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Fermentation or anoxic metabolism allows unicellular organisms to colonize environments
that become anoxic. Free-living unicellular algae capable of a photoautotrophic lifestyle can
also use a range of metabolic circuitry associated with different branches of fermentation
metabolism. While algae that perform mixed-acid fermentation are widespread, the use
of anaerobic respiration is more typical of eukaryotic heterotrophs. The occurrence of a
core set of fermentation pathways among the algae provides insights into the evolutionary
origins of these pathways, which were likely derived from a common ancestral eukaryote.
Based on genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism
has been examined in more detail in Chlamydomonas reinhardtii (Chlamydomonas) than
in any other photosynthetic protist. This green alga is metabolically flexible and can
sustain energy generation and maintain cellular redox balance under a variety of different
environmental conditions. Fermentation metabolism in Chlamydomonas appears to be
highly controlled, and the flexible use of the different branches of fermentation metabolism
has been demonstrated in studies of various metabolic mutants. Additionally, when
Chlamydomonas ferments polysaccharides, it has the ability to eliminate part of the
reductant (to sustain glycolysis) through the production of H2, a molecule that can be
developed as a source of renewable energy.To date, little is known about the specific role(s)
of the different branches of fermentation metabolism, how photosynthetic eukaryotes
sense changes in environmental O2 levels, and the mechanisms involved in controlling
these responses, at both the transcriptional and post-transcriptional levels. In this review,
we focus on fermentation metabolism in Chlamydomonas and other protists, with only a
brief discussion of plant fermentation when relevant, since it is thoroughly discussed in
other articles in this volume.
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INTRODUCTION
Chlamydomonas AS A MODEL ORGANISM
Chlamydomonas reinhardtii (Chlamydomonas throughout) is a
soil-dwelling, unicellular green alga that is considered a model
organism for studying photosynthetic energy metabolism, and the
production of molecular hydrogen (H2) under anoxic conditions
(Melis and Happe, 2001, 2004; Ghirardi et al., 2007). This alga
has several metabolic features in common with those of vascular
plants, although it also has structures and activities (e.g., flag-
ella and eyespot) that were lost during vascular plant evolution.
Chlamydomonas represents a robust system for probing biologi-
cal processes with sophisticated molecular tools. The sequencing
of all three Chlamydomonas genomes (nuclear, chloroplast, and
mitochondrion; Lilly et al., 2002; Maul et al., 2002; Merchant et al.,
2007) has facilitated the capture of information about gene and
genome structure and potential regulatory sequences, including
promoter regions, 3′- and 5′-UTRs and intron–exon junctions.
Forward and reverse genetic screens have been developed to
generate mutant strains with specific phenotypes, or that are dis-
rupted for specific genes (Dent et al., 2005; Pootakham et al., 2010;
Gonzalez-Ballester et al., 2011). Most information discussed in this
manuscript on responses of algae to hypoxia/anoxia was derived
from studies of Chlamydomonas, although information for other

algae has been used to strengthen generalizations. Furthermore,
we briefly discuss the evolution of the fermentation processes in
prokaryotes and non-photosynthetic eukaryotes, but do not dis-
cuss plants since other contributions in this volume detail the
responses of plants to hypoxic conditions.

BASIC ENERGY-GENERATING PROCESSES
Whether in aerobic or anaerobic environments, the challenge for
organisms to maintain viability can only be met if they can stay far
from equilibrium. To achieve this situation, they must use energy
to satisfy their metabolic demands, which includes continuous
synthesis of the cellular energy currency (mostly ATP) along with
maintenance of redox and ionic balances. Aerobic metabolism is
used by several eukaryotic and prokaryotic organisms to efficiently
synthesize ATP through oxidative phosphorylation; O2 serves as
the terminal electron acceptor of the respiratory electron trans-
port chain (Bailey-Serres and Chang, 2005). Nevertheless, life in
low O2 (hypoxia) environments, or even in environments totally
devoid of O2 (anoxia), is common on our planet. Diminished
levels of O2 in various biotopes can result from geochemical or
physical conditions, including flooding, excess rainfall, and winter
ice encasement, but may also be a consequence of high metabolic
activity of bacteria in habitats that are not well aerated. While
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anoxia is often transient, it can also be protracted, extending from
diurnal periods, to months or years, and even to millennia or more
(Grieshaber et al., 1994; Burnett, 1997; Danovaro et al., 2010). Fur-
thermore, even though an organism may live in an oxic habitat, it
may still perform anoxic metabolism under certain circumstances.
For example, in the presence of sufficient levels of a fermentable
substrate, many yeast strains will forego using O2 as a terminal
electron acceptor and maintain vigorous fermentation of available
substrates (van Dijken and Scheffers, 1986; Pronk et al., 1996).

REDOX BALANCE THROUGH FERMENTATION
For cells to sustain viability during hypoxia/anoxia they must pro-
duce ATP and recycle the NAD(P)H and FADH2 generated by
catabolic pathways, usually glycolysis. These compounds must
be re-oxidized in a process involving the transfer of electrons
to suitable terminal acceptor molecules, which are then typi-
cally secreted. Among eukaryotes, there are only two processes
for maintaining redox balance and conserving energy when organ-
isms experience anoxic conditions: (i) fermentation, which usually
entails substrate-level phosphorylation (SLP), and (ii) anaerobic
respiration which involves terminal electron acceptors like NO−

3

and SO2−
4 instead of O2 (Atteia et al., 2013). Anaerobic metabolism

provides cells with low levels of chemical bond energy, generating
∼2–3 ATP molecules per molecule of glucose metabolized; this
compares to the over 30 ATP molecules generated by the oxidative
metabolism of glucose.

METABOLIC ENERGY GENERATION
INTRODUCTORY REMARKS
Glycolysis oxidizes glucose to two molecules of pyruvate while gen-
erating two ATP molecules. During the oxidation of glucose there
is also the production of two NADH molecules (four reducing
equivalents). To maintain glycolytic flux and energy production,
the cells must re-oxidize the NADH. In the absence of a func-
tional TCA cycle under anaerobic conditions, Chlamydomonas
places reducing equivalents into partially oxidized metabolic inter-
mediates. The following section reviews the main anaerobic
pathways activated in many organisms, including prokaryotic bac-
teria, eukaryotic fungi, and animals, when they are exposed to
hypoxic/anoxic conditions.

IN BACTERIA (Figure 1)
In the absence of O2 and under conditions that favor catabo-
lite repression (e.g., excess glucose), Escherichia coli does not
utilize a complete TCA cycle. However, it can use enzymes of
this cycle to synthesize succinyl-CoA and 2-oxoglutarate; these
metabolites represent the reductive and oxidative branches of
the TCA cycle, respectively (Wolfe, 2005). This branched form
of the TCA cycle does not generate energy but instead provides
the precursor metabolites needed for cell viability. Therefore,
ATP must come from glycolysis and SLP is associated with
the phosphotransacetylase-acetate kinase pathway (Brown et al.,
1977).

FIGURE 1 | Fermentation pathways of E. coli. The enzyme designations
are: Ack for acetate kinase; AdhE for alcohol dehydrogenase; Aldh for
aldehyde dehydrogenase; Fhl for formate hydrogen lyase; FrdABCD for
fumarate reductase; FumB for fumarase B (anaerobic); FumC for fumarase C;

Ldh for lactate dehydrogenase; Mdh for malate dehydrogenase; Pfl for
pyruvate formate lyase; Ppc for phosphoenolpyruvate carboxylase and Pat for
phosphotransacetylase. In Chlamydomonas, Aldh and AdhE activities are
fused in the enzyme ADH1.
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To sustain the flow of glycolytic metabolites when O2 availabil-
ity severely limits aerobic respiration, the cells must re-oxidize
NADH. In many bacteria the sugars are fermented to a mix-
ture of ethanol and organic acids. This is achieved by reducing
partially oxidized metabolic intermediates and forming, pre-
dominantly, the metabolites D-lactate, succinate, and ethanol,
which are excreted into the environment along with formate
and acetate (Wolfe, 2005; Figure 1). During anaerobiosis, pyru-
vate is the major metabolite synthesized as a consequence of
glycolysis. The pyruvate can be converted to formate and acetyl-
coenzyme A (acetyl-CoA) by pyruvate formate lyase (Pfl; Wolfe,
2005; Figure 1). This conversion is a non-oxidative reaction, which
contrasts with oxidative decarboxylation that is mediated by the
pyruvate dehydrogenase complex (Pdh, also sometimes designated
Pdhc), which functions during respiratory metabolism. Pfl and
its activating enzyme are widespread in facultative and obligate
anaerobic eubacteria, as well as in archaea (Sawers and Watson,
1998). Mutants of E. coli devoid of Pfl do not grow anaerobically
on glucose, but can grow if the medium is supplemented with
acetate (Varenne et al., 1975). Under such conditions, pfl mutants
maintain glycolytic ATP synthesis by reducing pyruvate to lac-
tate. The generation of an ldh mutant in the pfl strain eliminates
the remaining fermentation pathway for sustaining glycolysis. The
formate derived from the Pfl reaction may be further metabo-
lized to H2 and CO2 through the activity of formate hydrogen
lyase (Fhl; Gottschalk, 1985) while the acetyl-CoA generated in
this reaction can be converted to acetate or reduced to ethanol.
Full conversion of acetyl-CoA to ethanol would not allow for
redox balance since a single NADH is generated for each pyru-
vate that is synthesized from sugars, and two NADH molecules
are required to convert pyruvate to ethanol. In order to achieve
redox balance, E. coli must also synthesize additional products
from the pyruvate, such as acetate and/or succinate (Dien et al.,
2003).

The type and amount of fermentation end products excreted
by bacteria, and the level of NADH generated for recycling, are
highly dependent upon the substrate being metabolized by the
bacterium. For example, bacteria using sorbitol, a highly reduced
carbon compound, produce three NADH molecules per molecule
of substrate, while a highly oxidized carbon compound such as glu-
curonic acid generates no NADH. To regenerate NAD+ from the
NADH formed during the oxidation of sorbitol, bacteria synthe-
size and excrete ethanol (Wolfe, 2005). In contrast, cells growing
on glucuronic acid are redox balanced and therefore no ethanol
will be synthesized; instead, most pyruvate will be converted to
acetate (Alam and Clark, 1989). The composition of excreted fer-
mentation products also depends on the oxidation state of the cells
and the pH of the medium. At neutral or higher pH, the main end
products are acetate, ethanol, and formate, with moderate lev-
els of succinate (Belaich and Belaich, 1976). However, as the pH
becomes more acidic, cells produce lactate instead of acetate and
formate (Bunch et al., 1997).

The conversion of acetyl-CoA to acetate is catalyzed by the
phosphoacetyltransferase–acetate kinase (Pat–Ack also known as
Pta-AckA) pathways. The Pat–Ack pathway generates one ATP
per molecule of pyruvate metabolized, but consumes no NADH
(Figure 1). In contrast, reduction of acetyl-CoA to ethanol is

catalyzed by the bifunctional acetaldehyde/alcohol dehydrogenase
(AdhE). While this reaction consumes reducing equivalents, it does
not result in the generation of ATP (Wolfe, 2005). By coordinat-
ing the amount of ethanol and acetate (and other organic acids)
synthesized and excreted into the medium, bacteria can efficiently
balance their energy requirement with the need to recycle redox
carriers (as reviewed by Wolfe, 2005).

There are two major acetate-producing pathways in E. coli;
these are pyruvate oxidase (PoxB) and Pat–Ack (mentioned
above). While PoxB decarboxylates pyruvate to acetate aerobically,
the Pat–Ack complex is active under both aerobic and anaerobic
conditions, converting acetyl-CoA to acetate (Hahm et al., 1994;
Yang et al., 1999). The Pat–Ack reactions are sequential, reversible,
and considered important for balancing the cellular carbon flux
during exponential, aerobic and anaerobic growth (Chang et al.,
1999; Avison et al., 2001). Pat converts acetyl-CoA and inorganic
phosphate to acetyl phosphate (acetyl-P) and CoA, while Ack cat-
alyzes the formation of ATP and acetate from acetyl-P and ADP
(Rose et al., 1954). In E. coli, the pat and ack genes are orga-
nized in an operon (Kakuda et al., 1994). Mutants defective for Pat
can neither synthesize acetate nor grow anaerobically (Gupta and
Clark, 1989).

Under conditions in which anaerobically maintained E. coli cells
are accumulating high levels of pyruvate or growing in a low pH
medium, they can convert pyruvate to lactate through the activity
of lactate dehydrogenase (Ldh; Clark, 1989; Figure 1). Alterna-
tively, pyruvate or phosphoenolpyruvate (PEP) can be converted
to a C4 intermediate of the TCA cycle by the catalytic addition of
CO2 (Clark, 1989; Figure 1). In some cases, malic enzymes can
carboxylate pyruvate forming malate, while phosphoenolpyru-
vate carboxylase (Ppc) can catalyze the formation of oxaloacetate
(OAA) from PEP and CO2 (Clark, 1989; Figure 1). Both OAA
and malate are then further reduced to succinate (Clark, 1989;
Figure 1). This conversion is catalyzed by the sequential action
of malate dehydrogenase (Mdh), fumarase (FumB and FumC),
and fumarate reductase (FrdABCD; Clark, 1989; Figure 1); the
gene encoding fumarase B is induced under anaerobic conditions
(Woods et al., 1988). Since the amount of NADH generated varies
with the nature of the substrate and the composition of the fer-
mentation products generated, the redox balance and recycling of
the NADH can be achieved by modulating the activities of the var-
ious fermentation pathways, which would result in a mix of end
products, including ethanol, formate, acetate, and lactate (when
necessary). Hence, E. coli mutants of ldh show no growth defects
under anaerobic conditions because of compensatory pathways
(Mat-Jan et al., 1989). Tarmy and Kaplan (1968) reported that
fermentative Ldh is allosterically regulated and that its activity
increases as the cellular pyruvate concentration increases; when
pyruvate concentrations are low, the enzyme has very low activity.
In contrast, E. coli adhE mutants do not synthesize alcohol dehy-
drogenase and cannot grow anaerobically on sorbitol, glucose, or
gluconate since they cannot maintain redox balance, but they are
able to ferment glucuronate (as reviewed by Clark, 1989).

IN ALGAE (Figure 2)
Fermentation of stored organic compounds by phototrophic
microorganisms can represent a significant part of their overall
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FIGURE 2 | Fermentation pathways in Chlamydomonas. In wild-type
(WT) Chlamydomonas cells, the major fermentative products are formate,
acetate, and ethanol, with CO2 and H2 generated as minor products. The
pathway leading to fermentative succinate generation is not readily
detected in WT cells grown under laboratory conditions, but becomes
prominent in the hydEF-1 mutant (Dubini et al., 2009). An increase in lactate
production, which is almost undetectable in fermenting WT cells, is
observed in the pfl1 mutants (Philipps et al., 2011; Burgess et al., 2012;
Catalanotti et al., 2012). Glycerol accumulation occurs in the adh1 single and
the pfl1–1adh1 double mutants (Catalanotti et al., 2012; Magneschi et al.,
2012). The protein designations in this figure are: FMR for fumarate

reductase; MME4 for malic enzyme 4; PDC3 for pyruvate decarboxylase 3;
PEPC for phosphoenolpyruvate carboxylase; PYC for pyruvate carboxylase;
PYK for pyruvate kinase; PFR for pyruvate ferredoxin oxidoreductase; ACS for
acetyl-CoA synthase; FDX for ferredoxin; HYDA1 and HYDA2 for the
hydrogenases; GK for glycerol kinase; GPD for sn-glycerol-3 phosphate
dehydrogenase and GPP for glycerol 3-phosphate phosphatase. See Figure 1

for ACK1; ACK2; ADH1; ALDH; FUM; LDH; MDH; PAT1; and PAT2
designations. The enclosure delineated by a green line represents the
chloroplast while the enclosure delineated by a red line represents the
mitochondrion. The placement of some of the enzymes into specific
subcellular compartments is speculative.
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energy budget as many of these ecologically important organisms
spend much of their lifecycle under light-limited, hypoxic/anoxic
conditions. Several species of water-oxidizing, photosynthetic
algae can metabolize endogenous polysaccharides or secondary
metabolites when the environment becomes anoxic, enabling
them to generate the ATP necessary to drive metabolic and energy-
requiring processes (Gfeller and Gibbs, 1984, 1985; Kreuzberg,
1984; Gibbs et al., 1986; Ohta et al., 1987). During dark fermenta-
tion, cellular polysaccharide reserves are catabolized, generating
the needed ATP, while the co-produced NADH must be re-
oxidized. The primary fermentation pathways used during anoxia
vary among different algal species (Ohta et al., 1987; Atteia et al.,
2013). Green algae such as Chlamydomonas reinhardtii, Chlamy-
domonas moewusii, Chlorogonium elongatum, and Chlorella fusca
ferment starch to a variety of end products including acetate,
ethanol, formate, glycerol, lactate, H2, and CO2 (Gaffron and
Rubin, 1942; Ben-Amotz, 1975; Klein and Betz, 1978; Grossman
et al., 2007; Mus et al., 2007). The heterofermentation patterns
vary among green algal species (and sometimes among strains)
and can also significantly vary with changes in environmen-
tal conditions, including the medium composition and carbon
source. For Chlamydomonas, dark fermentation leads to the pro-
duction of formate, acetate, and ethanol in a 2:1:1 ratio (Mus
et al., 2007; Figure 2). In contrast, Chlamydomonas moewusii
cells do not excrete formate during exposure to dark anoxic con-
ditions; the major end products synthesized by this organism
are acetate, glycerol, and ethanol (Klein and Betz, 1978; Meuser
et al., 2009).

Some algae do not excrete fermentation products, but instead
store them (reviewed by Müller et al., 2012; Atteia et al., 2013).
Euglena gracilis synthesizes ATP when maintained under anoxic
conditions with the concomitant accumulation of up to 60% fatty
acids by dry weight (Inui et al., 1982). When the cells are returned
to oxic conditions, the stored fatty acids can be converted back to
acetyl-CoA, which can then be oxidized to CO2 or used to form
paramylon reserves (Inui et al., 1982).

Diatoms and dinoflagellates are present in anoxic marine sed-
iments (Jewson et al., 2006). The diatoms that inhabit these
sediments accumulate high concentrations of nitrate (Lomstein
et al., 1990), which is used as an electron acceptor in respira-
tory metabolism (e.g., generating ammonium) allowing these
organisms to survive under dark anoxic condition (Kamp et al.,
2011).

Enzymes of fermentation in Chlamydomonas (Figure 2)
Currently, most information on fermentation metabolism in
algae comes from studies of Chlamydomonas (Gfeller and Gibbs,
1984, 1985; Kreuzberg, 1984; Gibbs et al., 1986; Ohta et al., 1987;
Hemschemeier and Happe, 2005; Grossman et al., 2007, 2011;
Mus et al., 2007; Hemschemeier et al., 2008; Dubini et al., 2009;
Philipps et al., 2011; Burgess et al., 2012; Catalanotti et al., 2012;
Magneschi et al., 2012). Genes encoding proteins associated with
a diverse set of fermentative pathways have been identified on the
Chlamydomonas genome, while a number of biochemical studies
have revealed various fermentation circuits. The flexibility among
the different pathways for catabolism of stored carbon under dark,
anoxic conditions has been demonstrated through analyses of

various mutants perturbed for these pathways (Mus et al., 2007;
Dubini et al., 2009; Philipps et al., 2011; Burgess et al., 2012; Cata-
lanotti et al., 2012; Magneschi et al., 2012). This flexibility allows
Chlamydomonas to satisfy its energy requirements as O2 from the
surrounding environment is depleted.

Over the course of the day there is a natural cycle for storage and
utilization of fixed carbon. In phototrophic organisms, polysac-
charides (sometimes lipids) accumulate in cells during daylight
hours when photosynthetic CO2 fixation is a dominant metabolic
process. During the evening, much of the starch reserve can be
hydrolyzed to sugars by amylase activity (Ball, 1998; Dauvillee
et al., 2001a,b; Zabawinski et al., 2001) and then, through the activ-
ity of glycolysis, be converted to pyruvate (Figure 2). As in bacteria,
pyruvate fuels fermentation processes, serving as substrate for
pathways that generate various organic acids, acetyl-CoA, alco-
hols, CO2, and H2. Chlamydomonas has multiple pathways for
converting pyruvate to acetyl-CoA (Hemschemeier and Happe,
2005; Atteia et al., 2006; Grossman et al., 2007; see Figure 2 for
details). Three enzymes involved in these pathways are pyru-
vate formate lyase (PFL1), pyruvate ferredoxin oxidoreductase
(PFR, often referred to as PFOR), and the pyruvate dehydro-
genase (PDH) complex. As PDH generates NADH, a product
that must be re-oxidized to sustain fermentation metabolism, it
is presumed that PFL1 and PFR are the favored pathways for
pyruvate catabolism in hypoxic/anoxic cells (Figure 2). While
PFL1 catalyzes the conversion of pyruvate to acetyl-CoA and for-
mate, in the PFR reaction pyruvate is oxidized to acetyl-CoA
and CO2 with the concomitant generation of reduced ferredoxin
(FDX). FDX can then pass reducing equivalents to hydroge-
nases to generate H2 (Happe and Naber, 1993; Ghirardi et al.,
1997, 2000, 2007; Melis et al., 2000; Melis and Happe, 2001;
Müller, 2003). However, the reduced FDX can also serve as a
substrate for nitrite and sulfate/sulfite reductases (Ghirardi et al.,
2008).

The acetyl-CoA produced by PFL1 and PFR reactions is either
reduced to ethanol by alcohol/aldehyde dehydrogenase 1 (ADH1;
Hemschemeier and Happe, 2005; Atteia et al., 2006; Dubini et al.,
2009), or metabolized to acetate by the PAT–ACK (Atteia et al.,
2006). An alternative pathway for ethanol production may be
direct decarboxylation of pyruvate to CO2 and acetaldehyde
through the activity of pyruvate decarboxylase (PDC3). The
acetaldehyde generated in this reaction can be reduced to ethanol
by ADH (either the same enzyme that catalyzes acetyl-CoA reduc-
tion or a distinct enzyme, e.g., ADH2). While the conversion of
acetyl-CoA to ethanol by ADH1 oxidizes two NADH molecules,
only a single NADH is oxidized in the PDC pathway.

Mutants in specific branches of fermentative metabolism have
proven extremely valuable for elucidating the various routes of
fermentation metabolism in Chlamydomonas, which are shown in
Figure 2.

Formate production
Formate was demonstrated to be the dominant, secreted organic
acid synthesized by Chlamydomonas maintained in anoxic condi-
tions at near neutral pH in dark (Kreuzberg, 1984; Gibbs et al.,
1986). The synthesis of formate by PFL1 uses a free-radical
mechanism to catalyze the homolytic cleavage of pyruvate into
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formate and acetyl-CoA. This reaction depends upon a radical
S-adenosyl methionine-dependent activating enzyme, designated
PFL-AE (Atteia et al., 2006; Hemschemeier et al., 2008), which is
usually present as an inactive form in aerobic cells, and is allosteri-
cally activated by pyruvate. In Chlamydomonas, PFL1 appears to be
located in both mitochondria and chloroplasts (Kreuzberg et al.,
1987; Atteia et al., 2006).

Algal strains deficient for PFL1 activity were isolated by inde-
pendent groups (Philipps et al., 2011; Catalanotti et al., 2012)
using different strategies (Burgess et al., 2012). The elimination
of PFL1 activity in Chlamydomonas led to a marked accumula-
tion of extracellular lactate, elevated pyruvate decarboxylation,
and extracellular ethanol accumulation (Figure 2). The accu-
mulation of lactate in the medium of pfl1 mutants allows
for recycling of NADH as a consequence of pyruvate reduc-
tion by LDH. Catalanotti et al. (2012) also demonstrated that
the pfl1 mutant accumulates elevated intracellular levels of lac-
tate and alanine. Additionally increased intracellular levels of
succinate, malate, and fumarate were observed, suggesting oper-
ation of the left branch of the reverse TCA reactions to recycle
NADH.

Ethanol production
Acetyl-CoA produced by PFR/PFL1 activities can be metabolized
to generate ATP by conversion to acetate or to help maintain
redox balance by conversion to ethanol (Mus et al., 2007). Chlamy-
domonas possesses three distinct enzymes potentially important
for ethanol production when the cells become anoxic: ADH1
(putative dual-function alcohol/acetaldehyde dehydrogenase; Mus
et al., 2007; Hemschemeier et al., 2008; Magneschi et al., 2012),
and two other putative alcohol dehydrogenases that were iden-
tified based on protein homology, designated ADH2 (Augustus
version 5.0 protein identifier 516421) and ADH3 (Augustus ver-
sion 5.0 protein identifier 516422). ADH1 has been localized to
chloroplasts (Terashima et al., 2010).

A Chlamydomonas mutant devoid of ADH1 was unable to syn-
thesis either ethanol or CO2 when the cells were transferred to
anoxic conditions (Magneschi et al., 2012). The inability of the
adh1 mutant to accumulate ethanol and CO2, while synthesizing
low levels of formate, suggests that the acetaldehyde synthesized by
PDC3 and the acetyl-CoA synthesized by PFL1 and PFR cannot
be rapidly reduced in the mutant. These findings also indicate
that ADH1 is the only acetaldehyde-alcohol dehydrogenase in
Chlamydomonas capable of reducing acetyl-CoA or acetaldehyde
to ethanol under the conditions used in this study. Interestingly,
the adh1 strain was able to compensate for its inability to reduce
acetyl-CoA or acetaldehyde to ethanol by reducing a significant
amount of pyruvate to lactate. This elevated lactate accumula-
tion was not as high as the level measured in pfl1 (Philipps et al.,
2011; Burgess et al., 2012; Catalanotti et al., 2012). However, the
adh1 mutants also accumulated high extracellular and intracel-
lular levels of glycerol relative to anoxic wild-type (WT) cells.
This acclimation response removes a significant amount of the
C3 metabolites at the dihydroxyacetone phosphate (DHAP) step
of the glycolytic pathway, which is prior to the reduction of NAD+
to NADH; the DHAP is then used as a substrate to re-oxidize
NADH in the synthesis of glycerol (Figure 2).

Acetate production
The acetyl-CoA that is produced by PFL1 or PFR activities can
be converted to acetate by PAT and ACK (Mus et al., 2007).
Two parallel pathways have been identified in Chlamydomonas;
PAT1–ACK2 appear to be mitochondrial while PAT2–ACK1 are
in the chloroplast (Atteia et al., 2006, 2009; Terashima et al.,
2011; Figure 2). Interestingly, the PAT2 and ACK1 genes are
contiguous on the genome while PAT1 and ACK2 are far apart
on the same chromosome (http://genome.jgi-psf.org/Chlre4/
Chlre4.home.html).

While PAT–ACK activities comprise the predominant pathways
for acetate formation under dark anaerobiosis, other enzymes are
present on the Chlamydomonas genome that may play a role in
acetate synthesis. Four genes encoding homologs of acetyl-CoA
synthase (ACS) and eight genes encoding homologs of aldehyde
dehydrogenase (ALDH) have been identified on the Chlamy-
domonas genome (Kirch et al., 2004, 2005; Brocker et al., 2012).
The ACSs catalyze the putatively reversible conversion of acetate
to acetyl-CoA (dash line in Figure 2). The ALDH reaction pro-
duces NAD(P)H during the conversion of acetaldehyde to acetate,
therefore it is unlikely that these enzymes are active in fermenta-
tive metabolism when the cells require regeneration of reducing
power (Kirch et al., 2004, 2005; Brocker et al., 2012). To date, there
is no biochemical evidence to demonstrate that these alternative
pathways for acetate generation are active in Chlamydomonas. In
bacteria, the two pathways active under aerobic conditions that
generate acetate are the Pat–Ack pathway, which is active in expo-
nentially growing cells, and the PoxB pathway, which dominates
during late exponential and stationary phase (Dittrich et al., 2005).
It is uncertain whether or not similar regulatory features occur in
Chlamydomonas.

The presence and/or production of acetate as Chlamydomonas
cells become anoxic was found to be critical for maintenance of
anoxic conditions in the light since acetate assimilation promotes
O2 utilization (Kosourov et al., 2007; Morsy, 2011). The level of
acetate accumulation during fermentative metabolism has proven
to be difficult to predict, probably because it can also be used for the
biosynthesis of key metabolites in anoxic cells, provided sufficient
ATP and NAD(P)H is available. The adh1 mutant exhibits a higher
ratio of acetate production under anoxic conditions compared to
WT cells, which reflects the elimination of ethanol production
from the acetyl-CoA that is generated by PFL1 and PFR activities
in the mutant strain; glycerol and lactate production serve as the
primary NADH re-oxidation mechanisms in this mutant (Mag-
neschi et al., 2012). In contrast, the pfl1 mutant strains exhibit
strongly reduced acetate accumulation (Burgess et al., 2012; Cata-
lanotti et al., 2012); this decrease is likely due to a diminished
intracellular acetyl-CoA pool.

H2 production
The mitochondria of cells maintained in aerobic conditions use
PDH to convert pyruvate to acetyl-CoA; the acetyl-CoA generated
can be metabolized to CO2 by the TCA cycle. In some animals
PDH can function under anaerobic conditions (reviewed by Tie-
lens and van Hellemond, 1998; Tielens et al., 2002; Hoffmeister
et al., 2005; Tucci et al., 2010; Atteia et al., 2013). However, in many
prokaryotes and eukaryotes, pyruvate oxidation in the absence of
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O2 is typically mediated by PFR. PFR belongs to a large family of
thiamine pyrophosphate (TPP)-dependent enzymes. It catalyzes
the oxidative cleavage of the carbon–carbon bond of the carboxyl
group of pyruvate to liberate CO2 and reducing equivalents, with
the attachment of the resulting acetyl group to CoA. However,
unlike PDH, PFR can also function in the reverse direction catalyz-
ing the production of pyruvate from CO2 and acetyl-CoA (Evans
et al., 1966; see below), with FDX or flavodoxin serving as electron
donors (Charon et al., 1999; Ragsdale, 2003; Figure 2). In Chlamy-
domonas, the reduced FDX generated from pyruvate oxidation by
PFR activity can be re-oxidized by hydrogenases, generating H2

(Müller, 2003), or by reactions that enzymatically reduce nitrite
and sulfate/sulfite. Hydrogenases are widespread among prokary-
otes, whereas they are not as common among eukaryotes, and are
restricted to a subset of unicellular eukaryotes, including photo-
synthetic algae (Meuser et al., 2011; Müller et al., 2012). Chlamy-
domonas hydrogenases belong to the class of [FeFe]-hydrogenases
in which a [4Fe4S] cluster is linked through a cysteine residue to
a 2Fe− cluster (Peters et al., 1998; Mulder et al., 2011).

Hydrogen production in algae is likely to have significant
impacts on redox poising, photoprotection, and fermentative
energy metabolism. Hydrogen production is coupled to cellular

metabolism in a variety of ways, all of which are associated with O2

limitation: (i) direct biophotolysis, (ii) indirect biophotolysis, and
(iii) dark fermentative metabolism (Figure 3). Direct biophotoly-
sis involves light-dependent oxidation of water by photosystem II
(PSII), the transfer of electrons from PSII to photosystem I (PSI),
light-dependent excitation of PSI with the concomitant reduc-
tion of FDX and the subsequent transfer of electrons from FDX
to hydrogenase (Benemann et al., 1973; Greenbaum, 1982; Happe
and Naber, 1993; Miura, 1995; Ghirardi et al., 2007). During direct
biophotolysis, the O2 generated by PSII must be reduced in order
to prevent the accumulation of O2 to levels that would inhibit the
hydrogenase. Indirect biophotolysis involves non-photochemical
reduction of the PQ pool by NAD(P)H generated as a consequence
of catabolic metabolism, followed by light-dependent FDX reduc-
tion by PSI and the subsequent transfer of electrons from FDX to
hydrogenase (Cournac et al., 2000; Kosourov et al., 2003; Mus et al.,
2005; Chochois et al., 2009). In the third H2-production pathway,
starch catabolism provides electrons to the hydrogenases under
dark fermentative conditions (Gfeller and Gibbs, 1984; Kreuzberg,
1984; Ohta et al., 1987; Happe et al., 1994; Ghirardi et al., 1997;
Melis and Happe, 2001; Posewitz et al., 2004; Mus et al., 2007;
Dubini et al., 2009).

FIGURE 3 | Metabolic pathways associated with hydrogenase activity.

Five distinct metabolisms are depicted: (1) H2 production dependent on the
complete photosynthetic electron transport system (PSII, PSI, FDX, H2ase;
green and blue lines); (2) H2 production requiring starch catabolism and PSI
activity (starch, glycolysis, PQ, PSI, FDX, H2ase; brown and blue lines);
(3) H2 production in the dark from pyruvate oxidation (starch, glycolysis,
pyruvate, FDX, H2ase; brown and magenta lines); (4) H2 oxidation
coupled to CO2 reduction, with respiratory O2 uptake used to generate
ATP (H2, H2ase, FDX, FNR, NAD(P)H, CO2 fixation; orange line);

(5) H2 oxidation coupled to PSI-driven cyclic electron flow and ATP
production (H2, H2ase, FDX, PSI, FDX and continued cycling;
blue line). Abbreviations are: Cytb6f, cytochrome b6f complex; FDX,
ferredoxin; FNR, ferredoxin NAD(P)+ reductase; H2ase,
hydrogenase enzyme; PC, plastocyanin; PFR, pyruvate ferredoxin
oxidoreductase; PQ, plastoquinone pool; P700, reaction center of
photosystem I; P680, reaction center of photosystem II. For simplicity
we have not tried to scale the energy potential of the electron carriers
downstream of FDX.
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Hydrogenases also function in H2 uptake, with two distinct
uptake pathways described in Chlamydomonas (Gaffron, 1944;
Kessler, 1974; Maione and Gibbs, 1986a,b; Chen and Gibbs, 1992a;
Figure 3). In the first pathway, H2 oxidation and cyclic PSI activ-
ity in the light are linked to RuBisCO-mediated anaerobic CO2

fixation. Electrons from H2 are used to reduce FDX, which then
reduces FDX-NAD(P) oxidoreductase (FNR), leading to the gen-
eration of NAD(P)H which, along with the ATP generated by
cyclic electron flow, can be used to fix CO2. This pathway requires
the absence of O2 evolution from PSII. In the second pathway,
termed the oxyhydrogen reaction, H2 oxidation occurs concomi-
tantly with the uptake of low levels of O2 in a process that can be
coupled to CO2 fixation (Gaffron and Rubin, 1942; Gaffron, 1944;
Russell and Gibbs, 1968; Kessler, 1974; Chen and Gibbs, 1992a).
Although not well characterized, it is posited that H2 oxidation
provides the reducing equivalents for CO2 fixation and that the
low levels of O2 present are respired to provide ATP (Gaffron and
Rubin, 1942; Gaffron, 1944; Maione and Gibbs, 1986a; Chen and
Gibbs, 1992a).

Recently, mutants were obtained in each of the two HYDA
genes of Chlamydomonas, HYDA1 and HYDA2 (Meuser et al.,
2012). The phenotypes of the single (hydA1 and hydA2) and
double (hydA1–hydA2 ) mutants were analyzed under both light
and dark anoxic conditions. Both single mutants could catalyze
H2 production from reductant generated from either fermenta-
tive or photosynthetic metabolism. However, the contribution of
the HYDA2 enzyme to H2 photoproduction under the conditions
tested was approximately 25% of that of HYDA1 (Godman et al.,
2010; Meuser et al., 2012).

The impact of the hydEF-1 lesion on fermentation is more
interesting since it demonstrates the flexibility of Chlamydomonas
anaerobic metabolism (see below). This mutant is unable to
assemble the inorganic constituents of the hydrogenase active
site, and consequently cannot catalyze H2 synthesis (Posewitz
et al., 2004).

Succinate production
Anoxic cultures of the Chlamydomonas hydEF-1 mutant exhibit
lower CO2 evolution and reduced extracellular formate, acetate,
and ethanol accumulation. Interestingly, the mutant synthe-
sizes elevated levels of extracellular succinate (Dubini et al., 2009;
Figure 2), indicating activation of a fermentative pathway that is
not operating at significant levels in WT cells. Microarray data and
metabolite analyses suggest that carboxylation of pyruvate in the
hydEF-1 mutant leads to the synthesis of either malate or OAA
(or both), which is subsequently converted to succinate via reverse
reactions of the TCA cycle. Activation of the reductive TCA branch
as a means of recycling NADH was previously observed in anaero-
bic bacteria (Gray and Gest, 1965; Schauder et al., 1987; Buchanan
and Arnon, 1990; Beh et al., 1993; Yoon et al., 1999), in the green
alga Selenastrum minutum (Vanlerberghe et al., 1989, 1990) and
in vascular plants (Sweetlove et al., 2010), but was not known to
occur in Chlamydomonas.

The alternative pathway suggested by Dubini et al. (2009) not
only explains succinate accumulation under anaerobic conditions,
but also raises the possibility that Chlamydomonas could poten-
tially operate a complete reverse TCA cycle. This would require

that PFR functions in the direction of pyruvate synthesis under
the appropriate metabolic conditions. Various researchers have
suggested that PFR could function in the synthesis of pyru-
vate in Chlamydomonas (Chen and Gibbs, 1992b; Melis et al.,
2007; Terashima et al., 2011; Figure 2). Chen and Gibbs (1992b)
detected ATP-citrate lyase, as well as PFR and α-ketoglutarate
synthase activities in Chlamydomonas cell extracts, speculating
that the existence of these three key enzyme activities indicated
that the reverse TCA cycle could operate in Chlamydomonas.
These authors showed that a Chlamydomonas mutant with a com-
promised Calvin–Benson cycle takes up CO2 in the dark under
minimal aerobic conditions (1% O2), and that the CO2 uptake
is coupled to H2 oxidation (Chen and Gibbs, 1992a), suggest-
ing that the reverse TCA cycle could be a significant pathway
for CO2 assimilation when the Calvin–Benson cycle is compro-
mised (Chen and Gibbs, 1992b). Hence, under these conditions
H2 oxidation would provide the reducing equivalents to drive the
reverse TCA cycle and to allow PFR to synthesize pyruvate, leading
to the accumulation of an array of biosynthetic precursors. The
possibility of PFR-dependent synthesis of pyruvate has also been
observed in many hydrogenosome-containing eukaryotic organ-
isms experiencing anaerobic conditions (Lindmark and Müller,
1973). Furthermore, in the unicellular microaerophilic eukaryote
Trichomonas vaginalis, MME and PFR are central to carbohydrate
metabolism in the hydrogenosomes (Müller, 1993). In addition,
PFR and MME activities have been linked to malate production
in the hyperthermophilic archaeon Thermococcus kodakaraensis
KOD1, also suggesting reductive carboxylic acid cycle activity
(Fukuda et al., 2005). The association of PFR and MME with
pyruvate metabolism in hydrogenosome-containing anaerobic
eukaryotes, the findings that a similar set of anoxic-induced pro-
teins are associated with Chlamydomonas chloroplasts, and the
metabolite data obtained with various Chlamydomonas strains
exposed to anoxic, reductant-rich conditions, all suggest that
the TCA cycle may operate in the reverse direction in Chlamy-
domonas chloroplasts in anoxic cells that have sufficient reducing
equivalents and ATP.

Lactate and glycerol production
Glycerol and lactate are usually minor end products of green
algal fermentation (Gfeller and Gibbs, 1984; Kreuzberg, 1984).
Glycerol is synthesized from DHAP, and its synthesis results in
recycling of one NADH. The reaction precedes the formation
of pyruvate and the C3 oxidation (NADH formation) step in
glycolysis. Hence, glycerol and lactate production in the adh1
mutant would allow for efficient recycling of NADH, mainte-
nance of redox balance and sustained glycolytic production of
ATP even though the cells are unable to reduce acetaldehyde or
acetyl-CoA to ethanol (Magneschi et al., 2012; Figure 2). The pfl1–
1adh1 double mutant cannot synthesize either formate or ethanol
(Catalanotti et al., 2012; Figure 2). This strain, like pfl1, secretes
significant levels of lactate, however, like the adh1 mutant, it also
synthesizes and secretes high levels of glycerol and acetate. Hence,
this mutant exhibits a complete rerouting of glycolytic carbon to
lactate and glycerol, transforming Chlamydomonas cells from a for-
mate/acetate/ethanol to a glycerol/lactate fermenter (Catalanotti
et al., 2012; Figure 2).
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IN OTHER EUKARYOTES
Eukaryotes specialized to thrive under aerobic conditions gener-
ally possess simple cytosolic fermentation pathways that enable
them to tolerate short-term anoxia; these pathways facilitate accu-
mulation of end products such as lactate, ethanol, and glycerol
(reviewed by Müller et al., 2012). Some eukaryotes, including
many algae, experience frequent exposure to anoxic conditions,
where they are unable to use O2 as a terminal electron acceptor.
These organisms have evolved a modest set of energy-generating
pathways, which are reviewed below.

Ethanol, lactate, and glycerol fermentation (Figures 4 and 5)
When O2 in the environment is depleted, plants can use PDC to
convert pyruvate to acetaldehyde, which is metabolized to ethanol
by ADH (Gibbs and Greenway, 2003; Bailey-Serres and Voesenek,
2008). The ethanol generated in plant roots can rapidly diffuse into
the rhizosphere, which limits its toxicity. Plants can also synthesize

lactate under conditions of low O2. The transition from lactic to
ethanolic fermentation appears to be controlled by the pH of the
cytoplasm of the cell. A ∼0.6 unit decrease in cytosolic pH favors
PDC activity, which promotes ethanol production and limits lac-
tate synthesis (reviewed by Bailey-Serres and Voesenek, 2008).
This lactic to ethanolic switch is critical for maintaining cytoso-
lic pH (Roberts et al., 1989). In addition to eliciting metabolic
changes, low O2 can trigger alterations in plant morphology which
include petiole or internode elongation, altered anatomy and cell
ultrastructure in leaves and roots, development of lateral or adven-
titious roots and the formation of aerenchyma cells (Bailey-Serres
et al., 2012).

Ethanol, lactate, and glycerol are common end products of
fermentative metabolism in many organisms. The synthesis and
excretion of ethanol allows carp to survive anaerobiosis for up
to ∼5 months (van Warde et al., 1993) and goldfish to withstand
anoxia for several weeks (van den Thillart et al., 1983). It is notable

FIGURE 4 | Mixed-acid fermentative metabolism of the

hydrogenosome-bearing anaerobic chytridiomycete fungus Piromyces.

The circuitry is drawn based on data reported by Wang et al. (2001) and
Boxma et al. (2004). This fungus uses pyruvate formate lyase for pyruvate
catabolism in their hydrogenosomes. Glucose can also be metabolized in the
cytosol to the end products succinate, lactate, formate, and ethanol.
Bifunctional alcohol dehydrogenase (Adh), having both alcohol dehydrogenase

and acetaldehyde dehydrogenase activities, mediates the cytosolic formation
of ethanol. The protein designations in this figure are: Asct for acetate
succinyl-CoA-transferase; Me for malic enzyme; Pepck for
phosphoenolpyruvate carboxykinase; Scs for succinyl-CoA synthase; See
Figure 1 for Adh; Fum; Ldh; Mdh; and Pfl designations and Figure 2 for Fmr;
Gpd; Gpp; and Pdc designations. DHAP, dihydroxyacetone phosphate; G3P,
glycerol-3-phosphate; PEP, phosphoenolpyruvate.
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FIGURE 5 | (A) Major metabolic pathways in the anaerobic intestinal parasite
Entamoeba histolytica. The map is adapted from Müller et al. (2012). The
energy metabolic pathways are localized in the cytosol. Pyruvate ferredoxin
oxidoreductase is used for pyruvate decarboxylation/oxidation, ATP is
synthesized through SLP via acetyl-CoA synthase (ADP forming). (B) Major
pathways of anaerobic, molecular H2-producing, fermentative metabolism in

Trichomonas vaginalis. Hydrogenosomal pyruvate breakdown involves PFR
and functional [FeFe]-hydrogenase (HYD) in Trichomonas. Additional major end
products of cytosolic fermentation in Tvaginalis vaginalis include alanine,
lactate, ethanol, and glycerol. The protein designations in this figure are: ALAT
for alanine aminotransferase and PPDK for pyruvate:orthophosphate dikinase.
See Figures 1–3 for the other protein designations.

that the fermentation pathways used for these reactions appear
to have their origins in a typical yeast-type PDC and ADH (van
Warde et al., 1993; Figure 4). The fungi, a highly diverse group,
can also ferment carbohydrates to lactate, glycerol, and ethanol.
Glycerol acts as a redox valve under anaerobic conditions since it
enables re-oxidation of NADH that is generated during the conver-
sion of sugars into biomass. While fungi may also excrete organic
acids, the levels are generally low; these acids include formate,
acetate, lactate, and succinate (Figure 4). Formate production is
not uncommon in fungi as a result of the activity of a cytosolic
(and hydrogenosomal) PFL, which provides the acetyl-CoA for
ethanol production (Boxma et al., 2004; Figure 4).

Finally, pathogenic amoebozoa such as Entamoeba histolytica
often experience anaerobic conditions; their main end products
of anaerobic energy metabolism are alanine, CO2, ethanol, and

acetate (Müller et al., 2012). The enzymes responsible for gener-
ating these products are exclusively in the cytosol (Müller, 2003).
The initial reactions of the pathway involve conversion of PEP to
pyruvate by pyruvate orthophosphate dikinase (PPDK; Reeves,
1968; Figure 5A), which also generates ATP. The pyruvate is
then oxidized via PFR to CO2 and acetyl-CoA, with the latter
converted into a mixture of acetate and ethanol (Figure 5A).
Alternatively the PEP can be carboxylated to OAA by PEP carboxy-
transferase, reduced to malate by malate dehydrogenase (MDH)
and the malate then converted to pyruvate by the malic enzyme
(ME; Figure 5A; as reviewed by Müller et al., 2012). Entamoeba
possesses a bifunctional aldehyde/alcohol dehydrogenase (ADH),
which represents a fusion protein that contains an N-terminal
aldehyde dehydrogenase domain and a C-terminal alcohol dehy-
drogenase domain. This enzyme regenerates 2 NAD+, is present
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in many eukaryotes, and has been found to be highly expressed in
Chlamydomonas (Mus et al., 2007; Catalanotti et al., 2012; Mag-
neschi et al., 2012), other green algae and protozoan parasites such
as Giardia intestinalis, Trichomonas, and euglenids.

Trichomonas vaginalis synthesizes ethanol from pyruvate in the
cytosol via PDC and ADH. However, the main end products of
T. vaginalis fermentative metabolism are distributed between the
cytosol (glycerol, lactate, and ethanol) and the hydrogenosome
(CO2, H2, and acetate; Figure 5B). Similarly, Chlamydomonas can
synthesize glycerol from DHAP, which is catalyzed by glycerol-3-
phosphate dehydrogenase and glycerol-3-phosphatase, and LDH
can catalyze lactate accumulation. However, while both reac-
tions in T. vaginalis occur in the cytosol, their locations in
Chlamydomonas are not clear.

Malate dismutation and acetate and propionate production
(Figure 6)
Fermentation in animals often involves malate dismutation. It is
not uncommon for parasitic worms to switch to complete anaer-
obic metabolism once they are established in the host tissue. In
parasitic mode they convert the PEP generated by glycolysis to
OAA, which is then reduced to malate via a cytosolic malate dehy-
drogenase (Figure 6). This reaction results in re-oxidation of one
molecule of NADH. The malate is then imported into the mito-
chondrion where dismutation occurs; a portion of the malate is
oxidized to acetate (via pyruvate), and another is reduced to succi-
nate. In the latter reaction, malate is converted to fumarate by FUM
and the fumarate is reduced to succinate (Figure 6); this pathway

is similar to the alternative fermentation pathway activated in the
Chlamydomonas hydEF-1 mutant. Many organisms excrete succi-
nate produced by malate dismutation rather than decarboxylating
the succinate to generate propionate plus an extra molecule of
ATP (Pietrzak and Saz, 1981; Müller et al., 2012; Figure 6). Inter-
estingly, in the parasite system, fumarate reduction is performed by
a membrane-associated, anaerobiosis-specific enzyme (FRD) that
is coupled to an electron transport chain that functions specifi-
cally under anaerobic conditions. Electrons are transferred from
NADH to fumarate via rhodoquinone (RQ; Figure 6) instead of
ubiquinone (UQ, which is normally used under oxic conditions);
the lower redox potential of RQ (relative to UQ) allows for the
thermodynamically favorable use of electrons in the synthesis of
succinate by FRD (as reviewed by Müller et al., 2012).

Intracellular metabolite accumulation
O2 deficiency is often associated with a wide range of excreted
metabolites, but may also trigger more complicated responses
involving sequestration of specific end products. Plants expe-
riencing low O2 accumulate alanine and γ-aminobutyric acid
(GABA; reviewed by Bailey-Serres and Voesenek, 2008). Upon
re-oxygenation, alanine can be recycled back to pyruvate, and
GABA can be converted to succinate. This set of amino acid oxi-
dation reactions may minimize the decline in cytosolic pH and
reduce the loss of fixed carbon as ethanol or lactate. Alanine
also accumulates in T. vaginalis and in many animals belong-
ing to the Excavata taxa (Edwards et al., 1989) as a minor end
product.

FIGURE 6 | Malate dismutation and energy metabolism in anaerobic

mitochondria. The map is redrawn based on the review of Müller et al.
(2012). The main end products are acetate and propionate, with minor

amounts of succinate. The designations in this figure are: FRD for fumarate
reductase; PDH for pyruvate dehydrogenase complex; and RQ for
rhodoquinone. See previous figure for other designations.
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A less common fermentation process, but largely used in marine
environments, involves opine formation. This pathway is localized
to the cytosol and involves pyruvate condensation with an amino
acid in a redox reaction that regenerates NAD+. A possible advan-
tage of this alternative pathway for balancing cellular redox is that
opine is less acidic than lactate. Moreover the process maintains an
osmotic equilibrium since one amino acid is consumed per opine
synthesized (Ballantyne, 2004).

Denitrification (Figure 7)
The capacity for nitrate respiration is widespread among bacteria,
fungi, and other eukaryotic organisms (Morozkina and Kurakov,
2007). Details of the denitrification pathway have been studied in
fungi and bacteria (see previous paragraphs). On the other hand,
the enzymes required for nitrogen metabolism in foraminifera
and diatoms are not well characterized, although the occurrence
of the pathway was noted (Risgaard-Petersen et al., 2006; Kamp
et al., 2011).

Numerous reports have demonstrated the presence of two main
pathways for denitrification; one is localized in the mitochondrion
and usually occurs under low O2 conditions, while the other,
often referred to as ammonia fermentation, is localized in the
cytosol (Zhou et al., 2001; Takasaki et al., 2004; Morozkina and
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acetogenic oxidation of ethanol and substrate-level phosphorylation.

The protein designations in this figure are: Ald, alcohol dehydrogenase;
Adda, acetaldehyde dehydrogenase; Nar, nitrate reductase; and Nir, nitrite
reductase.

Kurakov, 2007; Figure 7). The latter pathway appears to be acti-
vated under strict anoxic conditions and involves reduction of
nitrate to ammonia using reductant generated by the catabolic
oxidation of ethanol (the donor of electrons) to acetate, which
is coupled to SLP. As shown in Figure 7, the ethanol is oxidized
to acetaldehyde by an alcohol dehydrogenase (designated Ald),
which is converted to acetyl-CoA by acetaldehyde dehydrogenase
(AddA). The acetyl-CoA is then converted to acetate and CoA, with
the concomitant production of ATP by Ack (Zhou et al., 2001).
Under hypoxic conditions the ethanol is oxidized to acetate and
the electrons generated in the reaction are used to reduce nitrite
to N2O, which is excreted from cells (Zhou et al., 2001; Figure 7).
Nitrate and nitrite reductases catalyze the reduction of nitrogen
oxides to ammonia using NADH as the electron donor, and are
assimilatory enzymes.

H2 and CO2 production
H2 and CO2 are generated in an ancestral anaerobic pathway that
is present in many green algae. The generation of H2 in algae
often serves as a redox valve. This pathway can be in chloro-
plasts, as in Chlamydomonas and other algae, in mitochondria-like
organelles, as in the Stramenopiles, or in the hydrogenosomes of
the amoebozoa, some opisthokonta and Excavata. H2 production
is often associated with PFR activity, which oxidizes pyruvate to
acetyl-CoA and CO2. Reduced ferredoxin transfers electrons to
a hydrogenase that can convert protons and electrons into H2

(Figure 5B).

METABOLITE PARTITIONING, ORGANELLE COMMUNICATION
AND ITS EVOLUTION
CARBON PARTITIONING BETWEEN ORGANELLES
Glycolysis is the backbone of eukaryote carbon and energy
metabolism, leading to the production of pyruvate, ATP, and
NADH. Further metabolism of the pyruvate can occur in the
cytosol, mitochondrion, or plastid. For some eukaryotic organ-
isms fermentation occurs entirely in the cytosol; the organisms
included in this group are the protistan parasites such as Giar-
dia and Entamoeba (Müller, 1996). Fermentations can also occur
partly in hydrogenosomes, as is the case for Trichomonas (Müller,
1993). Among animals, fermentation often entails malate dismu-
tation, involving segments of the mitochondrial electron transport
chain, as in the case of the anaerobic mitochondria of many marine
invertebrates and parasitic worms (Tielens et al., 2002; Tielens and
van Hellemond, 2009).

A number of metabolic reactions can occur in more than one
compartment in the cell and some enzymes may be routed to
more than one cellular location; one example of this is PFL, which
appears to occur in both chloroplasts and mitochondria, but dual
localizations of proteins is not uncommon in eukaryotes (Atteia
et al., 2006; Martin, 2010; Müller et al., 2012). Examining the net-
work of activities in Chlamydomonas exposed to anoxic conditions
raises some fundamental questions; one very important question
is “How can an entire metabolic pathway be transferred to a new
compartment?” This issue is still far from being resolved and
more detailed biochemical and evolutionary analyses are neces-
sary. However, it is becoming evident that over evolutionary time,
enzymes and pathway can readily undergo re-compartmentation
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among subcellular locations in the cell including the mitochon-
drion, cytosol, hydrogenosome, and chloroplast. Small changes
in targeting sequences might result in mistargeting, which could
explain how individual activities, as well as entire pathways are
found in more than one cellular compartment (Martin, 2010).

EVOLUTIONARY INSIGHTS
This review presents information indicating that overall, the differ-
ent groups of eukaryotic organisms share the same core pathways
for hypoxic/anoxic energy metabolism. Although distinct mech-
anisms are used by obligate and facultative anaerobes, there is
a certain set of enzymes consistently associated with fermenta-
tion metabolism among a variety of organisms ranging from the
bacteria to algae, fungi, and metazoans. The heterofermentation
that is associated with the algae differs from lactate or ethanol
homofermentation that occurs in yeast and various multicellular
organisms including plants and animals; fermentation patterns
in Chlamydomonas show some similarities to mixed-acid fermen-
tation, which is common in the enteric bacteria (Neidhardt et al.,
1990). The Chlamydomonas genome appears to contain a complete
(or near complete) spectrum of genes involved in anaerobic energy
metabolism across all eukaryotes (Müller et al., 2012; Atteia et al.,
2013). However, the ancestry of these genes, whether from single
or multiple origins, remains to be established. Müller et al. (2012)
in a recent review favor the hypothesis that many of the enzymes
associated with anaerobic energy metabolism in eukaryotes share a
common ancestor, which is supported by the finding that different
eukaryotic lineages possess different subsets of the same ancestral
collection of genes. Furthermore, if the various genes for anaerobic
metabolism in protists were derived from multiple ancestral genes,
then evidence for the lateral transfer of genes from multiple sources
should be apparent. The fact that no eukaryotes perform sulfate
reduction, ammonium oxidation, or methane oxidation suggests
that the independent lateral transfer of anoxic pathway genes to
eukaryotes is not a common occurrence. Instead, different lin-
eages of eukaryotic anaerobes use distinct enzyme combinations
selected from a limited core inventory of fermentative pathways.
Although a common origin of these pathways is speculative at this
point, Müller et al. (2012) observes that there is no pattern of lin-
eage specific acquisition, and it remains unclear why alternative
anoxic strategies are not widely observed in eukaryotes.

CONCLUSION
Chlamydomonas is a metabolically versatile organism that can
perform photosynthetic CO2 fixation, aerobic respiration, and
anaerobic fermentation. This alga has served as a model system to
examine many aspects of photosynthetic metabolism and recently
has been used in studies of anaerobic metabolism; these latter
studies have shown that Chlamydomonas contains a large and com-
plex repertoire of anaerobic enzymes that are distributed among
the different compartments of the cell. Initial characterizations
have demonstrated that Chlamydomonas has flexible, mixed-acid
fermentation, with features common to bacterial-, plant-, and
yeast-type fermentation. Many pathways and enzymes associ-
ated with fermentation metabolisms in this alga are just being
defined, and there is almost nothing known about the mecha-
nisms by which these pathways are regulated and the trafficking
of fermentation products among the different compartments in
the cell. In general, photosynthetic algae appear to have a broad
inventory of fermentative enzymes and, based on evidence dis-
cussed in this review, it appears that anaerobic respiration among
eukaryotic algae is comparatively rare while anaerobic fermenta-
tion is widespread. Most enzymes for fermentative metabolism
in the algae, often inferred from genomic and metabolic studies,
have not been characterized biochemically. Expression patterns
of genes encoding these enzymes and the biochemical properties
of these enzymes and pathways need further characterization in
a broader spectrum of algal systems. In addition, the diversity of
end products that the various algae can synthesize during anaer-
obic fermentation is still mostly unknown. This information will
be critical for developing a clear understanding of the metabolic
diversity both within and among the different algal groups and the
ways in which fermentation pathways have evolved and are shaped
by environmental conditions. Finally, fermentation metabolism in
the algae appears to represent a significant ecological component
of carbon flux in soils (and sediments) that has a strong impact on
its content of organic acids, alcohols, and H2; more focus on fer-
mentation in the future is likely to unmask a relatively unexplored
aspect of carbon cycling in the environment.
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