of the root; the root
elongation rate varies spatially in the elongation zone in response
to both water deficit (Sharp et al., 1988) and salinity (Bernstein
and Kafkafi, 2002). Physiological studies were combined with
transcriptomic and proteomic profiling for spatial and temporal
profiling of the root zone (Yamaguchi and Sharp, 2010). Tran-
scriptomic analysis was conducted on four regions of the root
tip, designated as regions 1–4, defined by their differing spatial
growth response to water deficit (Spollen et al., 2008). Only 7.5%
of the differentially expressed transcripts were found to be the
same between regions 1 and 2, indicating that the transcriptional
response was dependent on the position along the root apex. A
proteomic analysis of the cell wall proteins identified an increase in
cell wall extension proteins and apoplastic reactive oxygen species
in the most apical region of the root where root elongation rate
is maintained (Zhu et al., 2007). This raises the possibility that
these compounds regulate extension properties contributing to the
maintenance of root elongation in response to water deficit. This
work has led to important advances in understanding the regula-
tion and adaptation of root growth to water deficit and highlights
the importance of studying specific regions of the root. These
studies clearly demonstrate the importance of combining physio-
logical data with functional genomic data as well as emphasizing
the importance of using spatial resolution.

Other studies integrating spatially resolved ‘omics in cereals
are limited. Using laser-capture microdissection (LCM) spatially

resolved transcriptomics was utilized to gain insight into the devel-
opment of the maize leaf (Li et al., 2010).Along the developmental
gradient, 64% of genes were differentially expressed, and 21% were
differentially expressed between the bundle sheath and mesophyll
cells. This study utilized the completed maize genome sequence
and high-throughput Illumina sequencing for spatial profiling
of the maize leave, providing novel information for understand-
ing photosynthetic development in C4 plants. This information
serves as a foundation for systems biology approaches and pro-
vides strong evidence for the importance of spatial profiling in
plant studies.

CONCLUSIONS AND FUTURE PERSPECTIVES
To increase our understanding of a plant’s response to abiotic stress
and identify the mechanisms involved in abiotic stress tolerance
it is important to study both the physiology and molecular net-
works that are involved. The use of functional genomic tools in
abiotic stress research has substantially extended our knowledge
about the basic biology and physiology of abiotic stress responses,
however, it has not yet allowed the identification of reproducible
markers that could be used to determine if, and to what extent, the
plant was under stress. By utilizing advances in both phenomics
and functional genomics technologies it is becoming possible to
identify cell and tissue specific changes in the molecular and bio-
chemical networks in response to abiotic stress. This will lead to an
increased understanding of the molecular mechanisms responsi-
ble for abiotic stress tolerance and the generation of abiotic stress
tolerant crops.
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