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Senescence is a coordinated process where a plant, or a part of it, engages in programmed
cell death to salvage nutrients by remobilizing them to younger tissues or to developing
seeds. As Fe and Zn deficiency are the two major nutritional disorders in humans,
increased concentration of these nutrients through biofortification in cereal grains is a
long-sought goal. Recent evidences point to a link between the onset of leaf senescence
and increased Fe and Zn remobilization. In wheat, one member of the NAC (NAM, ATAF,
and CUC) transcription factor (TF) family (NAM-B1) has a major role in the process, probably
regulating key genes for the early onset of senescence, which results in higher Fe and Zn
concentrations in grains. In rice, the most important staple food for nearly half of the world
population, the NAM-B1 ortholog does not have the same function. However, other NAC
proteins are related to senescence, and could be playing roles on the same remobilization
pathway. Thus, these genes are potential tools for biofortification strategies in rice. Here
we review the current knowledge on the relationship between senescence, Fe and Zn
remobilization and the role of NAC TFs, with special attention to rice. We also propose
a working model for OsNAC5, which would act on the regulation of nicotianamine (NA)
synthesis and metal–NA remobilization.
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Fe AND Zn BIOFORTIFICATION
Iron (Fe) and zinc (Zn) are essential micronutrients for almost
all living organisms and are two of the most versatile metals
in biology. Fe participates as a catalytic cofactor in multiple
metabolic pathways (photosynthesis, respiration, hormone syn-
thesis, nitrogen fixation, DNA synthesis and repair) due to the
ability to participate on reversible redox reactions as Fe2+ (fer-
rous) and Fe3+ (ferric) ions (Puig et al., 2007). Zn does not
participate directly on redox reactions, since it occurs in a sin-
gle oxidation state, but is a key structural component of around
300 enzymes and 2,000 transcription factors (TFs; Palmgren
et al., 2008; Prasad, 2012). Both Fe and Zn are present in low
quantities in most plant staple foods, leading to Fe and Zn
deficiency in humans. Malnutrition of these micronutrients are
leading risk factors for disability and death worldwide, espe-
cially to children eating cereal-based diets, with low intake of
micronutrient-rich foods as meat, poultry, fish, fruits, legumes,
and vegetables.

Strategies to alleviate micronutrient malnutrition include for-
tification (addition during food processing) and supplementation
(ingestion of pills or sachets). Although somewhat successful,
these approaches are not widely accessible due to logistic and eco-
nomic issues. A very cost-effective alternative is biofortification,
the increase of bioavailable concentrations of an element in edible
portions of crops before harvesting (for comprehensive reviews

see White and Broadley, 2005; Sperotto et al., 2012a; Carvalho and
Vasconcelos, 2013).

Biofortification includes different approaches like soil fertiliza-
tion or foliar application, conventional breeding and/or transgenic
strategies. Mineral fertilization is an effective method to increase
seed mineral concentrations, but can be problematic due to con-
tinuous cost and environmental carryover. Conventional breeding
has been used for decades. Although there is genetic diversity avail-
able within existing germplasm collections, rice seems to have the
narrowest range, making substantial increases in Fe and Zn con-
centrations more difficult compared to maize and wheat (Kennedy
and Burlingame, 2003; Gómez-Galera et al., 2010; Sperotto et al.,
2012a). Thus, it seems imperative that transgenic approaches be
used to enable significant increases in Fe and Zn content and
bioavailability.

Single or multiple-transgene insertions into the rice genome
have successfully increased Fe concentration in grains. Inde-
pendent over-expression of OsNAS genes produced the most
promising results so far (Johnson et al., 2011), while other multi-
transgene approaches also increased grain Fe concentration (Wirth
et al., 2009; Masuda et al., 2012). However, except in the study from
Johnson et al. (2011), the levels are still not effective enough to
impact human nutrition. An unexplored avenue would be the
controlled expression of regulatory genes involved in key pro-
cesses to Fe and Zn seed allocation. This approach has already
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been performed to generate rice plants more resistant to Fe defi-
ciency (Kobayashi et al., 2007; Ogo et al., 2011). In order to do that
for mineral concentrations in grains, we still need to identify the
molecular players relevant to their transport within the plant and
during remobilization.

SENESCENCE PROCESSES: WHAT, WHEN, AND HOW?
Senescence represents endogenously degenerative processes which
ultimately lead to organ death. However, it is not a passive process
(Yoshida, 2003), but rather a series of coordinated and controlled
events. Decline of photosynthesis, chloroplast and chlorophyll
degradation, dismantling of biomolecules and decrease in cellular
metabolic activities take place, which result in available nutrients
and metabolites that can be transported from source (the tissue
that supplies nutrients, most commonly green tissues) to sink
(the net importer of nutrients, younger or reproductive organs)
through the vascular system (Thomas, 2013). Part of leaf senes-
cence seems to be regulated by sugar levels (Rolland et al., 2006;
Sperotto et al., 2007), since a senescence-related loss of chlorophyll
or protein can be induced by increased sugar contents (Wingler
et al., 1998). Hormones and nutrients also contribute to regulation
of senescence in source tissues, especially cytokinins, which have a
senescence-delaying effect (Sperotto et al., 2009; Davies and Gan,
2012).

The source–sink signaling is not fully understood, and it
depends on the species and circumstances. It is already known that
senescence in source leaves can be delayed by removal of strong
sinks (Zavaleta-Mancera et al., 1999). Elevated levels of N alter
sugar signaling in source leaves (Thomas, 2013) and have a signifi-
cant impact on Fe and Zn acquisition and grain allocation in wheat
(Kutman et al., 2011). According to Shi et al. (2012), a sufficient
N supply inhibits Fe export from source leaves, but N deficiency
enhances Fe pools in source leaves and stimulates Fe export from
senescing leaves to sink tissues in barley, corroborating previous
findings that high protein concentrations in N-fertilized leaves
tend to immobilize Fe and delay senescence (Marschner, 1995).

Nitrogen remobilization from source tissues to seeds (Horten-
steiner and Feller, 2002) has received much more attention than
metal remobilization over the last decades, since grain yield has
been treated as the most important trait to be improved. Part of
the seed N is acquired by the roots, but N remobilization from
almost all vegetative organs also contributes to the seed N load-
ing, especially during senescence processes (Burstin et al., 2007).
In this way, the senescence process partly satisfies grain N con-
centration, as well with other minerals (Himelblau and Amasino,
2001). However, it is already known that application of fertil-
izer N generally decreases whole-plant remobilization efficiency
(Bahrani et al., 2011).

Previous work has shown that although seed minerals are par-
tially supplied by continuous uptake and translocation during
reproductive growth, remobilization of previous stored minerals
in green source tissues is also important (Jiang et al., 2007; Waters
and Grusak, 2008; Sperotto et al., 2012b), as commonly seen for N.
In rice, it was shown that Fe remobilization is dependent on Fe sta-
tus: under low or sufficient Fe supply, flag leaf Fe remobilization is
observed; under high but non-toxic Fe concentrations, there is no
Fe remobilization, presumably because of continuous root uptake

(Sperotto et al., 2012b). It is also known that mineral remobiliza-
tion from leaves to seeds can be enhanced by senescence (Zhang
et al., 1995; Uauy et al., 2006; Distelfeld et al., 2007; Shi et al., 2012).
As several proteins include Fe and Zn ions, a substantial level of
metals can be released during leaf senescence due to the high level
of protein degradation (Waters et al., 2009).

Recent molecular studies have shown that senescence pro-
cesses are driven by TF networks that regulate the expression of
several senescence-related genes (Guo et al., 2004; Lin and Wu,
2004). One of the most important families of genes described
as associated with senescence, and also with nutrient remobiliza-
tion from source organs to developing seeds, is the NAC (NAM,
ATAF, and CUC) family of TFs (Guo et al., 2004;
Uauy et al., 2006).

NAC TRANSCRIPTION FACTORS
Proteins of the NAC family are one of the largest classes of plant-
specific TFs. Roles of many NAC TFs have been demonstrated in
diverse plant developmental processes. The earliest reports include
the NAM (non-apical meristem) protein from petunia (Petunia
hybrida); nam mutants lack the shoot apical meristem (SAM) and
die at the seedling stage (Souer et al., 1996). The CUC1/CUC2
(cup-shaped cotyledon) TF from Arabidopsis, which participates in
the development of embryos and flowers (Aida et al., 1997), defines
the boundary domain around organs in the meristem (Nikovics
et al., 2006). Later, NAC proteins have been related to diverse pro-
cesses such as auxin and ethylene signaling (He et al., 2005; Park
et al., 2011), cell wall formation (Wang et al., 2011), biotic and
abiotic stresses (Puranik et al., 2012), and senescence (Kou et al.,
2012).

NAC proteins contain a highly conserved N-terminal domain
known as the NAC domain, which has been implicated in DNA
binding (Duval et al., 2002; Ernst et al., 2004) as well as protein–
protein interactions, forming homodimers or heterodimers with
TFs from the NAC family (Ernst et al., 2004; Jeong et al., 2009)
or other families (Xie et al., 2000; Greve et al., 2003). The NAC
domain reveals a fold consisting of a twisted beta-sheet surrounded
by a few helical elements (Ernst et al., 2004). On the other hand,
C-terminal regions of NAC proteins are highly divergent (Olsen
et al., 2005; Fang et al., 2008), and are related to transcriptional
regulation (Xie et al., 2000; Duval et al., 2002).

Many NAC genes have been involved in responses to various
environmental stresses like drought, cold, salinity, pathogen attack,
and wounding. For recent reviews on NAC TFs in stress response,
see Nakashima et al. (2012) and Puranik et al. (2012). In rice, the
stress-responsive NAC group (SNAC) includes some already char-
acterized members. OsNAC5, OsNAC6, and OsNAC10 are induced
by abiotic stresses, abscisic acid (ABA), and methyl jasmonic acid,
a plant hormone that activates defense responses against herbi-
vores and pathogens (Ohnishi et al., 2005; Sperotto et al., 2009;
Jeong et al., 2010; Takasaki et al., 2010; Song et al., 2011); OsNAC6
is also induced by biotic stresses (such as wounding and blast dis-
ease; Nakashima et al., 2007). Rice plants over-expressing either
OsNAC5, OsNAC9, or OsNAC10 under the control of the root-
specific RCc3 promoter improved tolerance to abiotic stresses
during the vegetative stage of growth and, most importantly,
at the reproductive stage, with a concomitant increase in grain
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yield (Jeong et al., 2010, 2013; Redillas et al., 2012). Another char-
acterized SNAC from rice, OsNAC4, was proposed to lead to
hypersensitive response in plants after an appropriate pathogen
recognition signal is encountered (Kaneda et al., 2009). In Ara-
bidopsis, the SNAC genes ANAC019, ANAC055, and ANAC072 are
induced by pathogen attack and wounding, and transgenic plants
over-expressing either one showed a significant increase in drought
tolerance (Tran et al., 2004). Considering that these proteins group
with the rice paralogs SNAC1, OsNAC3, OsNAC4, OsNAC5, and
OsNAC6, their function seems to be conserved.

Several members of the NAC family have been functionally
characterized as playing a prominent role in leaf senescence. In
Arabidopsis, almost one-fifth of the predicted 109 NAC members
are in the database of senescence leaf expression sequence tags
(dbEST; Guo et al., 2004). Characterization of NAC TFs involved
in senescence processes is also available for other plant species,
like rice OsNAC5 (Sperotto et al., 2009); wheat NAM-B1 (Uauy
et al., 2006); and bamboo BeNAC1 (Chen et al., 2011). The relation
between NAC TFs, senescence and nutrient remobilization will be
discussed in the next section.

SENESCENCE AND METAL REMOBILIZATION: ARE NAC
TRANSCRIPTION FACTORS BRIDGING THE GAP?
In monocarpic plants such as wheat and rice, whole-plant senes-
cence is a coordinated process where catabolic activity provides
nutrients that are exported and remobilized to developing grains
(Matile et al., 1996; Hortensteiner and Feller, 2002). The Gpc-B1
quantitative trait loci (QTL) from wild emmer wheat (Triticum
turgidum ssp. dicoccoides) was first described as conferring high
grain protein content in wheat across diverse environments (Chee
et al., 2001; Olmos et al., 2003), an important trait for improving
bread and pasta quality. Although already mapped and used in
breeding programs, Gpc-B1 locus was cloned later by Uauy et al.
(2006), which found the causal gene to be a NAC TF, NAM-B1.
NAM-B1 expression is up-regulated after anthesis in flag leaves
and accelerates senescence. In modern wheat varieties, a 1-bp
frame-shift insertion at the NAM-B1 coding sequence results in
a truncated version of the protein, while the wild relative has
an intact, fully functional NAM-B1. Silencing of NAM-B1 and
other NAM paralogs mimicked the insertion effect, resulting in
delayed senescence, decreased grain protein, and lower Fe and Zn
concentrations due to reduced nutrient remobilization from veg-
etative tissues (Uauy et al., 2006; Waters et al., 2009). Moreover, a
transcriptomic study showed enrichment of sequences related to
transport in wild-type (WT) compared to NAM-B1 RNA inter-
ference (RNAi) lines during senescence (Cantu et al., 2011). Taken
together, these results established NAM-B1 as a positive regulator
of senescence and nutrient remobilization during grain matu-
ration, suggesting that an early senescence onset could lead to
increased Fe and Zn concentrations in grains (Uauy et al., 2006).

To describe genes with similar functions in other crops, an
obvious avenue would be looking at orthologous proteins. The
closest homolog of NAM-B1 in the rice genome, named ONAC010
(LOC_Os07g3792; Uauy et al., 2006), has a function in flower
development but not in senescence, as neither ONAC010 loss-
of-function nor over-expression have the expected effects on
senescence timing (Distelfeld et al., 2012). Thus, another paralog

with lower sequence similarity could play the NAM-B1 role in rice
plants. In this context, OsNAC5 was demonstrated to be a senes-
cence associated gene that is up-regulated during grain maturation
in rice flag leaves (Sperotto et al., 2009). OsNAC5 is regulated by
ABA, a hormone with a known central role in senescence processes
(Lim et al., 2007). A comparison of diverse cultivars showed a pos-
itive correlation of OsNAC5 expression in flag leaves before and
during anthesis with final Fe, Zn, and protein concentrations in
mature grains (Sperotto et al., 2009, 2010). These results showed
that OsNAC5 expression pattern resembles that of NAM-B1, and
suggested that OsNAC5 could act during senescence-associated
nutrient remobilization to rice grains, probably downstream on
the senescence onset pathway.

Transgenic plants bearing constructs with OsNAC5 under the
control of a constitutive or a root-specific promoter were gen-
erated in a recent work. When OsNAC5 was expressed only in
roots, plants increased root diameter and improved recovery after
drought stress (Jeong et al., 2013). Interestingly, transcriptomic
analysis of roots from both transgenic lines showed commonly
up-regulated genes, indicating potential targets of OsNAC5, but
not necessarily linked to changes in root morphology (Jeong et al.,
2013). Among them, Nicotianamine Synthase 2 (OsNAS2) and Yel-
low Stripe-Like 2 (OsYSL2), two genes related to metal homeostasis,
were up-regulated. OsNAS2 is a key enzyme in nicotianamine
(NA) synthesis, a low-molecular weight compound that chelates
metals and a precursor for phytosiderophore synthesis (Higuchi
et al., 1999), while OsYSL2 is an Fe–NA transporter expressed in
phloem cells (Koike et al., 2004). Both NA and OsYSL2 are involved
in Fe seed loading and metal long distance transport through the
phloem (Koike et al., 2004; Curie et al., 2009; Klatte et al., 2009;
Ishimaru et al., 2010; Schuler et al., 2012).

Different studies point that regulation of NA synthesis and
metal–NA complex transporters could be involved in remobi-
lization. Constitutive over-expression or activation-tagging of
OsNAS1, OsNAS2, or OsNAS3 genes in rice increased concen-
trations of Fe, Zn, or both in grains (Lee et al., 2009, 2011, 2012;
Johnson et al., 2011). Concomitant insertion of constructs driving
Hordeum vulgare NAS1 constitutive expression, OsYSL2 expres-
sion in phloem cells and endosperm and Ferritin in endosperm,
led to increased Fe concentrations (and Zn to a lower extent)
in grains (Masuda et al., 2012). In H. vulgare, both dark and N
deficiency-induced senescence up-regulated HvNAS2 expression
in leaves, resulting in increased phytosiderophore concentration
rather than NA (Shi et al., 2012). In A. thaliana, loss-of-function
of OsYSL2 homologs, AtYSL1 and AtYSL3, resulted in reduced
remobilization of metals to seeds during senescence (Waters et al.,
2006).

Therefore, we speculate that OsNAC5 has a role in senescence
and metal movement to grains by controlling, either directly or
indirectly, the biosynthesis of NA and metal transport through the
phloem. Our proposed model, based on data from the literature,
is shown in Figure 1: (A) a senescence signal is sensed by the cell,
activating signaling molecules that regulate the onset of senes-
cence; (B) OsNAC5 transcription is up-regulated as part of the
senescence-induced nutrient remobilization process; (C) OsNAC5
protein up-regulates, either directly or indirectly, OsNAS2 and
OsYSL2 transcription, as well as other targets (not necessarily

www.frontiersin.org July 2013 | Volume 4 | Article 226 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Physiology/archive


“fpls-04-00226” — 2013/6/27 — 17:39 — page 4 — #4

Ricachenevsky et al. NAC transcription factors and biofortification

FIGURE 1 | Proposed model for OsNAC5 role in senescence and metal

remobilization. The model is based on indirect evidence provided by several
studies, especially on Sperotto et al. (2009) and Jeong et al. (2013), and shows
only Fe remobilization, although a similar pathway is likely to be involved in Zn
and other metals remobilization. (A) A signal is sensed by the cell, triggering
the senescence-associated cellular components degradation, including
chloroplasts, the main site of Fe concentration in the cell. (B) OsNAC5
transcription is up-regulated by the senescence downstream signaling
pathway. (C) OsNAC5 protein is produced and triggers the up-regulation of
OsNAS2 and OsYSL2 transcription (based on microarray data presented in

the work performed by Jeong et al., 2013). The increased transcription
observed is either directly or indirectly regulated by OsNAC5. (D) OsNAS2
protein increases intracellular NA concentration, which in turn chelates free
Fe coming from chloroplast and other cellular components degradation.
(E) The Fe–NA complex is transported across the plasma membrane of the
senescent cell, and then transported into phloem by OsYSL2, which allows
Fe–NA complex long distance translocation. It is important to point the
possibility that Fe and NA are exported independently from the cell,
interacting in the apoplast and then transported into the phloem by
OsYSL2.

related to metal remobilization); (D) OsNAS2 increases NA pro-
duction, which binds free Fe coming from cellular degradation;
(E) after efflux from the cell, OsYSL2 acquires the Fe–NA complex
into phloem cells for long distance transport. It is important to
note that, while OsYSL2 was not demonstrated to transport Zn–
NA complexes, NA is able to bind Zn2+, and Zn–NA complexes

are the major Zn form found in the rice phloem sap (Nishiyama
et al., 2012). Thus, other transporters could be playing a similar
role to OsYSL2 to load Zn–NA into the phloem.

However, work analyzing distinct OsNAC5 over-expressing
lines did not show up-regulation of OsNAS2 or OsYSL2
(Takasaki et al., 2010). We should consider that the increased
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expression observed by Jeong et al. (2013) was a result from
roots transcriptomic analyses, which is not the tissue where
remobilization takes place. Moreover, up-regulation of these genes
could be an indirect effect rather than a result of OsNAC5 binding
to OsNAS2 or OsYSL2 promoters.

Transcriptomic analysis of NAM-B1 RNAi wheat lines did not
reveal down-regulation of homologous sequences to NAS2 or YSL2
compared to WT, but rather putative ZIP (zinc-regulated/iron-
regulated transporter) and NRAMP (natural resistance associated
macrophage protein) metal transporters (Cantu et al., 2011), indi-
cating that NAS and YSL homologs are not regulated by NAM-B1.
This could be due to the fact that NAM-B1 and OsNAC5 are not
necessarily regulating the same set of genes. NAM-B1 silencing
leads to late senescence, while the functional version from wheat
wild relative accelerates it. On the other hand, OsNAC5 over-
expressing plants were not reported as senescing earlier than WT
(Takasaki et al., 2010; Song et al., 2011; Jeong et al., 2013), indicat-
ing that OsNAC5 increased expression cannot trigger senescence
alone. Silencing of OsNAC5 did not lead to late senescence as well

(Song et al., 2011). OsNAC5 is known to homo- and heterodimer-
ize with other TFs (Jeong et al., 2009), which could be necessary
for OsNAC5-mediated response. Thus, it seems that OsNAC5 is
acting more downstream on the senescence pathway than NAM-
B1, or even in a distinct parallel regulatory network, regulating a
different set of senescence-related processes.

Although we should be cautious in the analysis of the avail-
able evidence, our model seems to be holding as the first attempt
to point out the mechanism of NAC proteins in mineral remo-
bilization in crops. Further work will be necessary to clearly
elucidate the role of OsNAC5 in senescence and metal remo-
bilization, as well to functionally demonstrate which genes are
controlled by this TF. If true, the regulation of metal remobiliza-
tion by OsNAC5 could be an interesting avenue for biofortification
strategies.
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