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The major function of vitamin D in vertebrates is maintenance of calcium homeostasis,
but vitamin D insufficiency has also been linked to an increased risk of hypertension,
autoimmune diseases, diabetes, and cancer. Therefore, there is a growing awareness
about vitamin D as a requirement for optimal health. Vitamin D3 is synthesized in the
skin by a photochemical conversion of provitamin D3, but the necessary rays are only
emitted all year round in places that lie below a 35◦ latitude. Unfortunately, very few food
sources naturally contain vitamin D and the general population as a results fail to meet
the requirements. Fish have the highest natural content of vitamin D expected to derive
from an accumulation in the food chain originating from microalgae. Microalgae contain
both vitamin D3 and provitamin D3, which suggests that vitamin D3 exist in the plant
kingdom and vitamin D3 has also been identified in several plant species as a surprise to
many. The term vitamin D also includes vitamin D2 that is produced in fungi and yeasts
by UVB-exposure of provitamin D2. Small amounts can be found in plants contaminated
with fungi and traditionally only vitamin D2 has been considered present in plants. This
review summarizes the current knowledge on sterol biosynthesis leading to provitamin D.
It also addresses the occurrence of vitamin D and its hydroxylated metabolites in higher
plants and in algae and discusses limitations and advantages of analytical methods used
in studies of vitamin D and related compounds including recent advances in analytical
technologies. Finally, perspectives for a future production of vitamin D biofortified fruits,
vegetables, and fish will be presented.
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INTRODUCTION
The main function of vitamin D is in maintenance and regulation
of calcium levels in the body and vitamin D is, therefore, critically
important for the development of a healthy skeleton. Thus, vita-
min D insufficiency increases the risk of osteoporosis, but has also
been linked to an increased risk of hypertension, autoimmune
diseases, diabetes, and cancer (Hyppönen et al., 2001; Cantorna
and Mahon, 2004; Holick, 2004; Lappe et al., 2007; Pittas et al.,
2007; Kendrick et al., 2009). As a result, there is a growing
awareness about vitamin D as a requirement for optimal health.
Vitamin D3 is synthesized in the skin by a photochemical conver-
sion of provitamin D3, but the necessary UVB rays (290–315 nm)
are only emitted all year round in places that lie below a 35◦ lat-
itude. Thereby, a dietary intake of vitamin D becomes essential,
but very few food sources naturally contain vitamin D. The conse-
quence of a low dietary intake and limited vitamin D derived from
the sun is that the general populations fail to meet their vitamin
D requirements (Brot et al., 2001; Bailey et al., 2010). Fish have
the highest natural amount of vitamin D3, which is expected to
derive from a high content of vitamin D3 in planktonic microal-
gae at the base of the food chain (Takeuchi et al., 1991; Sunita
Rao and Raghuramulu, 1996a). The occurrence of vitamin D3 in
algae suggests that vitamin D3 may exist in the plant kingdom
and vitamin D3 has also been identified in several plant species as

a surprise to many (Boland et al., 2003). The term vitamin D also
includes vitamin D2 that is produced in fungi and yeast by UVB-
exposure of provitamin D2 and small amounts can be found in
plants contaminated with fungi. Traditionally, only vitamin D2

has been considered present in plants.
Two reviews exist on vitamin D compounds in plants (Boland,

1986; Boland et al., 2003). Boland (1986) focused on plant
species with vitamin D-like activity, possible functions of vita-
min D3 in these plants and metabolism of 1,25(OH)2D3 glyco-
sides in animals. Boland et al. (2003) dealt with the detection,
presence, and tissue distribution of vitamin D3 compounds in
flowering plants, the production of vitamin D3 and derived
metabolites in plant cultures, and biological functions of vita-
min D3 in flowering plants. However, important questions still
remain, especially regarding the biosynthesis of vitamin D in
plants and the present review, therefore, summarizes current
knowledge on sterol biosynthesis leading to provitamin D. Before
discussing this subject, essential information on vitamin D syn-
thesis, metabolism, biological functions, as well as dietary sources
and recommended intake of vitamin D are described. This review
also considers the occurrence of all vitamin D active com-
pounds existing in plants and algae and discusses the advantages
and disadvantages of analytical methods applied for studying
vitamin D and related compounds including recent advances
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in analytical technologies. Finally, perspectives for the future
production of vitamin D biofortified fruits, vegetables, and fish
will be presented.

VITAMIN D
SYNTHESIS AND ACTIVATION OF VITAMIN D
Vitamin D is classified into five different classes numbered 2–6.
The two main forms of vitamin D are cholecalciferol (vitamin D3)
and ergocalciferol (vitamin D2), which differ structurally in the
side chain, where vitamin D2 has a C22–C23 double bound and
an additional methyl group at C24 (Figure 1). The vitamins are
secosteroids, i.e., steroids with a broken ring. Vitamin D2 is pro-
duced in fungi and yeast by a UVB-exposure of ergosterol (provi-
tamin D2), whereas vitamin D3 is produced by UVB-exposure
of 7-dehydrocholesterol (provitamin D3) in the skin (Figure 1).
The conversion to the previtamin D happens by an exposure to
sunlight at 290–315 nm (UVB) (Figure 1). Conversion also hap-
pens at lower wavelengths, but solar radiation below 290 nm is
prevented from reaching the earth’s surface by the ozone layer in
the stratosphere (MacLaughlin et al., 1982). High-energy pho-
tons are absorbed in the conjugated 6,7-diene in the B-ring
of ergosterol and 7-dehydrocholesterol, which results in a ring
opening at C9 and C10 to form previtamin D (Havinga, 1973).
Previtamin D is biologically inactive and thermodynamically

unstable and undergoes a transformation to vitamin D in a
temperature-dependent manner (Havinga, 1973). Previtamin D3

will by prolonged UVB-exposure be converted to the inactive
forms lumisterol and tachysterol to protect the organism from
vitamin D toxicity (Holick et al., 1981). Synthesis of vitamin D
in the skin depends on, e.g., season and latitude. The solar zenith
angle increases during the winter months and with latitude. When
the solar zenith angle is large, filtration of sunlight through the
ozone layer takes place through an increased path length, decreas-
ing the UVB photons that penetrate into the earth’s surface. As a
result, the rays necessary for the vitamin D production are only
emitted all year round in places that lie below 35◦ latitude (Holick,
2003). In the northern hemisphere this is, e.g., Northern Africa
and Los Angeles.

Vitamin D from the skin diffuses into the blood, where
it is transported by vitamin D binding protein (DPB) to the
liver, whereas vitamin D from the diet is absorbed in the
small intestine and transported to the liver via chylomicrons
and DBP. Vitamin D is biologically inactive and the activa-
tion involves two hydroxylations (Figure 1). First, vitamin D is
hydroxylated in the liver at C-25 by a 25-hydroxylase to yield
25-hydroxyvitamin D (25OHD) (Jones et al., 1998; Prosser and
Jones, 2004). The activity of 25-hydroxylase is poorly regu-
lated and dependent primarily on the concentration of vitamin

FIGURE 1 | Synthesis and activation of vitamin D. Vitamin D3 is
synthesized in the skin upon UVB exposure. The UVB exposure of provitamin
D3 (7-dehydrocholesterol) in the skin breaks the B-ring to form previtamin D3,
which undergoes thermally induced rearrangement to vitamin D3. Vitamin D3

is transported to the liver where it is hydroxylated at C-25 by the enzyme
25-hydroxylase producing 25OHD3, which is the major circulating form in
vertebrates. The 25OHD3 is hydroxylated a second time at C-1 in the kidneys
to the active metabolite 1,25(OH)2D3. Figure adapted from Jäpelt et al. (2012).
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D (Bhattacharyya and DeLuca, 1973). The circulating concen-
tration of 25OHD is the accepted biomarker for vitamin D
status, as this reflects both dietary intake and skin produc-
tion. The optimal vitamin D status has been a subject of
debate and there is no general standard (Dawson-Hughes et al.,
2005). Some studies indicate that vitamin D2 and vitamin D3

acts equally in maintaining vitamin D status (Rapuri et al.,
2004; Holick et al., 2008), while others indicate that vita-
min D2 is less effective than vitamin D3 (Trang et al., 1998;
Armas et al., 2004). After production of 25OHD in the liver,
it is transported, to the kidneys bound to DPB. In passing
through the kidneys, 25OHD is hydroxylated at the α-position
of C-1 by 1α-hydroxylase to generate 1α,25-dihydroxyvitamin
D [1,25(OH)2D] (Jones et al., 1998; Prosser and Jones, 2004).
The bioconversion of 25OHD to 1,25(OH)2D is strictly regulated
by serum calcium and serum phosphorus levels, 1,25(OH)2D
blood levels and parathyroid hormone (PTH) (Prosser and Jones,
2004).

BIOLOGICAL EFFECT OF VITAMIN D
The main function of vitamin D is in maintenance and regu-
lation of calcium and phosphorus levels in the body (DeLuca,
2004). Low blood calcium stimulates release of PTH from
the parathyroid gland. In turn, PTH stimulates 1α-hydroxylase
in the kidneys to produce 1,25(OH)2D, which then increases
serum calcium and phosphorus concentrations by acting on
three targets: increased absorption from the intestine, reab-
sorption in the kidneys and mobilization from bones (DeLuca,
2004). The active metabolite, 1,25(OH)2D, mediates its bio-
logical effect by binding to the vitamin D receptor (VDR).
The mechanisms by which 1,25(OH)2D performs its biological
effect can be divided into two: a genomic and a non-genomic
(Norman et al., 1992). The genomic mechanism is mediated by
nuclear VDRs that on binding to 1,25(OH)2D interacts with
DNA to modulate gene expression, while the non-genomic path-
way includes interactions with VDRs in the cell membrane
(Norman et al., 1992). The non-genomic pathway is usually
working very fast, i.e., within seconds and minutes, whereas
genomic responses typically take a few hours to days (Norman,
2006).

DIETARY INTAKE AND RECOMMENDED DAILY INTAKE OF VITAMIN D
Because the body produces vitamin D3, vitamin D does not
meet the classical definition of a vitamin. Generally, fish have
the highest natural amount of vitamin D3, e.g., salmon contains
30 μg/100 g and tuna 2.9 μg/100 g (Danish Food Composition
Databank, revision. 7, 2008). Other sources of vitamin D3 are
meat (∼0.6 μg/100), egg (∼1.75 μg/100) and milk products
(∼0.1 μg/100) (Danish Food Composition Databank, revision.
7, 2008). The content of vitamin D in food of animal origin
depends on what the animal has been fed (Mattila et al., 1999;
Graff et al., 2002; Jakobsen et al., 2007). The main compound
in food is vitamin D3, but the metabolites, which are part of
the metabolic pathway in vertebrates also exist (Mattila et al.,
1995a,b; Clausen et al., 2003; Jakobsen and Saxholt, 2009). The
potency of 25OHD has often been attributed to possess five times
the potency of vitamin D (Reeve et al., 1982; Cashman et al.,

2012). This value is implemented in food composition databases.
However, there is no consensus on the conversion factor that
should be used for 25OHD to calculate the vitamin D activity
mainly because of very limited human data (Jakobsen, 2007;
Cashman et al., 2012). The potency of 1,25(OH)2D has been
attributed to ten relative to vitamin D (Tanaka et al., 1973), but
this value is not implemented in food composition tables, as there
is no specific composition data available for 1,25(OH)2D. Food
sources of vitamin D2 are very limited and wild mushrooms are
one of the only significant sources of vitamin D2 (Mattila et al.,
1994, 2002; Teichmann et al., 2007). However, milk from dairy
cows contains a significant although low amount of vitamin D2,
which is expected to derive from grass and hay (Jakobsen and
Saxholt, 2009). Vitamin D fortification of selected foods has been
accepted as a strategy to improve the vitamin D status of the gen-
eral population both in the United States and in many European
countries. Milk and margarine are the primary products that are
enriched with vitamin D (Natri et al., 2006), but also orange
juice (Calvo et al., 2004), bread (Natri et al., 2006; Hohman
et al., 2011), cheese and yoghurt may be enriched (Holick, 2011).
This area is regulated differently in each country. Fortification
may either be voluntary or mandatory and the levels added vary
accordingly.

The American dietary vitamin D recommendations are
15 μg/day for the age group 1–70 years including women who are
pregnant or lactating and increases to 20 μg/day for adults older
than 70 years (Institute of Medicine, 2011). An adequate intake is
estimated to 10 μg/day for infants (Institute of Medicine, 2011).
Without sufficient vitamin D humans will develop a deficiency
disease. Growing children develop rickets because of failure in cal-
cification of cartilaginous growth plates. Osteomalacia develops
in adults during prolonged vitamin D deficiency, where the newly
formed uncalcified bone tissue gradually replaces the old bone
tissue with weakened and soft bones as a consequence. Excessive
vitamin D consumption can result in toxicity. Toxic levels are not
obtained by a usual diet, but by excessive consumption of vitamin
D supplements or over-fortification of food. Vitamin D intox-
ication is primarily due to hypercalcemia caused by increased
intestinal absorption of calcium, together with increased resorp-
tion of bones. If the vitamin D exposure is prolonged, deposition
of calcium in soft tissues particularly in arterial walls and in the
kidney occurs. An upper intake level for vitamin D has been set to
100 μg for adults and children aged 9 years and older (Institute of
Medicine, 2011).

THE DISCOVERY OF VITAMIN D IN PLANTS
In 1924 two groups independently discovered that light expo-
sure of inert food could result in antirachitic activity (could cure
rickets) (Hess and Weinstock, 1924; Steenbock and Black, 1924).
Otherwise, inert foods such as linseed oil, cottonseed oil, wheat
and lettuce were made antirachitic when exposed to light from
a mercury lamp (Hess and Weinstock, 1924, 1925). The ques-
tion at that time was: “What was the substance in vegetables and
crops that could be activated by light exposure?” Later, vitamin
D2 was identified from solutions of irradiated ergosterol (Askew
et al., 1930; Windaus, 1931). The high concentrations of ergos-
terol in fungi and as a result in plants contaminated with fungi
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led to a general perception of vitamin D2 as a plant form of
vitamin D. Vitamin D3 has on the other hand been considered
absent from plants. However, grazing animals in several parts of
the world develop calcium intoxication, similar to that caused
by vitamin D toxicity, from consuming particular plants (Mello,
2003). This is believed to be due to vitamin D3 or a metabo-
lite of vitamin D3 present in the plants that stimulate calcium
absorption producing hypercalcemia and deposition of calcium
in soft tissue including aorta, heart, kidneys, intestines, and uterus
(Mello, 2003). Most work has been made on the plant Solanum
glaucophyllum Desf. (S. glaucophyllum) that causes calcium intox-
ication of livestock in South America (Mello, 2003). Controlled
studies with various animals including rabbits (Mautalen, 1972;
Humphreys, 1973; Dallorso et al., 2008), chickens (Wasserman
et al., 1976a; Weissenberg et al., 1989) and rats (Uribe et al.,
1974; Basudde and Humphreys, 1976) demonstrated that S. glau-
cophyllum leaves or extracts caused increased absorption of cal-
cium and phosphorus similar to vitamin D. Cestrum diurnum
L. (C. diurnum) and Trisetum flavescens Beauv. (T. flavescens)
are also known to cause calcium intoxication very similar to
S. glaucophyllum (Wasserman et al., 1975; Peterlik et al., 1977;
Rambeck et al., 1979). Studies with these plants later led to the
identification of vitamin D3 and related compounds in plant
tissue.

STEROLS—PRECURSORS OF VITAMIN D
Sterols are essential for all eukaryotes. They are components of
membranes and have a function in regulation of membrane flu-
idity and permeability (Piironen et al., 2000). Sterols also play an
important role as precursors of many steroid hormones including
vitamin D and brassinosteroids as well as for a wide range of sec-
ondary metabolites such as saponins and glycoalkaloids. Sterols
are made up of four rings designated A, B, C, and D with one or
more double bonds, a long flexible side chain at C17, a hydroxyl
group attached to C3 and a variety of substituents (Figure 2).
The hydroxy group at C3 can be esterified with either a long-
chain fatty acid or a phenolic acid to give a steryl ester (Figure 3).
Steryl esters are present in all plants, most often localized in the
cytoplasm of plant cells (Benveniste, 2002), and represent a stor-
age form of sterols (Piironen et al., 2000). The 3-hydroxy group

FIGURE 2 | The core structure of sterols is a fused four ring (A,B,C, and

D ring). Various groups are added to the core structure to generate a
variety of sterols. Numbering of the carbon atoms is according to the 1989
IUPAC-IUB recommendations.

can also be linked to a carbohydrate forming a steryl glycoside
(Figure 3). Steryl glycosides usually consist of a mixture differing
in carbohydrate moiety and esterification of the sugar by a fatty
acid can give rise to an acetylated steryl glycoside (Figure 3).
Especially, plants from the Solanaceae family show a unique abun-
dance of glycosides (Moreau et al., 2002; Potocka and Zimowski,
2008).

Generally, sterols can be divided into three groups accord-
ing to the alkylations at the C24 position in the side chain:
24-desmethylsterols (without an alkyl group), 24-demethylsterols
(with one methyl group) and 24-ethylsterols (with one ethyl
group). 24-desmethylsterols are typical for animals, whereas
the 24-demethylsterols and 24-ethylsterols are typical for plants
and fungi. Animals and fungi accumulate the major end
product sterols, cholesterol (24-desmethylsterol) and ergosterol
(24-demethylsterol), whereas the plant kingdom in comparison
produces a wide range of sterols. More than 250 sterols have
been found in plants (Hartmann, 2004), but sitosterol, campes-
terol, and stigmasterol normally predominates (Lagarda et al.,
2006). Plant sterols typically have a double bond between C5
and C6 in the B ring and are called �5-sterols. Sterols with
a �5 nucleus are the most common, but �7-sterols, �5,7-sterols,
and �22-sterols also occur (Piironen et al., 2000). Plant tissues
contain an average quantity of 1–3 mg sterols per gram dry weight
(Schaller, 2004). The sterol composition of plant species is genet-
ically determined and varies considerably (Schaller, 2003). The
model plant, Arabidopsis thaliana, e.g., has a sterol composition of
64% sitosterol, 11% campesterol, 6% stigmasterol, 3% isofucos-
terol, 2% brassicasterol and 14% of other minor sterols (Schaeffer
et al., 2001). Cholesterol is the major sterol in animals, but is
also present in plants. Usually, cholesterol accounts for 1–2%
of total plant sterols, but higher levels are present in especially
Solanaceae (Whitaker, 1988, 1991; Zygadlo, 1993; Moreau et al.,
2002; Jäpelt et al., 2011b). It has been suggested that cholesterol
serves as a precursor of glycoalkaloids (Bergenstråhle et al., 1996)
and ecdysteroids (Dinan, 2001) in these plants.

VITAMIN D BIOSYNTHESIS
Vitamin D biosynthesis is taking place along the normal sterol
pathway, i.e., vitamin D2 is formed by UVB exposure of ergos-
terol and vitamin D3 by UVB exposure of 7-dehydrocholesterol.
Therefore, we need to understand how its sterol precursors are
formed in order to understand how vitamin D synthesis takes
place in plants. Sterol biosynthesis can be divided into two parts.
The first part is the mevalonic acid pathway. All isoprenoid com-
pounds, including sterols, are formed via the mevalonic acid
pathway from the common C5 isoprene building blocks isopentyl
diphosphate (IPP) and its isomer dimethylallyl diphosphate
(DMAPP) (Figure 4). One molecule DMAPP and two molecules
IPP is assembled to farnesyl pyrophosphate (FPP) (Figure 4).
Finally, two molecules FPP are combined to make squalene
(Hartmann, 2004). Cyclization of squalene is via the intermedi-
ate 2,3-oxidosqualene, that forms either lanosterol or cycloartenol
via a series of enzymatic cyclizations (Figures 4, 5). Animals and
fungi forms lanosterol catalyzed by lanosterol synthase (LAS)
and plants form cycloartenol catalyzed by cycloartenol synthase
(CAS) (Figure 5). Several reviews have covered the enzymes and
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FIGURE 3 | Basic structures of free sterol and its conjugates. The side chain R varies between various sterols. Figure Adapted from Toivo et al. (2001).

FIGURE 4 | First part of the biosynthetic pathway of sterols. Solid
arrows mean one reaction and doted arrow multiple steps. HMG-CoA,
3-hydroxymethyl-3-glutaryl coenzyme A; HMGR, HMG-CoA reductase; IPP,

Isopentyl pyrophosphate; DMAPP, Dimethylalkyl pyrophosphate; FPP,
Farnesyl pyrophosphate; SQS, squalene synthase; SQE, squalene
epoxidase.

genes involved in the sterol pathway (Benveniste, 1986, 2002,
2004; Bach and Benveniste, 1997; Schaller, 2003, 2004; Hartmann,
2004; Nes, 2011). Therefore, only the steps downstream from
2,3-oxidosqualene relevant for the biosynthesis of vitamin D2 and
vitamin D3 will be included in the present review.

STEROL BIOSYNTHESIS LEADING TO VITAMIN D3—ANIMALS
The major end product of the animal sterol pathway is choles-
terol synthesized via lanosterol (Figure 5). The conversion of

lanosterol to cholesterol requires nine different enzymes (Risley,
2002; Nes, 2011) and involves removal of three methyl groups,
reduction of double bonds and migration of a double bond in
lanosterol to a new position in cholesterol (Waterham et al.,
2001). Two intersecting routes to cholesterol have been postu-
lated (Nes, 2011). The direction of the pathway is determined
by the stage at which the double bond at C24 in the sterol side
chain is reduced (Nes, 2011). In the Kandutsch–Russell pathway,
the reduction of the C24 double bond happens as the first step
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FIGURE 5 | Cyclization of 2,3-oxidosqualene forms either lanosterol or cycloartenol via a series of enzymatic cyclizations leading to sterols in plants,

fungi and animals. CAS, cycloartenol synthase; LAS, lanosterol synthase.

(Kandutsch and Russell, 1960). The final precursor for cholesterol
in the Kandutsch–Russell pathway is 7-dehydrocholesterol and
the last step a reduction of the �7 double bond by a �5,7-sterol-
�7-reductase (7-dehydrocholesterol reductase) to give cholesterol
(Figure 6). Desmosterol is the ultimate precursor of cholesterol
in the Bloch pathway (Bloch, 1983) (Figure 6). Desmosterol is
converted to cholesterol in the final step of the pathway by a
sterol-�24-reductase. However, the sequence of reactions in the
cholesterol biosynthetic pathway may vary (Waterham et al.,
2001). Alternate routes exist because reduction of the C24–C25
double bond in the side chain by sterol �24-reductase can occur
on all intermediates between lanosterol and desmosterol in the
Bloch Pathway, giving rise to various intermediates (Bae and
Paik, 1997). These intermediates can serve as substrates in the
Kandutsch-Russell pathway as shown for 7-dehydrodesmosterol
in Figure 6.

STEROL BIOSYNTHESIS LEADING TO VITAMIN D2—FUNGI
The major sterol end product in fungi is ergosterol synthe-
sized via lanosterol (Figure 5). The yeast Saccharomyces cere-
visiae has been used as a model system for the elucidation
of the ergosterol pathway and all enzymes involved have been
identified (Lees et al., 1995). Cholesterol and ergosterol share
the pathway until zymosterol (Figure 6) (Lees et al., 1995).
However, sterols from fungi differ from animal sterols by the
presence of a methyl group at C24. The alkylation of the

side chain is catalyzed by S-adenosylmethionine sterol methyl-
transferase (ERG6) that in S. cerevisiae converts zymosterol
into fecosterol (Figure 7) (Bach and Benveniste, 1997). Plants
are not known to produce ergosterol, and any vitamin D2

present is probably derived from endophytic fungi or a fungal
infection.

STEROL BIOSYNTHESIS LEADING TO VITAMIN D3—PLANTS
The enzymes involved in 24-demethylsterol and 24-
ethylsterol synthesis have been identified in the model plant
Arabidopsis thaliana. However, the biosynthetic pathway for 24-
desmethylsterols, such as cholesterol and 7-dehydrocholesterol,
remains unknown. This is probably due to the fact that these
are minor sterols in Arabidopsis as well as in most other
plants. Experiments with biosynthetic mutants and transgenic
plants indicate that the enzymes regulating 24-demethylsterols
and 24-ethylsterols also are involved in the regulation of
24-desmethylsterols. Within this chapter a hypothetical biosyn-
thetic route to 24-desmethylsterols with cholesterol as end
product will be presented (Figure 8).

Lanosterol as an alternative precursor for sterols
Plant sterols are synthesized via cycloartenol catalyzed by CAS
(Figure 5). However, evidence exists of the presence of puta-
tive LAS genes in Arabidopsis thaliana (Kolesnikova et al., 2006;
Suzuki et al., 2006; Ohyama et al., 2009), Panax Ginseng (Suzuki
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FIGURE 6 | Simplified cholesterol biosynthesis. Lanosterol is
converted to cholesterol in a series of enzyme reactions. Dashed
arrows indicate more than one biosynthetic step. Solid arrows

indicate a biosynthetic step regulated by: (1), sterol-�24 -reductase;
(2), lathosterol 5-desaturase; (3), 7-dehydrocholesterol
reductase.

et al., 2006) and Lotus japonica (Kolesnikova et al., 2006; Sawai
et al., 2006). Consequently, lanosterol synthesized by LAS in
plants may act as an alternative intermediate for sterol synthesis.
A lanosterol pathway to plant sterols has been demonstrated in
Arabidopsis (Ohyama et al., 2009). The lanosterol pathway only
contributed to 1.5% of the sitosterol biosynthesis, but this was
increased to 4.5% by LAS overexpression (Ohyama et al., 2009).
Thus, sterols in plants may be synthesized by two biosynthetic
routes, via cycloartenol and/or via lanosterol. As a result choles-
terol and 7-dehydrocholesterol may be formed in plants through
lanosterol as is known from animals (Figure 6). In future experi-
ments, it has to be confirmed if plants producing high amounts
of these sterols such as Solanaceae, have a more efficient LAS
enzyme.

S-adenosylmethionine sterol methyltransferases (SMTs)
Sterols from plants differ from animal sterols by the presence of
a methyl or an ethyl group at C24. S-adenosylmethionine sterol
methyltransferases (SMTs) catalyze the transfer of two carbon
atoms from S-adenosyl methionine to make the 24-alkylations
and are considered important regulatory steps in the biosynthesis

of sterols in plants (Schaller, 2003). The alkyl substituent at C24
is the product of either one single carbon addition or two sin-
gle carbon additions. The two methyl additions are performed
as distinct steps in the pathway and two classes of SMTs exist:
SMT1 and SMT2 (Figure 8). SMT1 preferably catalyze the first
methylation of cycloartenol to give 24-methylenecycloartenol
(Hartmann, 2004) (Figure 8). The ratio of cholesterol and the
major plant sterols sitosterol, stigmasterol and campesterol has
been shown to be controlled by the activity of SMT1 (Hartmann,
2004). In Arabidopsis thaliana plants, bearing a SMT1 knock-
out, cholesterol was the major sterol, composing 26% of total
sterols, compared with 6% in wild-type plants (Diener et al.,
2000). The smt1 mutant displayed poor growth and fertility, root
sensitivity to Ca2+ and loss of proper embryo morphogenesis
(Diener et al., 2000). SMT1 overexpressing tobacco plants do
in contrast have a reduced content of cholesterol and no visual
phenotype (Schaeffer et al., 2000; Sitbon and Jonsson, 2001;
Holmberg et al., 2002). Similar results have been observed in
transgenic potato (Solanum tuberosum cv Désirée) overexpress-
ing SMT1 (Arnqvist et al., 2003). These results indicate that the
production of high amounts of cholesterol in plants results from
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FIGURE 7 | The last five steps of the ergosterol biosynthetic pathway in Saccharomyces cerevis. ERG6, S-adenosylmethionine sterol methyltransferase;
ERG2, C8-C7 sterol isomerase; ERG3, �5-desaturase; ERG5, �22-desaturase; ERG4, �24-reductase. Figure adapted from Lees et al. (1995).

a by-pass of SMT1. Thus, manipulation of SMT1 might be a
tool to increase the 7-dehydrocholesterol and cholesterol content
in plants.

Proposed steps of the 24-desmethylsterol biosynthesis
Several enzymes involved in the sterol biosynthesis can be
found across plants and animals, e.g., �5,7-sterol-�7-reductase
called DWARF5 in plants and 7-dehydrocholesterol reductase in
animals. Several of these enzymes do not have absolute sub-
strate specificity (Benveniste, 1986). The possibility, therefore,
exist that plant biosynthetic enzymes could be involved in 24-
desmethyl sterol biosynthesis. Application of cycloartanol to
growing tobacco plants generates cholesterol (Devys et al., 1969)
and we hypothesize that the reduction of the �24 double bond
of cycloartenol to yield cycloartanol is the first step of cholesterol
synthesis in plants (Figure 8). In Arabidopsis, the �24-reduction
step is catalyzed by �5-sterol-�24-reductase (DIM/DWARF1)
(Klahre et al., 1998). Interestingly, the Arabidopsis dim mutant
(Klahre et al., 1998) and also the rice dim mutant has decreased
levels of cholesterol compared to the wild type (Hong et al.,
2005). These results indicate a role of DIM/DWARF1 in choles-
terol biosynthesis. Production of 7-dehydrocholesterol in animals
involves a �7-sterol-C-5-desaturase (lathosterol 5-desaturase)
that introduces a double bond at C5 (Figure 6). A simi-
lar �7-sterol-C-5-desaturase (DWARF7/STE1) exists in plants,
which converts episterol/avanesterol into 5-dehydroepisterol/5-
dehydroavanesterol by a removal of two protons (Figure 8). An
Arabidopsis mutant (ste1/dwarf7) defective in the �7-sterol-
C-5-desaturase has been identified, which only produces lim-
iting amounts of �5,7-sterols (Gachotte et al., 1995, 2002;
Choe et al., 1999; Husselstein et al., 1999). It can be hypoth-
esized that a ste1/dwarf7 mutant would be defective in con-
verting cholesta-7-enol to 7-dehydrocholesterol and further to

cholesterol (Figure 8). However, no significant decrease in choles-
terol levels was observed in ste1 mutants (Gachotte et al., 1995;
Husselstein et al., 1999). The enzymatic step after C5 reduc-
tion is mediated by a �5,7-sterol-�7-reductase called DWARF5
in plants (Figure 8) and 7-dehydrocholesterol reductase in ani-
mals (Figure 6). DWARF5 e.g., catalyze the reduction of the
�7 double bond in 5-dehydroepisterol to give the �5 sterol
24-methylenecholesterol (Choe et al., 2000). We propose that
DWARF5 also act on 7-dehydrocholesterol to form cholesterol in
plants (Figure 8). An Arabidopsis dwarf5 mutant accumulating
�5,7-sterols has been identified (Choe et al., 2000). The DWARF5
mutant display a characteristic dwarf phenotype, which includes
short robust stems, reduced fertility, prolonged life cycle and
dark-green curled leaves when grown in light (Choe et al.,
1999). The special dwarf phenotype is explained by a defi-
ciency in brassinosteroids, which are important growth hor-
mones for plants (Klahre et al., 1998; Choe et al., 1999, 2000;
Hong et al., 2005). It is possible that vitamin D3 producing
plants have a less efficient DWARF5 enzyme that allows for
accumulation of 7-dehydrocholesterol and later vitamin D3 by
photoconversion.

OCCURRENCE OF VITAMIN D3 AND ITS METABOLITES IN
PLANTS
PROVITAMIN D3 AND VITAMIN D3

Vitamin D3 and its provitamin 7-dehydrocholesterol have been
identified in the leaves of several plant species mostly belong-
ing to Solanaceae (Esparza et al., 1982; Prema and Raghuramulu,
1994, 1996; Aburjai et al., 1998; Curino et al., 1998; Skliar et al.,
2000) (Table 1). Huge variations exist in the content of vitamin
D3 and 7-dehydrocholesterol (Table 1). Some studies used plant
cell cultures instead of whole plants (Aburjai et al., 1996; Curino
et al., 1998, 2001; Skliar et al., 2000), which may explain some
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FIGURE 8 | The figure represents the biosynthetic pathways to sterols

downstream from cycloartenol. Hypothetical pathway for
24-desmethylsterols (left) marked with dashed box. Simplified biosynthetic
pathways for 24-demethylsterols (middle) and 24-ethylsterols (right).

Dashed arrows indicate more than one biosynthetic step. Solid arrows
indicate a biosynthetic step regulated by: (A) SMT1, (B) SMT2,
(C) DIM/DWARF1, (D) DWARF7/STE1, (E) C4-demethylase and (F)

DWARF5.
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Table 1 | Content of vitamin D3 and provitamin D3 (µg/g) in various plants determined with chemical methods.

Species Reference no. Vitamin D3 Provitamin D3 Method

Solanum lycopersicum 1 0.28 μg/g dry wt. 0.61–0.76 μg/g dry wt. Not stated

2 0.09 μg/g dry wt. 0.23–0.47 μg/g dry wt. LC-APCI-MS/MS

3 1.1 μg/g fresh wt. n.a HPLC-UV and identification by H
NMR and MS

4 0.8 μg/g dry wt. n.a. HPLC-UV

5 0.1 μg/g dry wt. (+UVB)
0.002 μg/g dry wt. (−UVB)

LC-ESI-MS/MS with derivatization

Solanum tuberosum 3 0.15 μg/g fresh wt. n.a HPLC-UV and identification by H
NMR and MS

Cucurbita pepo 3 0.23 μg/g fresh wt. n.a. HPLC-UV and identification by H
NMR and MS

Solanum glaucophyllum 2 0.21 μg/g dry wt. 0.67–1.26 μg/g dry wt. LC-APCI-MS/MS

5 0.1–0.2 μg/g dry wt. (+UVB)
0.0032-0.0055μg/g dry wt. (−UVB)

n.a. LC-ESI-MS/MS with derivatization

6 2.2–42.1μg/g fresh wt. 5–58μg/g fresh wt. HPLC-UV and identification by H
NMR and MS

7,8 ID ID HPLC-UV and identification by MS

Nicotiana glauca 9 ID ID HPLC-UV and identification by MS

Cestrum diurnum 10 0.1 μg/g dry wt. n.a. HPLC-UV

Medicago sativa 11 0.00062-0.001 μg/g dry wt. n.a. HPLC-UV with identification by MS

Trisetum flavescens 12 0.1 μg/g dry wt. n.a. GC-MS

Capsicum annuum 2
5

<LOD
0.0029–0.0063μg/g dry wt (+UVB)

0.03 μg/g
n.a.

LC-APCI-MS/MS
LC-ESI-MS/MS with derivatization

n.a., not analysed; ID, identified not quantified; <LOD, below detection limit.

1, (Björn and Wang, 2001); 2, (Jäpelt et al., 2011b); 3, (Aburjai et al., 1998); 4, (Prema and Raghuramulu, 1996); 5, (Jäpelt et al., 2012); 6, (Aburjai et al., 1996); 7, (Curino

et al., 2001); 8, (Curino et al., 1998); 9, (Skliar et al., 2000); 10, (Prema and Raghuramulu, 1994); 11, (Horst et al., 1984); 12, (Rambeck et al., 1979).

of the variability between studies. Growth conditions are eas-
ily controlled when using plant cells, but discrepancies between
in vitro and in vivo can be seen due to transformations occur-
ring in the culture medium (Curino et al., 2001). Differences
in growth conditions, e.g., the intensity of the light source and
length of exposure will have a significant impact on the vita-
min D3 content, but unfortunately growth conditions are poorly
described in most studies (Prema and Raghuramulu, 1994, 1996;
Aburjai et al., 1998). However, vitamin D3 has been studied
in S. lycopersicum grown in greenhouse with or without UVB
exposure (Björn and Wang, 2001) and in S. lycopersicum, S.
glaucophyllum and C. annuum using growth chambers, an UVB
lamp and controlled temperature and light/day settings (Jäpelt
et al., 2011b, 2012). Vitamin D3 has in most studies been iden-
tified after UVB exposure (Zucker et al., 1980; Aburjai et al.,
1996; Björn and Wang, 2001; Jäpelt et al., 2011b), but vita-
min D3 synthesis without the action of UVB has also been
reported (Curino et al., 1998; Jäpelt et al., 2012). Recently, we
compared vitamin D3 in UVB- and non-UVB-exposed plants

using a sensitive liquid chromatography electrospray ionization
tandem mass spectrometry (LC-ESI-MS/MS) method. The con-
tent of vitamin D3 in the UVB-exposed plants was 18–64 times
higher than for the non-UVB-exposed plants (Jäpelt et al., 2012).
Previously failure to detect vitamin D3 in non-UVB-exposed
plants could be due to the use of relative insensitive analytical
methods. Since the isomerization of previtamin D3 to vitamin
D3 is a temperature-dependent reaction an effect of growth
temperature could be expected. Therefore, the effect of ele-
vated temperature and a combination of elevated temperature
and UVB light were investigated in S. lycopersicum, S. glauco-
phyllum and C. annuum (Jäpelt et al., 2012). Plants were kept
in a growth chambers for 7 days at 32◦C either exposed to
UVB light or not, but no consistent effect was seen. In S. glau-
cophyllum the value for elevated temperatures combined with
UVB was half the value for UVB alone, whereas in S. lycoper-
sicum and C. annuum a small increase for elevated temperatures
combined with UVB compared to UVB alone was observed
(Jäpelt et al., 2012).

Frontiers in Plant Science | Plant Physiology May 2013 | Volume 4 | Article 136 | 10

http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology/archive


Jäpelt and Jakobsen Vitamin D in plants

HYDROXYLATED METABOLITES OF VITAMIN D3

Hydroxylated metabolites of vitamin D3 have been found in var-
ious plants (Table 2). The highest content of 1,25(OH)2D3 has
been found in S. glaucophyllum and not only in the leaves, but
also in fruits, stems and roots (Weissenberg et al., 1989; Curino
et al., 2001). The level of 1,25(OH)2D3 found in cell cultures
varied according to the origin of the culture, i.e., stem > leaf >

fruit (Curino et al., 2001). However, vitamin D like activity
could not been found in tomatoes (Prema and Raghuramulu,
1996). Earlier work using cell cultures indicates that the pro-
duction of hydroxylated metabolites is influenced by the calcium
concentration (Aburjai et al., 1997; Curino et al., 2001; Burlini
et al., 2002). The level of 25OHD3 (Aburjai et al., 1997) and
1,25(OH)2D3 (Burlini et al., 2002) in S. glaucophyllum cell sus-
pensions increased markedly when incubated in a Ca2+ free
media compared to if Ca2+ was present. However, another
study performed with S. glaucophyllum cells showed that media
deprived from calcium contained low levels of 1,25(OH)2D3

(Curino et al., 2001).
The biosynthesis of 1,25(OH)2D3 is finely regulated in ver-

tebrates and the question is if this also is the case in plants.
The 25OHD3/1,25(OH)2D3 ratio has either been reported to
be >1 (Prema and Raghuramulu, 1994, 1996), ∼1 (Jäpelt
et al., 2012) or <1 (Aburjai et al., 1996). This indicates that
the conversion of 25OHD3 to 1,25(OH)2D3 not is as tightly
regulated as in vertebrates. Enzymatic activities involved in

formation of 25OHD3 and 1,25(OH)2D3 have been identified in
S. glaucophyllum (Esparza et al., 1982). Vitamin D 25-hydroxylase
activity has been localized in the microsomes, whereas the 1α-
hydroxylase activity has been localized in mitochondria and
microsomes (Esparza et al., 1982). However, no enzymes have
been isolated from plants showing vitamin D 25-hydroxylase or
1α-hydroxylase catalytic activity. For the biological role of vita-
min D3 and its hydroxylated metabolites in plant physiology is
referred to Boland et al. (2003).

VITAMIN D3 CONJUGATES
Several studies of S. glaucophyllum identified 1,25(OH)2D3 after
enzymatic hydrolysis with glycosidases (Haussler et al., 1976;
Wasserman et al., 1976b; Hughes et al., 1977; Napoli et al., 1977;
Esparza et al., 1982; Jäpelt et al., 2012) and also in C. diurnum
(Hughes et al., 1977). Similarly, vitamin D3 and 25OHD3 were
identified in S. glaucophyllum after incubation with glycosidases
(Esparza et al., 1982). Ruminal fluids contain glycosidases and
research show that aqueous extracts of S. glaucophyllum leaves
incubated with bovine ruminal fluid (de Boland et al., 1978) and
ovine ruminal fluid (Esparza et al., 1983) exhibit more vitamin
D activity than extracts not incubated. Later vitamin D3 and its
metabolites were identified in S. glaucophyllum extracts incubated
with ovine ruminal fluid (Skliar et al., 1992). These studies indi-
cate that vitamin D3 and its metabolites exist as glycosides in
plants. However, the existence of glycosides is debated and other

Table 2 | Content of the hydroxylated metabolites of vitamin D3 in various plants determined by immunoassays or chemical methods.

Species Reference 25OHD3 Method 1,25(OH)2D3 Method

no.

Solanum
lycopersicum

1
2

3

0.15 μg/g fresh wt.
0.022 μg/g dry wt.

0.004 μg/g dry wt

HPLC-UV and MS identification
HPLC-UV and biological activity

LC-ESI-MS/MS with derivatization

<LOD
0.10 μg/g dry wt.

<LOD

HPLC-UV
HPLC-UV and biological
activity

LC-ESI-MS/MS with
derivatization

Solanum
glaucophyllum

3

4

5

0.011–0.031 μg/g dry wt

ID

1.0 μg/g fresh wt.

LC-ESI-MS/MS with derivatization

HPLC-UV and MS identification

HPLC-UV and MS and HNMR
identification

0.012–0.032 μg/g dry wt

ID

0.1 μg/g fresh wt.

LC-ESI-MS/MS with
derivatization

Radioreceptor assay, HPLC-
UV and MS identification

HPLC-UV and MS and
HNMR identification

Capsicum
annuum

3 0.0004–0.0005 μg/g dry
wt

LC-ESI-MS/MS with derivatization <LOD LC-ESI-MS/MS with
derivatization

Cestrum
diurnum

6 0.102 μg/g dry wt. HPLC-UV and biological activity 1 μg/g dry wt. HPLC-UV and biological
activity

Nicotiana
glauca

7 ID HPLC-UV with MS identification 0.3–1 μg/g fresh wt. Radioreceptor assay, HPLC-
UV and MS identification

ID, identified not quantified; <LOD, below detection limit.

1, (Aburjai et al., 1998); 2, (Prema and Raghuramulu, 1996); 3, (Jäpelt et al., 2012); 4, (Curino et al., 1998); 5, (Aburjai et al., 1996); 6, (Prema and Raghuramulu, 1994);

7, (Skliar et al., 2000).
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studies only quantified the free forms (Prema and Raghuramulu,
1994, 1996; Aburjai et al., 1996, 1997, 1998). It has been proposed
that the glycoside content depends on the collection, drying and
storage of the plant material, which may explain some differences
between studies (Peterlik et al., 1977; Prema and Raghuramulu,
1994).

The site of glycosylation, the type of bond and the identity of
the sugar unit have not been completely determined. The number
of sugar units seems to differ as the vitamin D active glyco-
sides of S. glaucophyllum and T. flavescens are soluble in water
(Humphreys, 1973; Uribe et al., 1974; Wasserman et al., 1976b;
Napoli et al., 1977; Morris and Levack, 1982), whereas the gly-
coside of C. diurnum are soluble in a mixture of chloroform and
methanol (Wasserman et al., 1976a). Vidal et al. (1985) isolated
the 1,25(OH)2D3 glycoside from S. glaucophyllum and found that
1,25(OH)2D3 was bound to a series of fructoglucosides of variable
molecular weights.

The formation of glycosides may cause dramatic changes in the
chemical, nutritional and metabolic properties (Gregory, 1998).
Rambeck et al. (1984) studied the biological activity of 1α(OH)D3

3-β-cellobioside, 1α(OH)D3 3-β-glucoside and vitamin D3 3-β-
glucoside and the corresponding parent molecules in bioassays
using rats, chickens and quails. Glucosidation did not reduce
the activity of the parent vitamin D (Rambeck et al., 1984). In
constrast the β-D-glucoside of 1α(OH)D3 exhibited only 10%
activity compared to 1α(OH)2D3 in all bioassays and the disac-
charide (1α(OH)vitamin D3 3-β-cellobioside) showed no vitamin
D activity in the chicken bioassay (Rambeck et al., 1984). No
study on glycosylated forms of 25OHD3 or 1,25(OH)2D3 has
been performed. The existence of esters of vitamin D and the
hydroxylated metabolites in plant material seems likely, but has
not been shown.

VITAMIN D2 IN PLANT MATERIAL
Ergosterol is a cell membrane component of fungi, but is also
the provitamin of vitamin D2. Thus, vitamin D2 can be found in
plants contaminated with fungi. Conversion to vitamin D2 occurs
by sun-exposure of the plant material during growth and in the
curing process. The antirachitic activity of grass and hay was
studied intensively 50–80 years back using rat assays (Steenbock
et al., 1925; Russell, 1929; Wallis, 1938, 1939; Moore et al., 1948;
Newlander, 1948; Thomas and Moore, 1951; Newlander and
Riddell, 1952; Thomas, 1952; Keener, 1954; Henry et al., 1958;
Wallis et al., 1958). Most of these studies were on alfalfa (Medicago
sativa L.) and the activities ranged from 0–3800 IU/kg, equiva-
lent to 0–95 μg vitamin D/kg. However, some studies were on
hay and others on fresh grass and dry matter was not stated
in all cases, which makes comparisons difficult. The assump-
tion at that time was that the antirachitic activity was due to
vitamin D2 produced from ergosterol (Newlander and Riddell,
1952). Later vitamin D2 was identified in crops using chemical
methods (Horst et al., 1984; Jäpelt et al., 2011a). Horst et al.
(1984) analyzed sun-cured field grown alfalfa using high per-
formance liquid chromatography (HPLC) with UV detection
and found 48 μg vitamin D2/kg. Jäpelt et al. (2011a) studied
ergosterol and vitamin D2 in six varieties of perennial ryegrass
(Lolium perenne L.) harvested four times during the season. The

content of vitamin D2 and ergosterol was analyzed by LC atmo-
spheric pressure chemical ionization tandem mass spectrometry
(LC-APCI-MS/MS). An average content of vitamin D2 of 2 μg/kg
fresh weight (0.07–6.4 μg/kg fresh weight) was found (Jäpelt
et al., 2011a). The vitamin D2 content was maximum 2� of
the ergosterol content (Jäpelt et al., 2011a). The vitamin D2

content in these two studies is almost similar if we take into
account the difference in dry matter between hay and fresh grass.
Compared to results obtained by rat assays, the latter is slightly
higher, which could be due the contribution of other vitamin
D metabolites, or to a natural decline during the last 50–80
years.

The content of vitamin D2 in the plant material has been
shown to increase with the level of sun exposure, and for crops
also curing method (Hess and Weinstock, 1924; Steenbock et al.,
1925; Russell, 1929; Newlander and Riddell, 1952). However,
inconsistent results were obtained regarding the importance of
sun exposure, which indicates that other factors may be impor-
tant (Moore et al., 1948; Newlander, 1948; Henry et al., 1958;
Wallis et al., 1958). Several studies observed that plants at later
stage of maturity were higher in vitamin D than at early stage
(Thomas and Moore, 1951; Keener, 1954; Henry et al., 1958).
Especially, dead leaves were high in vitamin D and the propor-
tion of dead leaves was observed to increase with maturity of
the plant (Thomas and Moore, 1951). Newell et al. (1996) mea-
sured the ergosterol content in grass and found that it increased
with time and with increasing fungal damage. Consequently,
larger vitamin D activities are observed with time if the plant is
exposed to sunlight. Recently, a systematic study looking at vita-
min D2 and ergosterol in perennial ryegrass during the season
was performed (Jäpelt et al., 2011a). The content of both ergos-
terol and vitamin D2 changed more than a factor of 10 during
the season (Jäpelt et al., 2011a). Weather factors were recorded
and a principal component analysis (PCA) was performed to
study, which factors that were important for the formation of
vitamin D2. The PCA revealed that both sun/temperature and
ergosterol/precipitation was important. This suggested that a
combination of weather factors was involved as observed previ-
ously (Moore et al., 1948; Newlander, 1948; Henry et al., 1958;
Wallis et al., 1958). Precipitation and high humidity are essential
for ergosterol synthesis, whereas sunlight is necessary for vitamin
D2 synthesis (Jäpelt et al., 2011a).

VITAMIN D IN ALGAE
Fish are known to be rich sources of vitamin D3, but the
origin of vitamin D3 in fish has not been clarified. Both a
non-photochemical pathway and a photochemical pathway for
vitamin D3 synthesis in fish are doubted (Mattila et al., 1997).
The latter due to limited UVB-light in their natural habitats com-
bined with low amounts of 7-dehydrocholesterol in fish skin
(Bills, 1927; Sugisaki et al., 1974; Takeuchi et al., 1991; Sunita
Rao and Raghuramulu, 1996b; Rao and Raghuramulu, 1997).
Evidence, on the other hand, exist that microalgae as the basis
of the food chain is the origin of the high content of vitamin
D3 in fish (Takeuchi et al., 1991; Sunita Rao and Raghuramulu,
1996a). However, data for vitamin D in algae are limited and
not consistent (De Roeck-Holtzhauer et al., 1991; Takeuchi et al.,
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1991; Sunita Rao and Raghuramulu, 1996a; Brown et al., 1999).
Takeuchi et al. (1991) found significant amounts of vitamin
D2 (1.9–4.3 μg/100 g), vitamin D3 (5.0–15 μg/100 g) and their
provitamins (260–1450 μg/100 g) in microalgae. Sunita Rao and
Raghuramulu (1996a) also reported high concentrations of ergos-
terol (390 μg/100 g), 7-dehydrocholesterol (2400 μg/100 g), vita-
min D2 (5.3 μg/100 g) and vitamin D3 (80 μg/100 g) in freshwater
microalgae. The content of vitamin D2 and vitamin D3 in four
Australian microalgae studied by Brown et al. (1999) were in
all cases below the detection limit (35 μg/100 g) of the method
used. De Roeck-Holtzhauer et al. (1991) studied vitamin D2 in
several algae including the macroalgae Sargassum multicum and
found very high amounts (90–3900 μg/100 g). No studies on vita-
min D3 in macroalage have been performed. Both vitamin D2

and vitamin D3 are available for fish in their diet, but vitamin
D2 is almost absent in fish (Lock et al., 2010). This suggests
that the bioavailability of vitamin D2 is lower than for vitamin
D3 (Andrews et al., 1980; Barnett et al., 1982; Takeuchi et al.,
1991).

Microalgae usually live at the surface of the water and vita-
min D is probably synthesized by sun exposure of provitamins
D (Takeuchi et al., 1991). Takeuchi et al. (1991) observed that
microalgae caught in August were higher in vitamin D than
in October and December, which supports that vitamin D is
synthesized from sun exposure of provitamin D. To synthesize
vitamin D3 by UVB exposure, microalgae should be able to
synthesize 7-dehydrocholesterol if using the same pathway as
vertebrates. However, the sterols found in microalgae display
a great diversity as may be expected from the large number
of classes and species combined with a long evolutionary his-
tory (Volkman, 2003). Red algae (Rhodophyta) primarily contain
cholesterol, although several species contain large amounts of
desmosterol. Fucosterol is the dominant sterol of brown algae
(Phaeophyta) (Patterson, 1971). Generalizations about the sterols
in most other algae, e.g., diatoms (Bacillariophyta) and green
algae (Chlorophyta) cannot be made as they are much more
varied (Patterson, 1971). The most common sterol in diatoms
are 24-methylcholesta-5,24(28)-dien-3β-ol, but cholesterol and
sitosterol are also common (Rampen et al., 2010). The green
algae are very variable, they contain significantly amounts of 24-
ethyl sterols (Volkman, 2003), but also cholesterol and ergosterol
(Patterson, 1974). Microalgae are an extremely diverse group, as
also seen from the large variability in the sterol content. It is,
therefore, difficult to make any conclusions about algae’s pro-
duction of vitamin D2 and vitamin D3. Species differences and
geographic differences may be expected.

ANALYTICAL METHODS TO STUDY THE VITAMIN D FORMS
IN PLANTS
Research into vitamin D in plants is limited, presumably due to
limitations in selectivity and sensitivity of the analytical methods
available. Determination of vitamin D in food has always been
a challenge due to low amounts of vitamin D combined with
the existence of multiple vitamin D active compounds. Plants are
a complex matrix, which makes the analysis of vitamin D even
more challenging. Selective and sensitive methods are, therefore,
a prerequisite. Each step in the analytical methods used in the

research of vitamin D in plants will be discussed in the following
chapter.

BIOLOGICAL METHODS FOR VITAMIN D
The official method for vitamin D was for many years the line
test using animals. Either a rat or a chicken was put on a vitamin
D deficient diet until the animal developed rickets. Afterwards,
they were fed plants or plant extracts and it was estimated to
which extent the rickets were cured (Wallis, 1938, 1939; Moore
et al., 1948; Thomas and Moore, 1951; Thomas, 1952; Keener,
1954; Henry et al., 1958; Wallis et al., 1958). This method is
time-consuming as it takes 5 weeks, and precision and accuracy
may be discussed. However, an advantage of this method may
be that the amount of quantified vitamin D corresponds to the
total vitamin D activity independent of the specific metabolites
and their difference in activity. The interest in the 1,25(OH)2D
metabolite initiated the use of more specific methods utilizing
that a high strontium intake by chickens block the conversion of
25OHD to 1,25(OH)2D by suppressing 1α-hydroxylase activity
(Wasserman, 1974; Weissenberg et al., 1989). This means that the
inhibitory effect of strontium can be overcome by the administra-
tion of 1,25(OH)2D, but not by 25OHD and vitamin D. Studies
of calcium absorption in nephrectomized rats that possess a sup-
pressed 1α-hydroxylase activity (Walling and Kimberg, 1975) and
assays with organ-culture systems such as cultured duodenum
have also been used to study 1,25(OH)2D specifically in plants
(Corradino and Wasserman, 1974). However, the biological activ-
ity measured in these methods could be due to other compounds
that interfere with vitamin D metabolism, calcium absorption or
to other compounds present, e.g., calcium and phosphorus that
increase or inhibit the activity of vitamin D. More specific meth-
ods are, therefore, needed to study vitamin D and its metabolites
in details.

CHEMICAL METHODS FOR VITAMIN D—SAMPLE PREPARATION
Proper sample preparation is crucial for reliable analysis and
should optimally release all vitamin D active compounds.
Glycosylation and acetylation is general metabolic processes
that occur in plants and vitamin D and related compounds
are expected to be found as glycosides, esters and acetylated
glycosides (Figure 3). Saponification followed by liquid-liquid
extraction is typically used to liberate esters, where cold saponifi-
cation is preferred over hot saponification due to reversible and
temperature-dependent equilibration between vitamin D and
pre-vitamin D (Buisman et al., 1968; Hanewald et al., 1968).
However, saponification fails to hydrolyze the bond between vita-
min D and the carbohydrate moiety in the glycosides. Both
direct and indirect analysis (with or without hydrolysis) can
be used for glycosides (Van Hoed et al., 2008). Direct analysis
is fast, as a sample preparation step is omitted, but compli-
cated as the needed conjugated standards is non-available. For
indirect analyses, acid hydrolysis has been used to release gly-
cosidic forms (Toivo et al., 2001; Liu et al., 2007; Nyström
et al., 2007). Acid hydrolysis is typical performed under rela-
tively harsh conditions, e.g., 60 min at 80◦C with 6 M ethanolic
hydrochloric acid solution (Kamal-Eldin et al., 1998; Toivo et al.,
2001; Nyström et al., 2007). This is not optimal due to risk
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of isomerization of certain sterols (Kamal-Eldin et al., 1998)
including 5,7-dienes as 7-dehydrocholesterol (Dolle et al., 1988)
as well as vitamin D3 (Jin et al., 2004). An alternative to acid
hydrolysis is the gentler enzymatic hydrolysis. Kesselmeier et al.
(1985) used β-glucosidase in the hydrolysis of steryl glycosides
in oat leaves and seeds, but other researchers have not been
successful in repeating these results (Moreau and Hicks, 2004;
Nyström et al., 2008). A hypothesis is that the observation by
Kesselmeier et al. (1985) may be due to impurities of minor
enzymes rather than the actual β-glucosidase, whereas similar
secondary activities not are present in modern highly purified
enzyme preparations (Moreau and Hicks, 2004; Nyström et al.,
2008).

The extraction of liberated vitamin D compounds from the
non-saponifiable matter is usually performed by liquid/liquid
extraction using non-polar organic solvents (CEN, 2008). Further
clean-up of the extracts is usually needed to remove interfer-
ing compounds and to avoid contamination of the analytical
column by other co-extracted substances, e.g. chlorophyll and
other lipophilic pigments (Jäpelt et al., 2011b). Combinations
of column chromatography or/and preparative HPLC have been
used for purification of plant extracts before vitamin D analysis
(Rambeck et al., 1979; Esparza et al., 1982; Morris and Levack,
1982; Prema and Raghuramulu, 1994; Curino et al., 1998, 2001;
Skliar et al., 2000). However, fractionation by column chromatog-
raphy is time-consuming and not suitable for routine analysis and
has recently been replaced by solid phase extraction (SPE) (Jäpelt
et al., 2011a,b).

If total vitamin D activity is required, the sum of vitamin D
and any other metabolites that may have vitamin D activity must
be quantified. The hydroxylated metabolites have higher polarity
than vitamin D, but despite the difference in polarity are vita-
min D and 25OHD extracted in the same run (Mattila et al.,
1995a; Jakobsen et al., 2004). Only few studies have included
quantification of 1,25(OH)2D in food (Kunz et al., 1984; Takeuchi
et al., 1988; Montgomery et al., 2000). These studies omitted
the saponification step, which seems to question whether conju-
gated forms of 1,25(OH)2D will be quantified. Our recent study,
included saponification in the analysis of 1,25(OH)2D in plant
material, but poor extraction efficiency from the non-saponifiable
matter was observed, which increased the detection limit (Jäpelt
et al., 2012). Therefore, optimization of the extraction procedure
is needed.

QUANTIFICATION OF VITAMIN D FORMS
An internal standard is essential for quantification of vitamin D
due to reversible isomerization with the corresponding previta-
min D (Schlatmann et al., 1964). An internal standard is also
needed to eliminate analytical errors due to losses of vitamin D
during sample preparation and to compensate for signal vari-
ation if using mass spectrometry (MS) detection (Dimartino,
2007). Vitamin D2 and vitamin D3 are chemically very simi-
lar and vitamin D2 has been used as internal standard when
determining vitamin D3 and vice versa. However, this is not the
best approach when vitamin D2 and vitamin D3 occur simul-
taneously as could be the case in plants (Horst et al., 1984).
For quantification by MS isotopic labeled compounds are ideal

internal standards, because of the complete resemblance with the
analyte.

SEPARATION AND DETECTION PRINCIPLES FOR VITAMIN D AND ITS
STEROL PRECURSORS
Gas chromatography flame ionization detection (GC-FID) and gas
chromatography mass spectrometry (GC-MS)
Sterols act as precursors of vitamin D so sterol analysis is essential
to investigate the biosynthesis of vitamin D in plants. Sterols are
typically measured by gas chromatography (GC) as trimethylsilyl
(TMS) ether derivates (Piironen et al., 2000), which are detected
either by flame ionization detection (FID) (Phillips et al., 2005;
Brufau et al., 2006; Liu et al., 2007) or MS (Toivo et al., 2001;
Nyström et al., 2007). GC was also the first chromatography prin-
ciple used to replace the biological assay for analysis of vitamin
D (Bell and Christie, 1973), but while GC is a good separation
method for sterols it is not the best choice for vitamin D. Vitamin
D undergoes thermal cyclization in a GC split/splitless injector
(>125◦C) resulting in formation of the corresponding pyro and
isopyro compounds with a concomitant decrease in sensitivity
(Yeung and Vouros, 1995). However, early studies did use GC
for identification of vitamin D3 in plants (Rambeck et al., 1979;
Suardi et al., 1994).

High performance liquid chromatography with UV detection
(HPLC-UV)
HPLC with UV detection (265 nm) is used in official methods
for vitamin D in food (Staffas and Nyman, 2003; CEN, 2008)
and has also been used in recent studies on vitamin D in plants
(Prema and Raghuramulu, 1994, 1996; Aburjai et al., 1996, 1997,
1998; Curino et al., 1998, 2001). Nevertheless, these methods
are laborious as high degree of purification of the extracts is
needed. Analysis of vitamin D in complex matrices such as plants
is especially challenging due to co-eluting interferences.

GC is generally considered superior to HPLC for sterol analysis
(Lagarda et al., 2006), but introduction of columns with parti-
cle sizes of 1–2 μm improve resolution of co-eluting sterols and
may bring HPLC ahead of GC (Lu et al., 2007). Furthermore,
HPLC have compared to GC the advantage of analysis without
derivatization and gentler conditions suitable for thermally unsta-
ble sterols. Even though HPLC may be combined with UV for
detection of sterols (Careri et al., 2001; Sanchez-Machado et al.,
2004), this is not the most sensitive method, as sterols adsorb UV
between 200 and 210 nm where most organic solvents have low
transparency.

Liquid chromatography mass spectrometry (MS, LC-MS, LC-MS/MS)
Detection of vitamin D by MS detection is challenging due to
low ionization efficiency. The most used ionization source for
LC-MS is ESI, which works best when the analyte already is in
its ionic form in solution (Cech and Enke, 2001). The ioniza-
tion efficiency of vitamin D and its sterol precursors are as a
result low in most ESI methods (Dimartino, 2007). APCI is a
much more efficient ionization technique for neutral and apo-
lar substances such as vitamin D and has been used several times
for vitamin D analysis (Dimartino, 2007; Byrdwell, 2009; Jäpelt
et al., 2011b). Atmospheric pressure photoionization (APPI) is
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another ionization method suitable for lipophilic compounds,
which also has been used for detection of vitamin D (Soldin
et al., 2009). MS has been used for identification of vitamin D3

in plants in several studies, but in most cases not coupled to
liquid chromatography (LC) (Aburjai et al., 1996; Curino et al.,
1998; Skliar et al., 2000). We recently used liquid chromatography
tandem mass spectrometry (LC-MS/MS) for selective detection
of vitamin D in various plant matrices (Jäpelt et al., 2011a,b).
LC-MS/MS improves both selectivity and sensitivity compared
to LC-MS in particular by using selected reaction monitoring
(SRM). In SRM both a precursor and a product ion is selected,
which reduce background noise resulting in a good signal to
noise ratio. SRM increases selectivity, but more than one tran-
sition is needed for reliable confirmation, which preferable is
combined with other evidence such as relative intensities of
product ions in the mass spectra, accurate mass, retention time
and peak shape to positively identify the compound as vita-
min D (Jäpelt et al., 2011b). LC-MS and LC-MS/MS have also
been used several times for analysis of sterols in plant matri-
ces (Mezine et al., 2003; Rozenberg et al., 2003; Ruibal-Mendieta
et al., 2004; Cañabate-Díaz et al., 2007; Lu et al., 2007; Jäpelt et al.,
2011b). To study vitamin D and its sterol precursors in plants
LC-MS/MS is the method of choice. However, a significant chal-
lenge is that the content of various sterols span several orders
of magnitude. The major sterols such as sitosterol and campes-
terol is between 10 and 200 μg/g fresh weight, whereas minor
sterols and vitamin D3 are present at less than 0.1 μg/g fresh
weight (Jäpelt et al., 2011b; Schrick et al., 2011). This requires a
huge dynamic range of the analytical method or fractionation of
the extracts.

Nuclear magnetic resonance (NMR)
Nuclear magnetic resonance (NMR) is a powerful tool for struc-
ture elucidation and identification and offer valuable information
in addition to UV and MS detection. NMR can discriminate
between compounds that only differ in terms of local chemi-
cal environment, e.g., compounds with same mass, but different
locations of functional groups. However, in general NMR analy-
ses require extensive purified samples, and possess low sensitivity
(Eisenreich and Bacher, 2007). Nevertheless, 1H NMR has been
used for identification of vitamin D3 in plants, but extraction of
as much as 2 kg fresh plant leaves was required (Aburjai et al.,
1998).

ANALYTICAL METHODS FOR QUANTIFICATION OF HYDROXYLATED
METABOLITES OF VITAMIN D
Analysis of the hydroxylated metabolites of vitamin D represents
a challenge because they exist in even lower concentrations than
vitamin D (Aburjai et al., 1996, 1998; Prema and Raghuramulu,
1996). They have been detected in plants using both protein-
binding assays (Skliar et al., 2000; Curino et al., 2001) and
chemical methods such as HPLC with UV detection (Aburjai
et al., 1998, 1996; Prema and Raghuramulu, 1994, 1996) and
MS detection (Jäpelt et al., 2012). Protein-binding assays, includ-
ing RIA (radioimmunoassay) and RRA (radioreceptor binding
assay), are widely used in clinical laboratories for analysis of
25OHD and 1,25(OH)2D in serum due to the simplicity (Hollis

and Horst, 2007). RIAs are commercially available and have been
used for extracts and cell cultures of S. glaucophyllum and C.
diurnum (Weissenberg et al., 1988; Gil et al., 2007). RRA has
been applied for identification of 1,25(OH)2D3 in S. glaucophyl-
lum (Curino et al., 2001) and Nicotiana glauca Graham (Skliar
et al., 2000). However, the lipophilic nature of vitamin D makes
it difficult to analyze in any protein-binding assay due to solu-
bility problems (Hollis and Horst, 2007). Matrix effects are also
common due to interfering compounds found in the assay tube
but not in the standard that compete with binding to the pro-
tein. The most common chemical detection principle used for
the detection of the hydroxylated metabolites in plants has been
HPLC-UV, but this is not totally specific. Specific quantification
of vitamin D metabolites can on the other hand be obtained
by using MS methods. However, direct LC-MS/MS analysis of
especially 1,25(OH)2D is challenging because of poor ionization
efficiency, low concentration and an extensive product ion spectra
by most soft ionization techniques (Aronov et al., 2008). Attempts
to increase ionization efficiency have been reported several
times mostly for serum samples, these include adduct formation
(Kissmeyer and Sonne, 2001; Casetta et al., 2010), derivatization
with Cookson-type reagents (Higashi and Shimada, 2004; Gao
et al., 2005; Kamao et al., 2007; Aronov et al., 2008; Higashi et al.,
2011) and microflow LC-MS together with derivatization (Duan
et al., 2010). Microflow LC improve sensitivity 15-fold compared
to normal LC, but has a small loading capacity that counteracts
the sensitivity gain, especially when analyzing complex matri-
ces (Duan et al., 2010). The advantage of using microflow LC
may, therefore, be limited for analysis of plant extracts. Recently,
LC-ESI-MS/MS in combination with Diels-Alder derivatiza-
tion was used to study 25OHD3 and 1,25(OH)2D3 in the
leaves of S. glaucophyllum, S. lycopersicum and C. annuum
(Jäpelt et al., 2012).

CONCLUDING REMARKS
Vitamin D deficiency is a problem in populations with limited sun
exposure where a dietary intake of vitamin D becomes essential.
However, dietary recommendations for vitamin D are difficult to
meet because few food items naturally contain vitamin D and
it would, therefore, be valuable to increase the food sources of
vitamin D in the human diet or to optimize the content by bio-
fortification. Traditionally, only animal products have been con-
sidered a source of vitamin D3, but today we know that vitamin
D3 and its metabolites are formed in certain plants. Accordingly,
fruits and vegetables have the potential to serve as a source of vita-
min D. Especially, the Solanaceae family contains high amounts
of vitamin D3, which is of special interest considering the impor-
tance of this family in human nutrition. The Solanaceae family
includes important vegetables such as potato, tomato and pep-
per all of which have been found to contain vitamin D3. Our
current knowledge is limited to the content in leaves, but future
investigation will elucidate if also the edible portions contain vita-
min D3. It would be valuable to screen a variety of crops and
vegetables for vitamin D, but to carry out a larger screening devel-
opment of less time-consuming and preferably more sensitive
analytical methods are needed. A further challenge is to improve
methods to study and quantify vitamin D conjugates in details.
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Planktonic microalgae, inhabiting the sea, are another large
group of photosynthetic organisms that contain vitamin D.
Microalgae are, as part of the aquatic food chain, identified as
a source of vitamin D for fish. Currently, the world’s wild fish
stocks are being overexploited and there has been a growth in
the aqua-culture industry. The current trend is to replace fish
meals or fish oil partly by vegetable feed substitutes when feed-
ing cultured fish will reduce the content of vitamin D compared
to wild fish (Bell and Waagbø, 2008). Microalgae with a high nat-
ural amount of vitamin D may be used as a natural vegetable form
for the bio-fortification of aqua-cultured fish.

Basic knowledge about the biosynthesis of vitamin D3 in
photosynthetic organisms is still lacking and any increase in
our knowledge will help us to manipulate the content to pro-
duce plants with a higher natural amount of vitamin D3.
Vitamin D3 is only synthesized in minute amounts, which makes
it challenging to study the pathways and enzymes involved.
However, it also means that even small changes in vitamin D3

can have a significant impact on human health. Biosynthesis
of 24-desmethylsterols in plants is complex and poorly under-
stood and makes the final goal to produce plants with a higher

natural amount of vitamin D3 a great challenge. Currently, the
key biosynthetic steps and the enzymes involved are unknown.
These need to be identified before we even can begin to mod-
ify the content of vitamin D3 in plants. In the present review,
a hypothetical biosynthetic pathway for 7-dehydrocholesterol
and cholesterol is presented. The steps catalyzed by SMT1 and
DWARF5 seem to be promising targets to manipulate the level
of 7-dehydrocholesterol in plants. A block in SMT1 will force
the biosynthetic pathway in the direction of 7-dehydrocholesterol
and cholesterol. Further increase in 7-dehydrocholesterol can
probably be achieved by a block in �5,7-sterol-�7-reductase
(DWARF5). However, any increase in provitamin D3 should be
viewed in the context of the overall changes in the metabolic
profile and a significant challenge will be selective to accumu-
late vitamin D3 in edible organs such as fruits, without affecting
plant growth and the development of the plant and conse-
quently yields. An important thing to consider before putting
a lot of energy into producing plants with a high amount of
vitamin D is the bioavailability, as low bioavailability of vitamin
D from plants may diminish the potential of plants as a new
vitamin D source.
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