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Plant defense against pests and pathogens is known to be conferred by either salicylic
acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or
herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually
antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric
oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling
pathways but no attempt has been made to integrate NO into established SA/JA/ET
interactions. NO has been shown to act as an inducer or suppressor of signaling along
each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class
transcription factors to aid in the initiation of SA-dependent gene expression. Against this,
S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1)
will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In
JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to
over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate
the expression of ET biosynthetic genes but a suppressive role is also observed in the
S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl
groups for ET production. Based on these data a model for NO action is proposed but we
have also highlighted the need to understand when and how inductive and suppressive
steps are used.
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INTRODUCTION
Extensive characterization of plant interactions with pests and
pathogens has allowed the major signaling networks governing
biotic interactions to be elucidated (Davis, 1998; Preston, 2000;
Quirino and Bent, 2003; Pieterse and Dicke, 2007). The hypersen-
sitive response (HR) is effective mainly against (hemi)biotrophic
pathogens and this form of defense is often associated with sal-
icylic acid (SA; Mur et al., 2008a). SA acts via the induction of
a plethora of defense genes, with the most-commonly described
being acidic forms of pathogenesis-related protein (PR) genes such
as PR1 (Cao et al., 1994). The SA signaling pathway has now been
extensively characterized (Figure 1). The translational activator
NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1
(NPR1), localized in an oligomeric form in the cytoplasm (Fu
et al., 2012) interact with the SA receptors NPR3 and NPR4 likely
following redox changes at key cysteine residues that results in a
monomeric NPR1 form which is translocated to the nucleus (Mou
et al., 2003). Within the nucleus, NPR1 interacts with a range
of TGA-class transcription factors which bind to TGACG motifs
encoded within the promoters of SA-induced genes (Zhang et al.,
1999).

Defenses against necrotrophic pathogens such as Botrytis
cinerea, Plectosphaerella cucumerina (Berrocal-Lobo et al., 2002),
and Alternaria brassicicola (Ton et al., 2002) have been linked
to jasmonate and ethylene (hereafter referred to as JA and ET,

respectively) signaling. Plant tolerance to insects is also strongly
influenced by JA, so that there are similarities with resistance
responses to necrotrophs (Howe and Jander, 2008). Both JA and
ET signaling pathways have been exhaustively investigated and
many good overviews are available (for example, Lin et al., 2009;
Gfeller et al., 2010). Briefly, JA are lipoxygenase (LOX)-derived
products of C18:3 acyl chains derived from phospholipids. JA is
conjugated by JAR1 conjugatase to form (+)-7-iso-jasmonoyl-L-
Ile (JA-Ile). JA-Ile interacts with the COI1 protein, a key part of a
Skp-Cullin-F-box (SCFCOI ) complex which targets JASMONATE
ZIM DOMAIN (JAZ) proteins (Chini et al., 2007). This interaction
lead to the destruction of the JAZ repressors via the proteasome
relieving their suppressive effects on a wide range of transcrip-
tional activators MYC2, MYC3, and MYC4 (Chini et al., 2007;
Fernandez-Calvo et al., 2011). The ET receptors ETR1, ERS1,
ETR2, ERS2, and EIN4 are kinases which act as signaling repressors
until ET binding occurs (Hua and Meyerowitz, 1998). The neg-
ative regulation occurs through the activity of putative MAP3K,
CTR1 (Hua and Meyerowitz, 1998) which phosphorylates EIN2.
EIN2 is a central component in ET signaling that in the phospho-
rylated form is located in endoplasmic reticulum. It is likely that
dephosphorylation results in EIN2 translocation to the nucleus
(Ju et al., 2012). Within the nucleus transcriptional activation
involves components such as EIN2 and EIN3 regulating the expres-
sion of key transcription factors ORA59 and ERF1 (AP2/EREBP;
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FIGURE 1 |The impact of nitric oxide on salicylic acid, jasmonate (and

ethylene signaling cascades. Schematic versions of salicylic acid (SA),
jasmonate (JA), and ethylene (ET) signaling cascade. Biosynthetic
enzymes are represented as gray ovals and signaling components are gray
rectangles. Abbreviations in the jasmonate biosynthetic pathway are as
follows: LOX, lipoxygenase; AOC, allene oxide cyclase; OPR, oxo-phyto
dienoate reductase; for the ethylene biosynthetic pathway: ACS,
1-aminocyclopropane-1-carboxylic acid synthase; ACO, 1-aminocyclopropane-1

-carboxylic acid oxidase. Genes and their regulatory promoters are
represented as open boxes. For details of signaling cascades, see
main text. The known NO-regulated steps are indicated: green arrows
indicating that NO has a promontory effects via induction of gene
transcription; S-nitrosylative steps are indicated via a solid black bar and
whether this promotes (green arrows) or inhibit a signaling (red bar) step.
Note that for and ACO and ACS4, the effect of S-nitrosylation has yet to be
determined.

Stepanova and Alonso,2009). In the absence of ET,EIN3 is targeted
by the SCF ligase, EIN3-binding F-box 1 and 2 (EBF1, EBF2) for
destruction in the proteasome (Guo and Ecker, 2003; Potuschak
et al., 2003; Gagne et al., 2004). As JAZ repressors also interact with
EIN3, this would appear to be a crucial mechanism governing the
JA/ET synergistic interactions (Zhu et al., 2011).

Under natural conditions plants are exposed to attacks from
a range of pathogens and pests with a variety of infection strate-
gies. Cross-talk between SA and JA/ET pathways allows the plant
to divert resources to the most appropriate defense mechanisms
(Pieterse et al., 2012). Thus antagonistic relationships are most
often reported but synergistic SA and JA/ET pathway interactions
also occur (Mur et al., 2005, 2006, 2008b). SA can suppress JA
effects through the suppression of the JA biosynthetic enzymes
LOX2 (Spoel et al., 2003) and allene oxide synthase (AOS, Laudert
and Weiler, 1998). However, there are many points downstream
of JA biosynthesis that are targeted by SA (Leon-Reyes et al.,
2010). SA–JA cross-talk components include the protein kinase
MPK4 (Petersen et al., 2000) and in particular the interplay of

transcriptional regulators appears to play large roles in SA–JA
antagonism.

Many antagonism mechanisms centre on the role of NPR1;
as SA-mediated suppression of JA-mediated expression was abol-
ished in npr1-1 mutants (Spoel et al., 2003; Bargmann et al.,
2009; Leon-Reyes et al., 2009; Pieterse et al., 2009). This antag-
onistic mechanism partially reflects an additional as yet poorly
defined cytoplasmic role for NPR1 (Pieterse and Van Loon, 2004)
but this does not seem to involve interference with SCFCOI1-
mediated targeting of JAZ proteins (Van der Does et al., 2013).
However, the major SA–JA regulatory role for NPR1 appears
to be nuclear-located. A transcription factor whose expression
is partially NPR1-dependent is WRKY70 (Li et al., 2004). Over-
expression of WRKY70 increased SA-dependent genes expression
(PR1, PR2, and PR5) and suppressed JA-dependent defense gene
transcription (COR1 and VSP1); with anti-sense WRKY70 plant
displaying opposite effects. Expression of WRKY70 is also par-
tially induced by AtMyb44, which, interestingly, is induced via
COI1 action suggesting a negative feedback step to modulate the
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amplitude of the JA response (Shim et al., 2013). This would rep-
resent a previously unsuspected role for an SA/JA antagonistic
mechanism.

TGA-class transcription factors also appear to play a role in
SA–JA interactions (Ren et al., 2008). Whilst many TGA factors
regulate SA responsive gene expression, TGA2, TGA5, and TGA6
also induce JA and ET defense genes and crucially, also regulate
SA-mediated antagonism (Zander et al., 2010). This suppressive
mechanism includes a redox-regulated step catalyzed by glutare-
doxins (GRX). GRX catalyze reactions whereby the oxidation of
glutathione is coupled with the reduction of cysteine residues
to influence protein stability and/or activity. GRX interacts with
TGA2 and over-expression of GRX480 countered the induction of
the ORA59 promoter by EIN3 (Zander et al., 2012). In a parallel
study, GCC box cis elements such as those found in the pro-
moter of the JA marker gene PDF1.2 were revealed as key sites
through which SA–JA antagonism is effected. Focusing on two
GCC-binding transcription factors it was found that ORA59 but
not ERF1 was the key transcriptional target for the SA antagonistic
mechanism (Van der Does et al., 2013).

Many other hormones interact with SA–JA/ET (Robert-
Seilaniantz et al., 2011) but no comprehensive attempt has been
made to integrate nitric oxide (NO) – a major defense signal
– into the canonical SA–JA/ET interaction network. However,
using plants displaying modulated expression of non-symbiotic
hemoglobins (Hb) which oxidizes NO, we have demonstrated
that NO plays an important role in both networks (Mur et al.,
2012). Similar conclusions were advanced by Chun et al. (2012)
who expressed mammalian NO synthase (NOS) in tobacco and
observed increased resistance to pathogens via elevated SA and
JA/ET defense gene expression.

NITRIC OXIDE IN PLANT–PATHOGEN INTERACTIONS
Nitric oxide has emerged as a major player of plant resistance
responses to biotrophic and hemibiotrophic pathogens influenc-
ing both basal defense and HR (Mur et al., 2005; Prats et al., 2005).
Many studies on plant interactions with Pseudomonas syringae all
indicate that NO is rapidly produced during the HR (Delledonne
et al., 1998; Clarke et al., 2000; Mur et al., 2005) and perturbation of
this NO generation has shown it clear contribution toward both
cell death and other defense processes (Delledonne et al., 1998;
Boccara et al., 2005; Mur et al., 2005; Prats et al., 2005).

Many groups with an interest in NO and plant defense
are concentrating on thiol oxidation by NO, referred to as S-
nitrosylation. S-nitrosylation comes about by the reaction of the
oxidized form of NO, the nitrosonium ion NO+, which can
electrophilically attack thiolate to produce S-nitrosylated thiols.
This reaction can generate large pools of S-nitrosoglutathione
(GSH + NO → GSNO + H+). GSNO itself can act as a
nitrosylating agent and thus could act as a biochemical “mem-
ory” so that the effects of NO could persist after its genera-
tion has ceased or act as a mobile signal through which NO
effects can be propagated throughout a plant as a component in
systemic acquired resistance (Espunya et al., 2012). The reduc-
tion of GSNO pools is caused by the action of GSNO reductase
(GSNOR) and predictably in AtGSNOR1 mutants GSNO lev-
els have been observed to increase (Feechan et al., 2005). These

AtGSNOR1 mutants were observed to exhibit compromised resis-
tance to pathogens whilst over-expression of GSNOR increased
defense against virulent pathogens. Such data suggested that it
can be deleterious to form a GSNO “store” when NO is being
generated.

If the thiol group belongs to cysteine residues of proteins,
this results is an S-nitrosoprotein which can impact on protein
function. A fascinating example of this is the control of reactive
oxygen species (ROS) generation and cell death through protein S-
nitrosylation. S-nitrosylation of cysteine 890 residue flanking the
flavin-binding domain of the NADPH oxidase which is a major
source of ROS generation during HR, suppressed both ROS gen-
eration and cell death (Yun et al., 2011). In addition, during the
HR, S-nitrosylation and inactivation of two plastid-located perox-
iredoxins (Prx; Sakamoto et al., 2003; Romero-Puertas et al., 2007)
has been demonstrated. Prx can detoxify the highly reactive per-
oxynitrite ion which forms following the co-generation of O−

2 and
NO (O−

2 + NO → ONOO−) and will generate hydroxyl radicals
(ONOO− + H+ → NO2 + OH). The toxicity of OH radicals is
well-established and has been linked to PCD in animal systems
so that through this Prx-mediated mechanism, NO acts with ROS
to propagate cell death. This mechanism may appear to act in
opposition to the apparently suppressive role of NO with NADPH
oxidase but most likely reflected differential effects at different NO
concentrations (Beligni and Lamattina, 1999; Garcia-Mata et al.,
2003) and discrete roles at different stages in the development of
the HR.

NITRIC OXIDE AND SALICYLIC ACID SIGNALING
Following one of its first descriptions in plants (Delledonne et al.,
1998), NO was immediately associated with SA-mediated events
(Durner et al., 1998). Generation of NO through infiltration of
mammalian NOS into plant tissues initiated SA-dependent gene
expression (Durner et al., 1998). A comprehensive bioinformatic
analysis of NO responsive promoters in Arabidopsis found that cis
elements linked to SA responsiveness [ocs element-like sequences
(OCSEs) and W-boxes] were prominent (Palmieri et al., 2008).
We recently used transgenic over-expression and silencing of
endogenous plant Hb in Arabidopsis to modulate NO genera-
tion in response to the hemibiotrophic pathogen Pseudomonas
syringae, which demonstrated increased levels of SA accumulation
in response to enhanced levels of NO and both were decreased in
Hb over-expressing plants. Such observations placed SA “down-
stream” of NO generation but other data demonstrated that SA
can modulate NO production. Thus, exogenous application of SA
reduced NO production from tomato root tips (Gemes et al., 2011)
and from stomata to initiate stomatal closure (Hao et al., 2010;
Sun et al., 2010).

Studies of the mechanisms through which NO interacts with
SA signaling appear to be particularly advanced (Figure 1). As
already stated, the oligomeric status of NPR1 is essential to its
action and S-nitrosylation of cysteine-156 has been shown to facil-
itate its oligomerization (Tada et al., 2008). Chemical reduction of
this S-nitrosylated cysteine residue by SA-activated thioredoxin
will promote monomer formation (Tada et al., 2008). Thus NO
could be seen to play a paradoxical role: on the one hand initiating
SA to promote NPR1 monomer formation and translocation
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from cytoplasm to nucleus, but on the other hand favoring
oligomerization by initiating nitrosylation. These opposing roles
are reinforced at other steps in SA signaling pathways. Thus, the
positive effects of NO on SA pathway are further augmented
by TGA1 S-nitrosylation that stabilizes the transcription factor
and strengthens binding to cognate promoter sequences (Linder-
mayr et al., 2010). Against this are the effects of S-nitrosylation
on SA-binding protein 3 (SABP3). SABP3 exhibits high affinity
binding to SA and carbonic anhydrase activity. S-nitrosylation
of SABP3 abolished SA binding and carbonic anhydrase activ-
ity (Wang et al., 2009). It may be assumed that this would
have the same effect as silencing SABP3 gene expression which
suppressed a HR elicited by Pseudomonas syringae pv. tomato
(Slaymaker et al., 2002).

NITRIC OXIDE AND ETHYLENE/JASMONIC ACID SIGNALING
Nitric oxide has often been reported to have a suppressive effect
on ET signaling. Leshem and Pinchasov (2000) used laser pho-
toacoustic detection to measure both NO and ET in ripening
avocados and strawberry and noted that, on ripening, NO levels
were reduced as ET increased. A mechanistic understanding of this
interaction was provided by (Lindermayr et al., 2006, 2010). The
Yang (methylmethionine) cycle produces S-adenosylmethionine
(AdoMet) which is the methyl donor linked to the production of
a range of metabolites including ET and also polyamines (Roje,
2006). Lindermayr et al. (2006) reported the S-nitrosylation of
a key cysteine (Cys-114) within the active site of a methionine
adenosyltransferase (MAT1; At1g02500) following the appli-
cation of the NO donor – GSNO. S-nitrosylation by GSNO
suppressed MAT1 enzymatic activity and also ET production. S-
nitrosylation has also been noted in the ET biosynthetic enzymes
1-aminocyclopropane-l-carboxylic (ACC) synthase 4, although
this has not been linked to a loss in enzymatic activity (Abat and
Deswal, 2009).

Against such observations are our results which show the
simultaneous generation of both NO and ET during a bacterially-
elicited HR in tobacco (Mur et al., 2008a, 2009, 2012). We also
noted that infiltration of a NO+ donor – sodium nitroprusside
(SNP) – into tobacco leaves produced NO and also ET (Mur
et al., 2005, 2008b). As SNP could induce ACC synthase expres-
sion (ACS), this seems to be one mechanism through which
NO could boost ET production (Mur et al., 2008a,b). Simi-
larly, the expression of mammalian NOS in transgenic tobacco
increased ACC oxidase (the final enzyme in ET biosynthesis) and
ethylene-responsive element binding protein (EREBP) expression
(Chun et al., 2012).

Recently, we have also shown that NO positively contributes
to elicit the production of jasmonates (Mur et al., 2012). Exam-
ining the transcriptional data provided by Palmieri et al. (2008)
it can be seen that NO increases the expression of a range of JA
biosynthetic genes. Thus, expression of LOX3 (At1g17420), 12-
oxophytodienoate reductase 1, 2, and 3 (OPR1, 2, and 3; Figure 1),
were induced by NO. Surprisingly, the expression of the interme-
diate JA biosynthetic enzyme – allene oxide cyclase (AOC) – is
suppressed by NO (Palmieri et al., 2008) and AOC appears to be S-
nitrosylated although an inhibitory effect has not been established
(Romero-Puertas et al., 2008).

INTEGRATING NO INTO SA AND JA/ETHYLENE PATHWAYS:
THE CHALLENGES
To highlight the roles of NO in each pathway, it is useful to con-
sider two differing scenarios (Figure 1). Upon infection with a
(hemi)biotrophic pathogen NO will contribute to the initiation
of SA biosynthesis through the relief of EIN3 repression of the
isochorismate synthase 1 (ICS1) transcription (Chen et al., 2009).
This relief possibly result from the suppression of ET biosynthe-
sis through MAT1 nitrosylation so that EIN3 is degraded in the
proteasome. SA will induce thioredoxins to reduce NPR1 pro-
tein to their monomeric form leading to their translocation to the
nucleus. In the nucleus NPR1 will bind to TGA-class transcrip-
tion factors. S-nitrosylation of TGA factors will increase affinity
for their cognate promoters. Some TGA factors will bind to the
ORA59 promoter to suppress both JA and ET-inducible genes.
NPR1 will also contribute to the induction of WKRY70 to also
suppress JA/ET expression. Another scenario is infection with a
necrotrophic pathogen or attack by certain pests. JA biosynthe-
sis occurs rapidly which is facilitated by NO-mediated induction
of LOX3 and OPR1, 2, and 3. In addition, NO will induce
ACS and ACO (1-aminocyclopropane-1-carboxylic acid oxidase)
expression to increase ET biosynthesis.

This model is clearly too simplistic and poses a number of
questions. When NO is generated, this should S-nitrosylate NPR1
to help maintain the oligomeric form which could suppress JA
events (Pieterse and Van Loon, 2004; Figure 1). If so, how is JA
biosynthesis achieved? Also, how can the induction of ACS by
NO counter the effects of a MAT1 inhibition leading to a failure
to provide methyl groups for ET production? Most importantly
how is specificity conferred where SA and JA/ET pathways are
simultaneous in play? One example of this is the Pseudomonas
syringae pv. phaseolicola (Psph)-elicited HR in tobacco (Kenton
et al., 1999; Mur et al., 2009).

As we have recently pointed out (Mur et al., 2013) this could
reflect subtle spatial–temporal separation in around sites of infec-
tion or insect grazing. Hb gene expression is regulated in a
cell-specific manner and therefore could represent a way in which
spatial regulation of local NO levels can be modulated by the
plant in reaction to pathogens (Hebelstrup et al., 2013). Sub-
cellular separation in signaling events should also be considered
(Mur et al., 2013). Additionally, NO concentration is a key deter-
minant of what regulatory step is employed. Thus, during the
Psph-elicited HR in tobacco, NO production is rapidly induced
but does not peak until 10–24 h following challenge whereas both
SA and ET production is initiated at ∼6 h following challenge
(Mur et al., 2008b). During this phase it would be supposed that
the positive effects of NO on SA and ET are paramount – as a
low NO concentration effect – whilst JA production is suppressed
via SA/JA antagonistic mechanisms possibly via S-nitrosylation
of ACO. As NO production peaks it may be that the induction
of JA-biosynthetic genes is initiated at high NO concentrations
which could overcome any SA-antagonistic mechanism on this
pathway. If the concentration-dependent mode for NO effects on
SA/JA/ET signaling pathways is substantiated this suggest a major
role for Hb. We have recently shown how reduced expression of
Hb during the HR contributed to increased NO production (Mur
et al., 2012) so this and NO generation mechanisms such as nitrate
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reductase (Gupta et al., 2011) could be important arbiters of the
interplay between defense signaling cascades.

One way to address such complex interactions is suggested
by the recent work of Windram et al. (2012). These authors
sampled at 2 h intervals for 48 h to extensively describe tran-
scriptomic changes occurring following attack of Arabidopsis by

B. cinerea and then used Systems Biology modeling approaches
to characterize key signaling hubs. Marrying this approach
with careful measurements of signal generation patterns, would
undoubtedly improve our understanding of the signaling inter-
actions during plant defense and the place of NO in this
network.
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