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Flowering plants initially diversified during the Mesozoic era at least 140 million years ago
in regions of the world where temperate seasonal environments were not encountered.
Since then several cooling events resulted in the contraction of warm and wet environments
and the establishment of novel temperate zones in both hemispheres. In response, less
than half of modern angiosperm families have members that evolved specific adaptations
to cold seasonal climates, including cold acclimation, freezing tolerance, endodormancy,
and vernalization responsiveness. Despite compelling evidence for multiple independent
origins, the level of genetic constraint on the evolution of adaptations to seasonal cold is
not well understood. However, the recent increase in molecular genetic studies examining
the response of model and crop species to seasonal cold offers new insight into the
evolutionary lability of these traits.This insight has major implications for our understanding
of complex trait evolution, and the potential role of local adaptation in response to past and
future climate change. In this review, we discuss the biochemical, morphological, and
developmental basis of adaptations to seasonal cold, and synthesize recent literature on
the genetic basis of these traits in a phylogenomic context. We find evidence for multiple
genetic links between distinct physiological responses to cold, possibly reinforcing the
coordinated expression of these traits. Furthermore, repeated recruitment of the same
or similar ancestral pathways suggests that land plants might be somewhat pre-adapted
to dealing with temperature stress, perhaps making inducible cold traits relatively easy to
evolve.
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INTRODUCTION
Since the late Eocene and Oligocene around 47.5 to 26 million
years ago (mya) the Earth has experienced dramatic cooling events,
resulting in an overall contraction of the tropics, and establish-
ment of novel temperate zones in both northern and southern
hemispheres (Zachos et al., 2001; Stickley et al., 2009). In response
to this cooling, several ancestrally tropical lineages have success-
fully diversified outside their ecological zone of origin, becoming
adapted to cooler and often more seasonal environments (Latham
and Ricklefs, 1993; Sandve and Fjellheim, 2010). However, the fact
that less than half the families of modern angiosperms are rep-
resented in the temperate zones suggests that adaptations to cold
seasonal climates might be difficult to evolve (Ricklefs and Renner,
1994; Donoghue, 2008).

Support for the hypothesis that adaptations to low or freezing
seasonal temperatures are relatively hard and/or slow to evolve
comes from the fact that climate cooling during the Eocene–
Oligocene boundary was associated with large-scale extinctions
of both animals and plants (Ivany et al., 2000), and by the appar-
ent complexity of physiological and morphological adaptations
to cold (see later sections). However, as an alternative hypoth-
esis, it has been postulated that, since climate cooling has been
an ongoing process throughout the Cenozoic, the relatively recent
expansion of cold temperate zones has meant that only a minor-
ity of plant families have been historically party to selection by

cold winters (Fine and Ree, 2006). Thus, there is still much
debate about whether different adaptations to extended periods of
cold can evolve quickly enough to allow range expansions and/or
local adaptation under gradual or rapid climate change conditions
(Franks et al., 2007; Cook et al., 2012). The focus of this review is
to highlight the major ways in which plants have adapted physio-
logically to cold seasonal environments, and to synthesize some of
the current available data on the genetic basis of these adaptations,
with the general goal of understanding the evolutionary lability of
cold-season traits.

PHYSIOLOGICAL AND MORPHOLOGICAL ADAPTATIONS TO
SEASONAL COLD
Plant species in both the cold temperate zones and the tropical
highlands can experience periods of cold or freezing tempera-
tures that are potentially detrimental to growth and development.
However, a key difference between temperate and tropical high-
land species is the timing and duration of cold, either occurring
on a diurnal cycle (tropical highland species) or an annual cycle
(temperate species). Despite evidence for overlap in the genetic
response to cold (Dhillion et al., 2010; Greenup et al., 2011), the
extent to which cold occurs diurnally or seasonally has major
implications for the life history strategies that are adopted by
plant populations in a given environment (e.g., Teutonico and
Osborn, 1995). The focus of this review is physiological adaptation
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to seasonal cold, i.e., adaptation to the coldest season of the year
in temperate climates.

Unlike animals, individual plants are immobile. Thus, in order
to reduce the negative effects of winter cold, many temperate
plants must synchronize their sensitive reproductive output with
favorable environmental conditions of the spring and summer
(Bradshaw, 1972; King and Heide, 2009). In the case of spring
annuals, germination, reproduction, and senescence occur during
the warm seasons. In order to avoid winter growth, spring annual
seeds remain dormant during the winter, only to germinate in
response to inductive temperatures in the spring (Hemming and
Trevaskis, 2011). By contrast, winter annuals set seed and germi-
nate in the fall, overwinter in a vegetative growth state, and flower
in the spring. The ability of plants to respond to an extended period
of cold to rapidly attain flowering competency is termed vernal-
ization responsiveness (Chouard, 1960). Furthermore, since the
aerial vegetative structures (i.e., stems and leaves) of winter annu-
als are subject to cold, vernalization responsive plants are often, but
not always (Rapacz and Markowski, 1999), induced into a state of
cold and/or freezing tolerance.

Similar to annuals, temperate perennials vary in their life his-
tory strategies for dealing with seasonal cold. In the case of
herbaceous perennials, germination, reproduction, and senes-
cence occur during the warm seasons. However, rather than relying
only on seed to produce the next generation, herbaceous peren-
nials are capable of secondary rounds of vegetative growth from
dormant underground meristems (e.g., rhizomes), which occurs
at the conclusion of winter. By contrast, woody perennials such
as trees, often delay their flowering for several years until a crit-
ical biomass is achieved (Rohde and Bhalerao, 2007). As in the
case of winter annuals, temperate herbaceous perennials are often
responsive to vernalization, and can tolerate chilling and frost.
Furthermore, in addition to cold tolerance, many temperate and
boreal trees are able to protect new growth from harsh winter con-
ditions by becoming dormant prior to winter (endodormancy;
Lang et al., 1987; Howe et al., 2003; Campoy and Egea, 2011).
Recent studies on the genetic basis of these varied adaptations to
winter cold offer exciting opportunities to understand constraints
on plant transitions from the tropical to the temperate zone, and
vice versa. This is particularly relevant in the face of current and
projected changes to our climate. The following sections will focus
on the evolution and genetic basis of three important physiologi-
cal cold adaptations: cold acclimation (i.e., the seasonal acquisition
of cold and freezing tolerance), endodormancy, and vernalization
responsiveness. However, first we will consider what is currently
known about the phylogenetic pattern of these traits across seed
plants, and their relationships to climate.

PHENOTYPIC CORRELATIONS AND THE PHYLOGENETIC
DISTRIBUTION OF COLD ADAPTIVE TRAITS
In temperate plants that experience prolonged cold to sub-zero
winter temperatures, above ground tissues are susceptible to
delayed growth and damage by frost. Thus, high latitude plants
that undergo endodormancy (woody perennials), or are respon-
sive to vernalization (herbaceous annuals and perennials), are
often also able to induce cold tolerance through a process known
as cold acclimation (Howe et al., 2003; see Cold Acclimation

and Cold Tolerance). For example, non-vernalization responsive
(spring) wheat varieties generally have lower freezing tolerance
than vernalization responsive (winter) wheat, and in winter wheat
length of vernalization requirement is positively correlated with
speed of cold acclimation (Prasil et al., 2004). Furthermore, in
temperate trees such as Pinus contorta and Douglas-fir (Pseu-
dotsuga menziesii), elevation and distance from warmer ocean
climates are strongly associated with the timing of growth cessa-
tion and endodormancy and the temperature required to induce
cold acclimation and subsequent freezing tolerance (Campbell and
Sugano, 1979; Howe et al., 2003). A similar trend has been found
between length of vernalization needed to elicit flowering and
continental-oceanic gradients in A. thaliana (Lewandowska-Sabat
et al., 2012).

Despite the correlation between cold adaptive traits, there
are examples of endodormant and vernalization responsive
plants that cannot induce cold tolerance, and vice versa. For
example, Thuja plicata and Tsuga heterophylla both acclimate
to cold, but do not experience endodormancy (Silim and
Lavender, 1994), several trees undergo endodormancy without
acclimating to cold (Kramer and Kozlowski, 1979), and sev-
eral vernalization-responsiveness cereal cultivars are considered
cold-sensitive (Tester and Bacic, 2005). The lack of a strict
association between endodormancy/vernalization responsiveness
and cold acclimation might be explained by the fact that low
non-freezing temperatures can be detrimental to young bud
development without affecting growth of other plant structures.
For example, in plants adapted to, or derived from, subtrop-
ical climates, synchronization of bud development with warm
conditions might be enough to escape the negative effects of occa-
sional low winter temperatures, without the additional need for
cold/freezing tolerance. Alternatively, boreal plants that experience
sub-zero temperatures for large parts of the year might benefit
from constitutive freezing tolerance, negating the importance of
cold acclimation.

As outlined in the introduction, angiosperm families contain-
ing temperate species are less common than families confined
to the tropics (Ricklefs and Renner, 1994; Donoghue, 2008).
However, temperate taxa are distributed throughout the seed
plant phylogeny (Ricklefs, 2005; Figure 1). Thus, the timing of
angiosperm diversification relative to global Eocene cooling events
suggests numerous independent origins of temperate seed plants
(Wang et al., 2009b). How many of these major lineages evolved
physiological adaptations to seasonal cold? With the exception of
early-diverging angiosperms and several tropical gymnosperms
for which there are no or limited experimental data, a broad lit-
erature search suggests that cold acclimation, endodormancy, and
vernalization responsiveness have evolved in all major seed plant
clades (Figure 1). Thus, at a broad phylogenetic scale, adaptations
to cold might be relatively easy to evolve. In the following sections,
we review available genetic data to determine whether multiple
independent origins of cold traits can be explained by the mod-
ification of pre-adapted pathways (e.g., exaptations, sensu Gould
and Vrba, 1982), and/or represent novel evolutionary innovations.
We also suggest future studies that could be carried out to deter-
mine the potential for evolution of seasonal cold traits on shorter
timescales and in response to current global change.
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FIGURE 1 | Evolution of cold adaptive traits in seed plants. Relationships
among major seed plant orders are inferred using representative taxa from
Smith et al. (2011) in phylomatic (Webb and Donoghue, 2005). Orders are
color-coded as primarily temperate (blue), broadly distributed, or primarily
tropical (red) based on the APG website (Stevens, 2001 onward). Blue stars
indicate orders where trees are primarily temperate based on Ricklefs (2005).
Evidence for endodormancy (E), cold acclimation/freezing tolerance (A), and
vernalization responsiveness (V) are denoted for each order with example
species. Since most species have not been tested for cold adaptations,
absence of data does not necessarily indicate absence of traits. However,
since cold climates arose after major radiations in seed plants, presence data
(based on Krug, 1991; De la Rosa et al., 2000; Kawamata et al., 2002; Wilson

et al., 2002; Karlson et al., 2004; Streck and Schuh, 2005; Lopez and Runkle,
2006; Fausey and Cameron, 2007; Kalberer et al., 2007; Mewes and Pank,
2007; Rohwer and Heins, 2007; Svendsen et al., 2007; Padhye and Cameron,
2008, 2009; Pietsch et al., 2009; Zlesak and Anderson, 2009; Biasi et al., 2010;
Byard et al., 2010; Ghelardini et al., 2010; Kaymak and Guvenc, 2010; Kubota
et al., 2010; Lenahan et al., 2010; Rantasen and Palonen, 2010; Caffarra et al.,
2011; Cave et al., 2011; Charrier et al., 2011; Dogramaci et al., 2011; Lin et al.,
2011; Adhikari et al., 2012; Andreini et al., 2012; Bilavcik et al., 2012;
Diaz-Riquelme et al., 2012; Nishitani et al., 2012; Sanchez-Perez et al., 2012;
Whitman and Runkle, 2012; Alessandro et al., 2013; Guzy-Wrobelska et al.,
2013; Jones et al., 2013; Mojtahedi et al., 2013) indicates multiple origins of
cold adaptive traits across the phylogeny.
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COLD ACCLIMATION AND COLD TOLERANCE
Cold tolerance is a highly complex trait that encompasses both
the ability to tolerate the direct effects of low temperatures on
plant function and the indirect effects of ice formation in and
surrounding the plant. Direct effects of cold conditions change
biological thermodynamic processes, biomolecule stability and
function, and alter normal cellular processes such as photosyn-
thesis, inter- and intracellular transport, and the balance between
production and neutralization of toxic reactive oxygen species
(ROS; Thomashow, 1998; Figure 2). By contrast, indirect effects
of ice formation that occur during sub-zero temperatures create
a different kind of cellular stress. First, extracellular ice formation
depletes available water in and around cells, affecting normal water
dependent processes and inducing freezing dehydration with asso-
ciated cell membrane disruption (Steponkus et al., 1998). Second,
large ice crystals grow at the expense of the formation of small
new crystals, a process referred to as ice recrystallization (Capic-
ciotti et al., 2012). This process generates large and potentially
damaging expanding crystals in extracellular spaces. Although
most species have some innate tolerance to a sudden exposure to
cold, many temperate species have evolved the ability to gradually
increase their freezing tolerance during extended periods of cold,
but non-freezing, temperatures and changing photoperiod during
autumn (Thomashow, 1999; Catalá et al., 2011). This inducible
process is referred to as cold acclimation, and ultimately leads to

healthy plants that can successfully reproduce the following spring
(Figure 2).

MOLECULAR AND PHYSIOLOGICAL CHANGES ASSOCIATED WITH COLD
ACCLIMATION AND COLD TOLERANCE
Cold acclimation involves major changes in the biochemical and
physiological state of the plant, improving low temperature stress
tolerance. In general, proteins and compounds with various pro-
tective functions are increased, while photosynthesis and several
other metabolism-related biochemical pathways are suppressed
(e.g., Fowler and Thomashow, 2002; Lee et al., 2005; Rudi et al.,
2010; Winfield et al., 2010; Table 1). Although cold acclimation
genes and genetic pathways can vary widely between species, some
molecular and physiological changes seem to be similar across
major angiosperm clades (reviewed in Sandve et al., 2011).

The ability to manipulate ice formation has arisen multiple
times throughout angiosperm evolution, and is achieved either by
decreasing the freezing point (thermal hysteresis) or by inhibit-
ing ice recrystallization (Griffith and Yaish, 2004; Byard et al.,
2010; Figure 2). Although thermal hysteresis is commonly found
in plants, it is not affected much by cold acclimation (Urrutia
et al., 1992); ice recrystallization inhibition is believed to be more
important for plant cold acclimation (Griffith and Yaish, 2004;
Table 1). Ice recrystallization inhibition is found in species of
many plant lineages (Doucet et al., 2000) and is caused by a range

FIGURE 2 | Effect of cold on plant phenotype. In herbaceous plants (left)
such as A. thaliana and wheat, cool autumnal temperatures induce cold
acclimation mostly in young leaves, and the acquisition of floral competency
in the shoot apical meristem. In A. thaliana, cold acclimation is also induced
by short days, and results in a decrease in growth rate through the gibberellic
acid pathway, and an increase in freezing tolerance within cells (middle).
In woody plants (right) such as pines and birch, endodormancy can be
induced as early as late summer and results in the complete cessation of
meristematic mitosis. As in herbaceous plants, cool temperatures lead to cold

acclimation and a gradual increase in freezing tolerance, sometimes (e.g.,
deciduous trees) but not always (e.g., evergreen trees) resulting in a reduction
in whole-plant growth. At the cellular level, freezing tolerance results from the
ability of cells to deal with dehydration, ice crystal formation, biomolecule
instability, and disruption to photosynthesis. At the whole-plant level, some
freezing tolerant woody plants are able to deal with the increased likelihood
of embolism resulting from bubbles formed when dissolved gases are
released from frozen xylem sap. Asterisk denotes species-level differences in
growth responses to cold acclimation. VR, vernalization responsiveness.
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Table 1 | Genes and pathways regulated during cold acclimation.

Class Subclass Regulation Function Reference

Protective Antioxidant Up Free oxygen radical

regulation

Winfield et al. (2010)

Chaperones Up Biomolecule

protection/stabilization

Carvallo et al. (2011)

Dehydrins/LEA Up Unknown Hanin et al. (2011)

Proline Up Osmoregulation Janská et al. (2011)

GABA Up Osmoregulation Janská et al. (2011)

Ice interacting, e.g.,

LpIRI-a/b

Up Reduce freezing point,

inhibit ice recrystallization

Sidebottom et al. (2000); Griffith and Yaish (2004),

Winfield et al. (2010); Zhang et al. (2010),

Janská et al. (2011)

Protective/signaling Carbohydrate metabolism/

starch degradation

Up Stabilize membranes,

osmoregulation, signaling

Maruyama et al. (2009); Janská et al. (2011)

Lipid membrane Lipid membrane remodeling,

e.g., AtSFR2

Up/down Non-bilayer formation,

membrane stabilization

Moellering et al. (2010)

Metabolism Homeostatic Down Metabolic and energetic

control

Huner et al. (1993); Fowler and Thomashow (2002),

Li et al. (2004)

of diverse proteins, including beta-1,3-glucanases, WRKY pro-
teins, chitinases, and thaumatin-like proteins (Griffith and Yaish,
2004 and references therein). For example, in eudicots the carrot
(Daucus carota) polygalacturonase inhibitor protein inhibits ice
recrystallization and decreases the freezing point; its expression in
tobacco (Solanum tabacum) and A. thaliana results in inhibition
of ice recrystallization and increased freezing tolerance (Worrall
et al., 1998; Meyer et al., 1999). In monocots, a different Pooideae
(Poaceae)-specific inhibitor of ice recrystallization-protein (IRIP)
family shows strong inhibition of ice recrystallization (Sidebottom
et al., 2000), which has been shown to increase freezing tolerance
in planta (Zhang et al., 2010).

Freezing induced cell dehydration is another factor plants
have to deal with during winter (Uemura et al., 1995; Figure 2).
During cold acclimation plants gain the ability to modify mem-
brane stability, which involves both changes to the cell membrane
lipid content (Li et al., 2004; Moellering et al., 2010) and pro-
duction of membrane-interacting protective compounds, such
as proline and a diversity of carbohydrates (Fujikawa et al.,
1999; Hisano et al., 2004; Valluru and Van den Ende, 2008;
Table 1). Manipulation of lipid metabolism and membrane lipid
composition in transgenic plants has improved freezing and chill-
ing tolerance in tobacco (Khodakovskaya et al., 2006), poplar
(Populus sp.; Zhou et al., 2009), and tomato (S. lycopersicum;
Domínguez et al., 2010).

In addition to proteins and compounds with direct protective
action in cold, modulation of photosynthetic processes is a com-
mon cold acclimation response among angiosperms (Figure 2).
During photosynthesis, light energy is absorbed and converted
to chemical energy in thylakoid membranes of chloroplasts, and
then used for CO2-fixation in the Calvin cycle. Absorption of light
by photosystem II (PSII) normally leads to light-induced damage

of the PSII, a process referred to as photoinhibition, which is
counteracted by a PSII damage repair mechanism that restores
PSII function (Hetherington et al., 1989; Aro et al., 1993, 2005;
Melis, 1999; Bascuñán-Godoy et al., 2012). However, if the level
of absorbed light energy greatly exceeds that of the consumed
chemical energy this will impair PSII damage repair and acceler-
ate photoinhibition (Takahashi and Murata, 2008), with potential
detrimental consequences for plant growth (Melis, 1999). Low
temperatures promote increased photoinhibition (Hetherington
et al., 1989), and to minimize photoinhibition-associated dam-
age, higher plants undergo photosynthetic acclimation during
cold acclimation either by increasing the energy demand through
increased carbon assimilation and carbon metabolism (Huner
et al., 1993), dissipation of excess excitation energy as heat
(Dall’Osto et al., 2005), or improving the PSII repair machin-
ery (Bascuñán-Godoy et al., 2012; Table 1). Photoinhibition is
also detrimental to the entire cell due to the associated increase
of ROS (Krause, 1988). Photoinhibition has been shown to reg-
ulate the expression of genes in cold acclimation (Gray et al.,
1997), hence, a plants’ freezing tolerance is inherently linked to
temperature-induced photoinhibition. Variation in the capacity
for photosynthetic acclimation during cold acclimation is corre-
lated with genotypic differences in winter survival and freezing
tolerance of grasses (Rapacz et al., 2004). Moreover, the C-
REPEAT binding factor (CBF) pathway has been shown to alleviate
photoinhibition in autumn conditions (Yang et al., 2010).

In woody species, freezing temperatures can disrupt whole-
plant functioning by limiting long-distance water transport in
the xylem (Sperry et al., 1994; Améglio et al., 2001). This is
particularly true following xylem embolisms (Figure 2), which
are often induced by freeze–thaw cycles in regions that expe-
rience freezing winter nights and above freezing winter days,
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such as North Africa, the Mediterranean region of Europe, and
southern parts of North America (Cavendar-Bares et al., 2005;
Meideros and Pockman, 2011). Although variation in resistance
to embolism can be explained by differences in vessel diameter
and architecture (Sperry et al., 1994; Améglio et al., 2001), cold
acclimation has been found to reduce xylem embolisms in oak
(Quercus) and several conifers (Hammel, 1967; Sperry et al., 1994;
Cavendar-Bares et al., 2005). Furthermore, it is hypothesized that
some woody plants can repair winter embolism; the mechanisms
underlying repair and induced resistance are largely unknown
(Cavendar-Bares et al., 2005).

SENSING AND SIGNALING COLD
How low temperature is sensed and then signaled to the cell
nucleus is generally not well understood. The best-studied tem-
perature sensing mechanism is membrane fluidity. Membranes
surrounding cells, mitochondria, and chloroplasts consist of a lipid
bilayer, and low temperatures causes lipid membranes to become
more rigid (Alonso et al., 1997). Chemically induced membrane
rigidity results in cytoskeleton changes, increased Ca2+ influx
to the cell, and changes in activity of certain protein kinases,
which ultimately result in transcription of cold-induced genes that
artificially mimic the process of cold acclimation and improve
freezing tolerance of plants (Örvar et al., 2000; Sangwan et al.,
2001). In addition to cell membrane changes, abscisic acid (ABA;
Llorente et al., 2000; Xiong et al., 2001) and ROS (Lee et al., 2002)
accumulation in warm conditions has been shown to initiate pro-
cesses similar to cold acclimation, resulting in increased freezing
tolerance.

Recently, a molecular model of cold signaling, linking cold
sensing and transcription, has been put forward (Doherty et al.,
2009). The model includes four components; Ca2+, calcium mod-
ulated proteins (calmodulins), calmodulin binding transcriptional
activators (CAMTAs), and cold responsive transcription factors.
Low temperatures increase the Ca2+ influx (probably as an indi-
rect response to more rigid membranes) and activate calmodulin
proteins, which subsequently activate other Ca2+-unresponsive
CAMTA proteins essential for cold acclimation. The A. thaliana
genome contains six CAMTA genes with calmodulin binding-
and DNA binding CG-1 (CGCG) domains (Bouché et al., 2002).
Absence of the CG-1 element in promoters of cold responsive
transcription factors (both CBF and non-CBF), leads to a decrease
in their transcript levels of up to 40–50% (Doherty et al., 2009).
Loss-of-function CAMTA gene mutants are unable to acclimate to
cold and drought, and so are sensitive to freezing (Doherty et al.,
2009; Pandey et al., 2013). It should be noted that the validity of
this model with respect to the role of calmodulin as Ca2+ signal
sensors has not been experimentally tested.

TRANSCRIPTIONAL REGULATION OF THE COLD ACCLIMATION PROCESS
At least 50–60 transcription factors are known to be important in
initiation of cold acclimation in A. thaliana, including members
of the AP2, MYB, MYC, bZIP, and Zn-FINGER transcription fac-
tor families, but relatively little is known about their downstream
targets (Fowler and Thomashow, 2002; Lee et al., 2005; Vogel et al.,
2005; Knight et al., 2009). The only well characterized cold accli-
mation pathway in plants is the INDUCER OF CBF EXPRESSION

(ICE)-CBF-COLD-RESPONSIVE (COR) cold response pathway
(Gilmour et al., 1988; Chinnusamy et al., 2003; Stockinger et al.,
2007). During plant chilling, expression of ICE genes triggers
rapid (∼15 min) transient up-regulation of CBFs (Chinnusamy
et al., 2003; Dong et al., 2006), which together directly or indirectly
regulate approximately 30% of all cold-induced transcriptional
changes (Vogel et al., 2005; Svensson et al., 2006; Van Buskirk
and Thomashow, 2006; Table 1). The initial ICE-CBF regula-
tory switch was described in A. thaliana, but data suggest it is
functionally conserved in apple (Malus domestica, Rosaceae), and
(at least partially) in grasses, subfamily Pooideae (Chinnusamy
et al., 2003; Badawi et al., 2008; Feng et al., 2012). Cold-induced
CBFs are found in species across all land plant lineages (e.g., Skin-
ner et al., 2005; Xiong and Fei, 2006; Pennycooke et al., 2008),
and their protein products bind to CCGAC core motifs in the
promoters of diverse cold and dehydration responsive genes,
including themselves (Liu et al., 1998; Novillo et al., 2004;
Stockinger et al., 2007).

In addition to cold, CBF transcription is affected by pho-
toperiod. Expression of A. thaliana CBFs fluctuates on a diurnal
basis, peaking around 8 h after the dawn zeitgeber (Fowler
et al., 2005). Under long day conditions, CBF gene expres-
sion is repressed by the action of PHYTOCHROME B (PHYB),
PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) and PIF7
(Lee and Thomashow, 2012). By contrast, under short days,
reduced mRNA levels and stability of PHYB, PIF4, PIF7 and their
protein products, respectively, result in the derepression of CBF
transcription (Lee and Thomashow, 2012). Although the circa-
dian regulation of CBFs is not well understood, the differential
regulation of CBFs under short versus long days provides a sec-
ondary mechanism by which freezing tolerance can be timed to
coincide with winter.

The plant hormone ABA is a major player in regulating genes
involved in plant stress response through the transcriptional acti-
vation of ABA-dependent transcription factors (Shinozaki and
Yamaguchi-Shinozaki, 2000). The importance of ABA in freezing
tolerance is debated (Gusta et al., 2005), but much evidence sup-
ports a role for ABA in cold acclimation under natural conditions.
First, endogenous ABA-levels increase in A. thaliana and wheat
(Triticum aestivum) during low temperature exposure (Cuevas
et al., 2008; Shakirova et al., 2009). Second, application of exoge-
nous ABA enhances freezing tolerance in whole plants (Chen and
Gusta, 1983; Mantyla et al., 1995) and calli (Dallaire et al., 1994).
Third, many genes expressed during cold acclimation are regu-
lated by ABA, including the CBF genes (Hoth et al., 2002; Knight
et al., 2004; Cuevas et al., 2008; Kobayashi et al., 2008; Shakirova
et al., 2009; Agarwal and Jha, 2010). Involvement of ABA in cold
transcriptional regulation is observed in bryophytes (Bhyan et al.,
2012), monocots, and eudicots (reviewed in Gusta et al., 2005).

CONSERVATION AND DIVERSIFICATION OF COLD ACCLIMATION AND
COLD TOLERANCE
Despite independent evolution over hundreds of millions of years,
some pathways and mechanisms involved in cold acclimation are
similar between species of bryophytes, monocots, and eudicots
(see above). This could be interpreted as evidence for conserva-
tion of ancestral cold response pathways from the earliest land
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plant through the diversification of all major land plant lineages.
An alternative interpretation is that similarities in cold responses
across land plant lineages are due to genetic parallelisms. The lat-
ter could occur if an ancient stress response pathway was recruited
to cold acclimation and cold/freezing tolerance multiple times
independently. Predictions of this hypothesis include substantial
overlap between the cold acclimation/tolerance and other stress
pathways.

One potential pathway that might have been recruited for
cold acclimation and cold/freezing tolerance is the drought toler-
ance pathway. All land plants are constantly battling to minimize
water loss at the atmosphere–plant boundary and prevent cellular
dehydration. Adaptations to withstand dehydration were prob-
ably some of the main evolutionary innovations when plants
moved from aquatic to terrestrial life ∼500 mya; hence basic
molecular responses to dehydration can be assumed to have a
common ancestry in all land plants. Interestingly, many key
cold acclimation responses are tightly linked to dehydration.
For example, in A. thaliana gene expression correlations of
0.15–0.30 are found between response to dehydration stresses
(drought, salt, and osmotic stress) and cold stress (Swindell,
2006). This strong molecular connection between dehydration-
like stress responses and cold can only be explained by the
control of these responses through non-specific stress triggers,
perhaps by cellular redox states, or some other shared signaling
mechanisms.

Following this logic, distantly related cold or freezing tol-
erant species are predicted to have adapted to cold through
changes in partially overlapping molecular pathways, resulting
in the recurring recruitment of (a few) similar pathways. If
this hypothesis holds, we would expect relatively similar initial
transcriptional responses and more diverse downstream molec-
ular changes between species with independent adaptations to
cold. Comparative transcriptome analyses have shown conserved
expression profiles during cold acclimation in potato (S. tubero-
sum) and A. thaliana, despite over 100 mya of independent
evolution (Carvallo et al., 2011). However, more comprehensive
comparative studies of stress responses among species are needed
to better understand the patterns of transcriptional conservation
over macro-evolutionary time scales.

Intriguingly, cold acclimation has also been demonstrated in
green algae (Nagao et al., 2008), but the alga process does not
respond to ABA as many land plants do, suggesting involvement of
different pathways. Algae do contain AP2 domain encoding genes
like the CBF transcription factors, but it is not clear if these tran-
scription factors are involved in cold acclimation. More detailed
studies in algae will enable us to understand if the basic molecular
modules of plant cold acclimation evolved as early as in an aquatic
land plant ancestor.

ENDODORMANCY
Meristem dormancy is a common phenomenon in plants and has
been linked to variation in a number of developmental genes
(reviewed in Doust, 2007; Domagalska and Leyser, 2011). The
most common type of meristem dormancy derives from the abil-
ity of the main axis to suppress the outgrowth of axillary meristems
(apical dominance or paradormancy), and is a major determinant

of architecture and growth habit across higher plants (Lang et al.,
1987). By contrast, endodormancy is specific to temperate woody
perennials, being shaped by both internal factors and seasonal
fluctuations in both temperature and photoperiod (Chuine et al.,
2001; reviewed in Campoy and Egea, 2011; Figures 2 and 3).
Although closely linked to cold acclimation, endodormancy is a
distinct physiological process that is sensitive to, but does not
require, cold or other external factors to be induced (Faust et al.,
1995). Endodormancy can be defined as dormancy under condi-
tions that are conducive to growth (Dogramaci et al., 2011). By
contrast, bud flush, which is induced after endodormancy is bro-
ken and mitotic division reinitiated, relies on a particular regime
of cold followed by warm temperatures, the duration and timing
of which is cultivar/species specific, and is often correlated with
latitude (Saure, 1985; Erez and Couvillon, 1987; Naor et al., 2003;
Campoy et al., 2011).

Despite inherent difficulties in working with woody species,
research on both temperate gymnosperms and angiosperms, such
as apple (M. domestica), apricot (Prunus armeniaca), poplar
(Populus trichocarpa), hybrid aspen (Populus tremula × Populus
tremuloides), and woody spurge (Euphorbia esula), have revealed
many genes and gene networks underlying endodormancy and
bud break (Dogramaci et al., 2011; Hsu et al., 2011; Karlberg et al.,
2011; reviewed in Campoy and Egea, 2011; Figure 3). Available
data suggest a complex interplay between the circadian clock and
ABA (autonomous), gibberellic acid, photoperiod, and tempera-
ture pathways (reviewed in Campoy and Egea, 2011). In species
such as poplar and grape (Vitis vinifera), photoperiod and tem-
perature appear to be major determinants of the timing of bud set
(defined as bud formation and growth cessation) and endodor-
mancy (Howe et al., 2003; Rohde et al., 2011). By contrast, species
such as Pinus contorta that can become endodormant as early as
late summer use alternative cues such as drought and/or node
number (Chuine et al., 2001; Howe et al., 2003). The endodor-
mancy model presented below takes into account the former;
future work is required to determine the genetic basis for summer
onset endodormancy.

GENETIC MODEL FOR BUD SET AND ENDODORMANCY
Although not all aspects of autumn endodormancy have been
worked out, the most plausible genetic model is that bud set
and endodormancy are controlled largely through the differen-
tial regulation of FLOWERING LOCUS T (FT) by photoperiod
and/or temperature (Figure 3). According to research on poplar
and A. thaliana, long summer days stabilize the CONSTANS
(CO) protein through the action of the light-absorbing pro-
tein complex GIGANTIA (GI)/FLAVIN KELCH F BOX (FKF1;
Sawa et al., 2007; Song et al., 2012). Late in the day, GI/FKF1
also acts to degrade CYCLING DOF FACTORs (CDFs), which
are transcriptional repressors of CO, and CO protein levels
are stabilized through the action of another light-absorbing
protein PHYTOCHROME A (PHYA; Yanofsky and Kay, 2002;
Fornara et al., 2009; Andres and Coupland, 2012). In turn CO
up-regulates the major flowering pathway integrator FT, result-
ing in meristem outgrowth and the development of leaf and
branch initials (bud set; Samach et al., 2000). It is postulated
that FT-regulated summer growth is mediated by the action of
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FIGURE 3 | Hypothetical model showing possible genetic links between

cold-regulated growth and reproduction in temperate plants. Expression
levels of FT - and SOC1-like flowering integrator genes are maintained at
moderate levels in summer by the antagonistic action of long day and warm
temperature-regulated genes (A). During cooler temperatures of the autumn,
the ICE-CBF-COR cold acclimation pathway is initiated, resulting in a high
level of flowering repressors, such as FLC - and SVP -like genes. Although
SVP -like gene transcription is dampened by the negative action of FCA- and
FVE-like proteins, levels are high enough to work with FLC to repress FT -like

and SOC1-like genes, resulting in endodormancy in woody perennials (B).
Freezing winter temperatures negatively regulate FRI- and FLC -like genes, or
functional equivalents, resulting in the derepression of FT - and SOC1-like
genes, and the subsequent negative regulation of cold acclimation genes (C).
However, despite up-regulation of FT -like genes in leaves, callus plugs in the
shoot apices hinder the floral transition. During warm conditions of the
spring, the combination of callus plug decay and long day regulation of FT -like
genes results in bud flush and the induction of flowering (D). Unbroken and
broken lines represent strong and weak interactions, respectively.

AINTEGUMENTALIKE1 (AIL) genes that are the direct targets
of FT. Unlike A. thaliana, AIL genes in poplar and hybrid aspen
positively control growth regulators such as D-type cyclins, sug-
gesting that these genes have been recruited to the endodormancy
pathway (Karlberg et al., 2011).

In contrast to the summer growth model, the poplar endodor-
mancy model posits that as temperatures become cooler with the
onset of autumn, expression of circadian clock genes, such as TIM-
ING OF CAB EXPRESSION1 (TOC1) and PSEUDO-RESPONSE
REGULATORs (PRRs), is repressed so that CO expression is no
longer induced (Mas et al., 2003; reviewed in Imaizumi, 2010;
Figure 3). The ability of temperature to regulate circadian clock
gene expression is still being investigated. However, evidence sug-
gests that diurnal hot/cold cycles can replace photoperiod cycles
for entrainment of the circadian clock (Salomé and McClung,
2005; Yamashino et al., 2008; Zuther et al., 2012). Furthermore,
the reduced day length of autumn means that PHYA is no longer
able to repress the expression of dark-regulated genes that reduce
CO protein stability, such as CONSTITUTIVE PHOTOMOR-
PHOGENIC1 (COP1) and SUPPRESSOR OF PHYTOCHROME
A 1 (SPA1; Jang et al., 2008; Zuo et al., 2011). In addition to
CO-dependent reduction of FT levels in the autumn, it is spec-
ulated that poplar FT is further repressed by the action of the
SHORT VEGETATIVE PHASE (SVP)-like genes DORMANCY
ASSOCIATED MADS-BOX 5 (DAM5) and DAM6; reviewed in
Campoy and Egea, 2011). Thus, since poplar FT potentially
mediates signals from the leaves to shoot apical meristems, SVP-
like mediated AIL gene repression might cause the autumnal
cessation of bud growth, which marks the start of leaf fall
and the beginning of cold acclimation (Karlberg et al., 2011;
Figure 3). Further testing of the genetic interactions between
these genes and their protein products will be required to validate
this model.

GENETIC MODEL FOR ENDODORMANCY RELEASE AND BUD FLUSH
Endodormancy occurs either in the absence of cold or with inter-
mittent cold, whereas release of endodormancy occurs in response
to continuous above-freezing temperatures of the late autumn and
winter (Vegis, 1964). As outlined above, levels of the growth activa-
tor/floral pathway integrator protein FT are reduced under short
days from autumn onward due to low levels of CO (Yoo et al.,
2007; Joon Seo et al., 2013). However, during chilling conditions
of the late autumn and early winter, repression of the FT inhibitor
SVP is also reduced, resulting in a potentially moderate increase
of FT during winter (Lee et al., 2007; Figure 3). In addition to
A. thaliana SVP, repression in response to prolonged cold was
recently demonstrated for the SVP-like DAM6 genes in Japanese
apricot (Prunus mume; Sasaki et al., 2011). Moreover, SVP-like
genes have been implicated in induction of endodormancy in leafy
spurge (Euphorbia esula; Horvath et al., 2008). Thus, tempera-
ture regulation of SVP-like genes could be a common mechanism
for endodormancy release during the winter through the negative
regulation of FT-like genes.

Rinne et al. (2011) recently suggested a potential complicating
factor regarding the involvement of FT in endodormancy release
in temperate and boreal trees. During cool autumnal tempera-
tures, mobile signals are potentially blocked from entering hybrid
aspen shoot apices due to the presence of callus plugs (Rinne et al.,
2001). However, during winter freezing temperatures, callus plugs
are gradually removed through the activation of gibberellic acid
responsive genes that regulate GH17 proteins, the latter being asso-
ciated with lipid bodies that help to breakdown callose (Rinne
et al., 2011). Since FT in A. thaliana is a mobile protein that trav-
els from leaves to shoot apices, the formation of callus plugs is
one mechanism that might delay FT signaling in the shoot apex
during autumn. An explicit test of this hypothesis will be required
to determine whether FT is mobile in hybrid aspen and other
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temperate trees. Furthermore, if FT levels do gradually increase in
the shoot apex during the winter it will be interesting to determine
whether this influences the timing of endodormancy release, bud
flush, or both.

BUD FLUSH
Endodormancy affects both vegetative and reproductive meris-
tems through the negative regulation of FT. However, since FT
is a positive regulator of inflorescence meristem genes, it has
been unclear how vegetative meristems maintain their identity
during bud flush. As a possible solution to this puzzle, Hsu
et al. (2011) recently demonstrated that poplar contains two FT
paralogs, FT1 and FT2, that are differentially expressed both spa-
tially and temporally in response to temperature (both genes) and
daylength (FT2; Figure 3). Whereas expression of FT1 peaks dur-
ing winter in leaves, shoots, vegetative buds, and reproductive
buds, FT2 expression is highest during spring, and is confined
to leaves and reproductive buds (Hsu et al., 2011). The sequen-
tial action of FT1 and FT2 on axillary meristems in winter and
spring, respectively, results in discrete zones of floral growth and
vegetative growth along lateral shoots. A similar partitioning of
FT-like gene function has been described for the vernalization
response of sugar beet (Beta vulgaris; Pin et al., 2010; see later
section).

EVOLUTION OF ENDODORMANCY
Like tree habit, endodormancy has multiple independent evo-
lutionary origins, being found in diverse lineages of both gym-
nosperms and angiosperms (Figure 1). Recent studies in poplar
suggest that duplication and diversification of FT-like genes has
been important for the periodic growth of vegetative and inflores-
cence structures along the shoot axis (Hsu et al., 2011). However,
it is unclear whether diversification of FT-like genes contributed
to the evolution of endodormancy per se. Intriguingly, functional
analyses of the closest FT homologs in spruces (Picea sp.) and
pines (Pinus sp.) suggest that the positive role of FT in flower-
ing time evolved after the split of gymnosperms and angiosperms
(Klintenäs et al., 2012). Constitutive expression of spruce FT-like
genes in A. thaliana results in late flowering phenotypes, suggest-
ing that the gymnosperm FT-like genes repress flowering similar
to the A. thaliana FT paralog TFL1 (Klintenäs et al., 2012). In
Norway spruce (Picea abies), PaFTL1 and PaFTL2 are up-regulated
under short days and spring conditions, respectively (Gyllenstrand
et al., 2007; Asante et al., 2011; Karlgren et al., 2011). Together
these studies suggest independent recruitment of FT-like genes
in angiosperm and gymnosperm bud set and bud burst. Similar
studies in other plants will be required to determine the prevalence
of FT-like gene involvement in the evolution of endodormancy.
Furthermore, future research is needed to determine the nature of
regulatory evolution in the FT gene family.

VERNALIZATION RESPONSIVENESS
Vernalization is the process by which an extended period of cold
makes plants competent to flower (Chouard, 1960). In other
words, vernalization responsive individuals will flower earlier
under inductive conditions (long days and warm temperatures)
when those conditions are preceded by a prolonged exposure to

cold. This allows plants to synchronize flowering with favorable
conditions of the spring (Amasino, 2010). Unlike endodormancy,
shoot apices of vernalized plants continue to undergo some level
of mitotic division, so that vegetative growth is maintained. In
addition, vernalization is distinct from seed stratification, the lat-
ter being the release of seed dormancy through chilling (reviewed
in Finch-Savage and Leubner-Metzger, 2006).

Extensive variation for vernalization responsiveness is found
within many lineages of angiosperms, and is associated with
both latitudinal clines and temperature/precipitation variables
(Briggs and Walters, 1997; Stinchcombe et al., 2004; Franks et al.,
2007; Samis et al., 2008; Kim et al., 2009; Méndez-Vigo et al.,
2011; Figure 1). Thus, vernalization responsiveness appears to
have evolved multiple times in response to selection by cold sea-
sonal climates, and is hypothesized to have allowed expansion
of clades within temperate zones (Preston and Kellogg, 2008;
Kim et al., 2009; Edwards and Smith, 2010). For example, at
least 3 out of 17 rosid, 5 out of 16 asterid, 1 out of 9 early-
diverging eudicot, and 4 out of 10 monocot orders contain species
that respond to vernalization. This conservative estimate sug-
gests that vernalization responsiveness is a relatively evolvable
trait at higher taxonomic levels. Whether this can be explained
by relatively simple changes to pre-existing pathways is discussed
below.

GENETIC MODELS OF VERNALIZATION RESPONSIVENESS
In A. thaliana, vernalization responsiveness is mediated through
epigenetic silencing of the flowering repressor gene FLC, and pos-
sibly its five MADS AFFECTING FLOWERING (MAF) paralogs,
by the Plant-HomeoDomain-Polycomb Repressive Complex 2-
(PHD-PRC2) complex (Ratcliffe et al., 2003; Kim et al., 2009).
The PHD-PRC2 complex initiates trimethylation of histone 2
lysine 27 (H3K27me3) and becomes progressively localized to
the first intron of FLC during exposure to cold (Shindo et al.,
2006; Angel et al., 2011; Strange et al., 2011). Recent evidence sug-
gests that the mechanism for PHD-PRC2 recruitment to FLC is
associated with the FLC locus itself (Heo and Sung, 2010). Two
non-coding transcripts that initiate from the first intron [COOL
ASSISTED INTRONIC NONCODING RNA (COLDAIR)] and 3′-
UTR (COOLAIR) of FLC are up-regulated in response to cold, and
negatively regulate the transcription of FLC through recruitment
of PRC2 (Heo and Sung, 2010; reviewed in Ietswaart et al., 2012).
Reduction of FLC transcription in response to vernalization results
in the release of FT and SOC1 from negative regulation, permitting
the shoot apex to respond to inductive flowering signals (Searle
et al., 2006). Following cold treatment, warm temperatures and
long days promote the expression of FT through the photoperiod,
temperature-, and age-dependent pathways. This results in an FT-
mediated morphological shift in the shoot apex from vegetative
to inflorescence identity, via induction of MADS-box genes such
as FRUITFULL (FUL) and APETALA1 (AP1), and the eventual
production of flowers, fruits (siliques), and seeds (reviewed in
Adrian et al., 2009; Amasino, 2010).

Several members of the temperate grass subfamily Pooideae
also respond to vernalization. However, since the ancestor of
grasses was likely tropical, vernalization responsiveness in pooids
is inferred to have evolved independently from vernalization
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responsiveness in the Brassicaceae (Clayton and Renvoize, 1986;
Davis and Soreng, 2008; Preston and Kellogg, 2008; Edwards and
Smith, 2010). In the closely related crop species wheat and barley
(Pooideae), differences in vernalization responsiveness are largely a
result of variation at three major loci: VERNALIZATION1 (VRN1),
VRN2, and VRN3 (reviewed in Trevaskis et al., 2007a; Distelfeld
et al., 2009). However several other genes are implicated in the
pathway (Greenup et al., 2011). VRN1 is homologous to the flower
development genes AP1, CAULIFLOWER (CAL), and FUL in A.
thaliana, and its expression is progressively induced during long
durations of cold in response to vernalization-induced changes
to chromatin at the VRN1 locus (Oliver et al., 2009; Alonso-Peral
et al., 2011). In wheat and barley cultivars that respond to vernal-
ization, VRN1 expression is repressed prior to winter by chromatin
modifications mediated by proteins that interact with regulatory
sites within the promoter or first intron. Simultaneously, the long
day induction of VRN1 is repressed by the zinc-finger CO-like gene
VRN2 (Hemming et al., 2009). Independent of VRN1 expression,
another MADS-box genes, ODDSOC2, is repressed during expo-
sure to cold, resulting in the loss of transcriptional inhibition of
downstream flowering genes (Greenup et al., 2010). Expression
of VRN1 is required for long-term repression of ODDSOC2 and
VRN2 (Trevaskis et al., 2006; Hemming et al., 2008), ODDSOC2
negatively regulates the flower development gene FLOWERING
PROMOTING FACTOR 1 (FPF1; Greenup et al., 2010), and VRN2
negatively regulates the temperate cereal FT ortholog VRN3 above
a certain threshold (Yan et al., 2004, 2006).

EVOLUTION OF VERNALIZATION RESPONSIVENESS
Vernalization responsiveness has evolved independently in sev-
eral plant lineages, presumably in response to climate cooling
events over the past 47.5 million years. Comparative genetic
studies in a range of different angiosperm species suggest that
vernalization responsiveness has evolved primarily through the
neo-functionalization of ancient photoperiod pathway genes,
including CO-like (i.e., VRN2), FT-like, FUL-like (i.e., grass
VRN1), and SOC1-like (i.e., FLC), following their duplication
(Figure 4). For example, phylogenetic analyses suggest that the
FLC-like gene clade of A. thaliana is restricted to the Brassicaceae
(Becker and Theissen, 2003; Ballerini and Kramer, 2011; Figure 4).
Furthermore, although FLC/MAF-like genes are found in other
core eudicots, gene expression tends to be positively rather than
negatively regulated by cold. This is the case for Arabidopsis MAF5,
the Texas bluebell (Eustoma grandiflorum, Gentianaceae) EgFLCL,
and trifoliate orange (Poncirus trifoliate, Rutaceae) PtFLC (Zhang
et al., 2009; Nakano et al., 2011). In A. thaliana, natural variation
in vernalization responsiveness has been linked to variation in the
promoter, first exon, and first intron of FLC, and within the posi-
tive regulator of FLC, FRIGIDA (FRI ; Michaels and Amasino, 1999,
2001; El-Din El-Assal et al., 2001; Werner et al., 2005; Balasubra-
manian et al., 2006; Angel et al., 2011; Bond et al., 2011; Coustham
et al., 2012; Wollenberg and Amasino, 2012). A similar role has
been afforded to the FLC ortholog PERPETUAL FLOWERING 1
(PEP1) in the Brassicaceae species Arabis alpina. However, since
Arabis alpina is a perennial species, cold-induced chromatin modi-
fication of PEP1 is only transient, being reset every growing season
(Wang et al., 2009a).

In sugar beet (B. vulgaris, Amaranthaceae, Caryophyllales)
recruitment of a lineage-specific FT-like gene duplication has been
implicated in the independent origin of vernalization responsive-
ness (Pin et al., 2010; Mutasa-Gottgens et al., 2012). Under warm
conditions, the FT homolog BvFT1 represses its paralog BvFT2,
resulting in a block to flowering. By contrast, under cold condi-
tions, BvFT1 is down-regulated, causing derepression of BvFT2
and promoting flowering (Pin et al., 2010). It was recently dis-
covered that down-regulation of BvFT1 during winter is due to
the repressive action of BOLTING TIME CONTROL 1 (BvBTC1),
which is related to the circadian clock PRR genes in A. thaliana
(Pin et al., 2012). Moreover, variation in the response of BvBTC1
alleles to vernalization has been linked to growth habit differences
in domesticated sugar beet (Pin et al., 2012). Together with the
fact that VRN1 and VRN2 are inferred to have evolved some-
where at the base of (Preston and Kellogg, 2006) or within (Yan
et al., 2004) the Poaceae, respectively, these data suggest that
lineage-specific flowering gene duplications have been important
for independent origins of vernalization responsiveness, either
through subtle switches from flowering inducers to repressors
(e.g., VRN2, FLC, and BvFT1) or more dramatic changes in
regulation and downstream targeting (e.g., VRN1 and BvBTC1;
Figure 3).

GENETIC LINKS BETWEEN SEASONAL ADAPTATIONS TO
COLD
Given the temporal overlap between endodormancy and cold
acclimation, an interesting question is whether these two pro-
cesses are linked at the genetic level. Presently, such links can be
tentatively formed by combining data from cold acclimating but
not endodormant A. thaliana, and endodormant trees. In the case
of A. thaliana, CO is a regulator of both FT and SOC1. Similar to
FT, SOC1 positively regulates the expression of meristem identity
genes, such as FUL and LFY. However, SOC1 also negatively reg-
ulates the cold responsive CBF genes (Seo et al., 2009; Figure 3).
Thus, although it needs to be explicitly tested in endodormant
species, these data suggest a mechanism by which the break of
endodormancy can influence the loss of cold acclimation.

Similar genetic associations can also be postulated for cold
acclimation and vernalization responsiveness. Recent studies have
shown that wheat VRN1 has CBF-binding sites in its promoter,
and that VRN1 negatively regulates CBF genes (Alonso-Peral et al.,
2011). This suggests a negative feedback loop between cold accli-
mation and vernalization. However, it remains to be tested whether
CBF proteins actually bind to the VRN1 promoter, and if so,
whether this interaction is positive or negative. Interestingly, in A.
thaliana genetic evidence suggests that CBF proteins positively reg-
ulate FLC in the autumn, accentuating the repression of flowering
over winter (Seo et al., 2009; Figures 2 and 3). If this connection
also exists in pooid grasses we would predict that CBF proteins pos-
itively regulate repressors of flowering such as VRN2 and homologs
of SVP. Consistent with this, it has been demonstrated that the bar-
ley SVP-like genes Barley MADS1 (BM1), BM10, and Vegetative to
Reproductive Transition gene 2 (VRT2), and wheat VRT2 are up-
regulated by cold (Trevaskis et al., 2007b; Sutton et al., 2009; but
see Kane et al., 2005). Alternatively, CBF proteins could directly
repress flowering by negatively regulating VRN1 or VRN3.
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FIGURE 4 | Importance of gene duplications for the functional evolution

of vernalization responsive genes. (A) Simplified phylogeny of the
APETALA1/FRUITFULL (AP1/FUL) gene family showing the grass-specific
duplication that gave rise to VRN1 based on Litt and Irish (2003) and Preston
and Kellogg (2006). (B) Simplified phylogeny of the CCT zinc-finger gene
family showing the pooid-specific duplication that gave rise to ZCCT1 and
ZCCT2 based on Yan et al. (2004). (C) Simplified phylogeny of the

FLOWERING LOCUS C (FLC ) gene family showing the Brassicaceae-specific
duplication that gave rise to FLC and MAF genes based on Becker and
Theissen (2003). Inferred ancestral functions are stated at the base of each
tree. Stars denote important duplication events for the evolution of VR. Pooid
clades are red, grass clades are purple, monocot clades are orange,
Brassicaceae clades are blue, eudicot clades are green, and angiosperm
clades are yellow.

CONCLUSIONS AND FUTURE PROSPECTS
Low to freezing temperatures are major determinants of latitudi-
nal and altitudinal ranges of plants (Cavendar-Bares et al., 2005),
and less than half of angiosperm plant families are distributed in
regions with seasonally low temperatures (Ricklefs and Renner,
1994; Larcher, 2005). In the next 80 years it is predicted that global
temperatures will increase by 1.1–6.4◦C, and that there will be
an increase in the frequency and/or severity of warm spells dur-
ing winter months (USGCRP, 2009; National Research Council,
2010). Both these escalating intermittent temperature fluctuations
and long-term climate changes have the potential to affect the phe-
nology of cold temperate adapted species that rely on an extended
period of cold for timely flowering (Loik et al., 2004; Offord, 2011).
However, flowering time will ultimately result from the interaction
of different genetic pathways in response to environmental factors
such as photoperiod, cold, heat, water-stress, and developmental
age (Cook et al., 2012). These interactions are only starting to be
worked out.

Contrary to the hypothesis that cold-induced traits are hard
to evolve, phylogenetic analyses in combination with past cli-
mate and trait data suggest multiple independent origins of cold
acclimation, endodormancy, and vernalization responsiveness, at
least in angiosperms. Furthermore, although often correlated,
cold acclimation and endodormancy/vernalization responsiveness
can be uncoupled at the physiological level, potentially allowing
increased flexibility in species-specific responses to seasonal cold.
Does this imply parallel evolution of the same ancestral genes
and/or pre-adapted genetic pathways?

Available data support the hypothesis that cold-induced traits
have evolved multiple times independently through the modi-
fication of the same genetic pathways. This suggests that these
pathways are somewhat pre-adapted to providing avoidance of or
tolerance to cold stress. However, the exact genes and proteins
that have been recruited to cold adaptive traits differ from clade to
clade. Many of the known key regulators of cold-induced physio-
logical traits are members of large gene families that have broadly

conserved roles in stress responses (e.g., dehydrin proteins)
and/or developmental transitions (e.g., VRN1/FUL-like genes).
In Pooideae, Brassicaceae, and poplar several genes involved
in cold acclimation (e.g., CBF/DRE genes and LRR-containing
genes), vernalization responsiveness (CO-like and FLC), and
endodormancy (FT-like genes) have evolved from lineage-specific
duplications (Becker and Theissen, 2003; Yan et al., 2004; Sandve
et al., 2008; Sandve and Fjellheim, 2010; Figure 4). Loss of vernal-
ization responsiveness has been documented for multiple cultivars
of wheat and barley under artificial selection either through the
loss of VRN2, or the loss of negative-cis-regulatory elements in
VRN1 and VRN3 (Yan et al., 2003, 2004; Fu et al., 2005; Andersen
et al., 2006; Szucs et al., 2007; Schwartz et al., 2010; Alonso-Peral
et al., 2011). Whether these changes can happen rapidly enough in
natural populations to combat human-induced climate change is
a hot topic of debate.

Despite an unfolding picture at the broad phylogenetic scale
that suggests multiple evolutionary origins of cold adaptive
traits (Figure 1), relatively little physiological, developmental,
or genomic data are available for understanding the evolu-
tionary lability of seasonal cold adaptations at the family level
and below. This is particularly true for species that might
have retained cold adaptive traits following secondary shifts
to the tropics, thus hampering our understanding of adapta-
tion on relatively short timescales. Nonetheless, exciting recent
and ongoing experimental and phylogenomic studies in both
tropical and temperate taxa of the Brassicaceae (Brassicales),
Poaceae (Poales), Pinaceae (Pinales), and Phrymaceae (Lamiales)
are providing novel insights into the tempo, ancestral selec-
tion pressures, and potential constraints related to the evolution
of cold acclimation/tolerance, endodormancy, and vernaliza-
tion responsiveness (e.g., Lin et al., 2005; Preston and Kellogg,
2008; Sandve and Fjellheim, 2010; Méndez-Vigo et al., 2011;
Sandve et al., 2011; Friedman and Willis, 2013; Humphreys
and Linder, 2013). Successful studies will need to combine
physiological observations with ancestral state reconstruction and
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genetic/genomic analyses to determine the direction of trait shifts,
and any prerequisites for their evolution. Finally, population-
level studies will continue to provide insight into evolution-
ary responses to more subtle (both temporal and quantitative)
seasonal variation in temperature across species’ ranges.
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