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Zinc (Zn) is an essential plant micronutrient but is toxic in excess. To cope with excess Zn,
plant species possess a strict metal homeostasis mechanism. The Zn hyperaccumulator
Arabidopsis halleri has developed various adaptive mechanisms involving uptake, chelation,
translocation and sequestration of Zn. In this mini review, we broadly discuss the different
Zn tolerance mechanisms and then focus on controlled Zn uptake in A. halleri. Members
of the ZRT/IRT-like protein (ZIP) family of metal transporters are mainly regulated by Zn and
are involved in Zn uptake. A few members of the ZIP family, such as IRT1 and IRT2, are
regulated by iron (Fe) and can transport multi-metals, including Zn, Fe, Mn, Cd, and Co.This
mini-review also discusses the differential expression of multiple metal ZIP transporters in
A. halleri and A. thaliana, a non-hyperaccumulator, with Zn exposure as well as Fe deficiency
and their role in controlled Zn uptake and tolerance.
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INTRODUCTION
Heavy metal pollution in the soil has greatly increased over the
past decades because of mining and industrial activities, overuse
of chemical fertilizers, and waste-water irrigation (Nriagu and
Pacyna, 1988). Metals such as cadmium (Cd), mercury (Hg), and
lead (Pb) are considered non-essential because they do not have
any role in any physiological process in plants. In contrast, met-
als such as zinc (Zn), iron (Fe), copper (Cu), manganese (Mn),
molybdenum (Mo), and nickel (Ni) are essential micronutrients
required for normal growth and metabolism of plants (Marschner,
1995). For example, Zn is a cofactor for many enzymes, and many
proteins contain Zn-binding structural domains (Clarke and Berg,
1998; Guerinot and Eide, 1999).

Zn has an important role in several physiological and metabolic
processes in plants (Ramesh et al., 2004). However, in excess, Zn
can be toxic and influence the status of the other metal ions, thus
resulting in severe growth defects in plants (Marschner, 1995). At
toxic concentrations, Zn replaces other divalent cations such as
Fe, magnesium (Mg) and Mn, which are involved in the proper
functioning of a number of photosynthetic enzymes, thereby
resulting in lower photosynthetic rates and photo-oxidative dam-
age (Vanassche and Clijsters, 1986a,b, 1990). To avoid potential
toxicity caused by displacement of these elements, metal ion
homeostasis must be strictly controlled in plants.

Zn-tolerant and -hyperaccumulating species have various
mechanisms to cope with excess Zn levels. This review focuses on
the current understanding of the Zn homeostasis network in Zn
hyperaccumulators and addresses Zn and Fe crosstalk in response
to Zn tolerance and hyperaccumulation.

Zn HYPERACCUMULATORS: A MODEL SYSTEM TO
UNDERSTAND Zn HOMEOSTASIS IN PLANTS
Plant species that can grow at growth-limiting concentrations of
metals such as Ni, Zn, Cd, Co, or Cu have naturally selected

increased tolerance and are called metal-tolerant species. In addi-
tion, a few plant species, called as metal hyperaccumulators,
can tolerate and also accumulate these metals in their shoot
tissues at four orders of magnitude higher than those of non-
hyperaccumulators (Roosens et al., 2008; Kramer, 2010). Approx-
imately 500 plant taxa can accumulate such high concentrations
of potentially toxic metals; 20 of these are Zn hyperaccumu-
lators (Baker and Brooks, 1989; Reeves and Baker, 2000; Kramer,
2010).

Several species of the Brassicaceae family are metal hyperaccu-
mulators. Examples are Noccaea caerulescens and Arabidopsis hal-
leri. N. caerulescens was the first identified Zn hyperaccumulator
and was reported to accumulate about 25,000 to 30,000 μg g−1dry
weight (DW) of total Zn (Brown et al., 1995; Shen et al., 1997). A.
halleri is a Zn/Cd hyperaccumulator (Ernst, 1974; Kupper et al.,
2000; Zhao et al., 2000, 2006; Bert et al., 2002; Cosio et al., 2004)
and can accumulate >10,000 and >100 μg g−1 DW of Zn and Cd,
respectively. A. halleri is closely related to A. thaliana, a Zn non-
hyperaccumulator, whose genome has been thoroughly explored.
Thus, A. halleri is a good model system to study Zn tolerance and
Zn hyperaccumulation mechanisms. A few comparative transcrip-
tomic studies of A. halleri have identified several key genes involved
in the Zn hyperaccumulation process (Becher et al., 2004; Weber
et al., 2004; Chiang et al., 2006; Talke et al., 2006).

STRATEGIES OF Zn TOLERANCE AND
HYPERACCUMULATION: SEQUESTRATION FOR
DETOXIFICATION
Zn hyperaccumulators prevent toxicity symptoms and cope with
excess metal ions using various strategies such as effective metal
uptake, increased xylem loading and increased detoxification in
shoot tissues (Kramer, 2010). In recent years, many components
involved in these processes have been identified and characterized
(Verbruggen et al., 2009; Kramer, 2010; Deinlein et al., 2012). Zn
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tolerance and hyperaccumulation are better understood because
of investigation of species closely related to the model A. thaliana.
A. halleri and N. caerulescens share 94 and 88% nucleotide sim-
ilarity, respectively, with A. thaliana. This similarity paves the
way for detailed transcriptomic studies and proteomic profiling
with respect to deficiency or excess Zn (Becher et al., 2004; Weber
et al., 2004; Chiang et al., 2006; Talke et al., 2006; van de Mortel
et al., 2006; Schneider et al., 2012). These studies have provided
knowledge of Zn uptake, xylem loading and unloading in the
detoxification process and have shed light on the involvement of
other metal homeostasis networks in Zn uptake and tolerance
mechanisms.

Zn hyperaccumulators possess effective root-to-shoot Zn
translocation mechanisms through symplastic movement and
effective xylem loading (Clemens, 2006; Kramer, 2010; Verbruggen
et al., 2009). In recent years, several types of transporters involved
in this process have been identified in Zn hyperaccumulators
and thoroughly investigated. P-type ATPase (HMA) transporters
are mainly involved in root-to-shoot translocation of Zn (Hus-
sain et al., 2004; Verret et al., 2004; Hanikenne et al., 2008; Kim
et al., 2009; Barabasz et al., 2010; Lochlainn et al., 2011). HMA4 is
triplicated and also constitutively expressed at a high level in A. hal-
leri, thereby mediating effective root-to-shoot translocation and
resulting in Zn tolerance (Hanikenne et al., 2008). However, over-
expressing AhHMA4 in A. thaliana did not considerably enhance
root-to-shoot translocation of Zn and caused Zn hypersensitivity
because of lack of an efficient detoxification mechanism in shoot
tissues (Hanikenne et al., 2008). These observations emphasize
the complexity of metal hyperaccumulation and tolerance mecha-
nisms of metal hyperaccumulators. In addition to P-type ATPases,
members of multi-drug and toxic compound extrusion trans-
porters (MATEs) and oligopeptide transporters are highly and
constitutively expressed in Zn hyperaccumulators and reported to
be involved in Zn translocation (Talke et al., 2006; van de Mortel
et al., 2006; Hu et al., 2012; Pineau et al., 2012). FRD3, a mem-
ber of the MATE family, which functions in citrate efflux into
the root vasculature and is involved in the long-distance trans-
port of Fe, was more highly expressed in A. halleri than in A.
thaliana. Recently, FRD3 was found to play a role in Zn tolerance
in A. thaliana and, possibly, Zn translocation (Pineau et al., 2012).
Once Zn is efficiently translocated into shoot tissues, several tono-
plast transporters participate in the sequestration of Zn into shoot
vacuoles. Metal tolerance protein 1, a tonoplast-localized Zn trans-
porter, is highly expressed in both roots and shoots of A. halleri
and also linked to a major quantitative trait locus (QTL) responsi-
ble for Zn tolerance (Drager et al., 2004; Kobae et al., 2004; Gustin
et al., 2009; Kawachi et al., 2009; Shahzad et al., 2010; Willems et al.,
2010). Some other members of HMA and ATP-binding cassette
transporters are highly expressed in shoots of A. halleri, but their
exact role in vacuole sequestration of Zn has not been proven by
functional studies (Becher et al., 2004; Weber et al., 2004; Chiang
et al., 2006).

ADDITIONAL UPTAKE CONTROLS: Fe HOMEOSTASIS AND Zn
TOLERANCE
Zn enters the root system through specific membrane transporters,
mainly ZRT/IRT-like protein (ZIP) transporters. The Arabidopsis

genome contains 15 members of the ZIP family (Table 1). Most
are located in the plasma membrane and are involved in micronu-
trient uptake. IRT1 is well characterized and regulated by Fe status.
IRT1 can transport Fe, Mn, Co, Cd, and Zn. The knockout mutant
of IRT1, irt1-1, exhibits severe growth defects, and excess supply of
Fe can rescue the defective growth (Vert et al., 2002). IRT2, too, is
regulated by Fe status and can transport both Fe and Zn (Vert et al.,
2001, 2009). Under Fe deficiency, FIT, together with AtbHLH38
and AtbHLH39, members of the basic helix-loop-helix transcrip-
tion factor family, transcriptionally regulate the expression of IRT1
and IRT2 (Yuan et al., 2008; Wu et al., 2012). Promoter regions of
IRT1 and IRT2 contain the E-box motif CANNTG, a potential
binding site for FIT (Colangelo and Guerinot, 2004). Apart from
IRT1 and IRT2, other ZIP family members are mainly regulated
by Zn status and are involved in Zn transport (Table 1). Under
Zn deficiency, 2 members of the basic-region leucine-zipper fam-
ily of transcription factors, bZIP19 and bZIP23, are involved in
the transcriptional regulation of ZIP family transporters by bind-
ing ZDRE elements in their promoter region (Assunção et al.,
2010). In light of the ability of the ZIP family transporters
to conduct multi-metal transport, their expression and regula-
tion under excess Zn or other metal ions is likely a complex
phenomenon.

In A. thaliana, Zn toxicity causes reduced Fe uptake and shoot
Fe accumulation, which indicates competition between Zn and Fe
in root uptake (Fukao et al., 2011; Shanmugam et al., 2011). Excess
Zn significantly reduces shoot Fe content and induces IRT1 and
IRT2 (Fukao et al., 2011; Shanmugam et al., 2011). This response
could be responsible for Zn sensitivity because IRT1 and IRT2
can also transport Zn. Zn uptake with IRT1 and IRT2 induction
overloads the regular detoxification system. Interestingly, in A.
thaliana, excess Fe alleviates Zn toxicity under excess Zn. There-
fore, the competition between Zn and Fe plays an important role
in tolerance to excess Zn (Fukao et al., 2011; Shanmugam et al.,
2011; Pineau et al., 2012). As compared with A. thaliana, A. halleri
shows altered expression of genes related to Fe homeostasis (Chi-
ang et al., 2006; Shanmugam et al., 2011). The expression of the
Fe-regulated ZIP transporters IRT1 and IRT2 is much lower in A.
halleri than A. thaliana (Shanmugam et al., 2011). A. halleri lives in
Zn-rich conditions. In A. halleri, high Zn concentration does not
greatly affect shoot and root Fe accumulation, which could explain
the reduced expression of IRT1 and IRT2. Therefore, Zn uptake
is mainly through Zn-regulated ZIP transporters for optimal root
uptake of Zn without disturbing the expression of Fe-regulated
ZIP transporters.

The high expression of ZIP transporters such as IRT3, ZIP3,
ZIP6, ZIP9 and ZIP12 may also have a function in Fe availabil-
ity in A. halleri (Chiang et al., 2006; Talke et al., 2006; Lin et al.,
2009; Willems et al., 2010). The clearest example of a ZIP trans-
porter functioning in Fe availability is IRT3. IRT3 can transport
Zn as well as Fe (Lin et al., 2009) and is also linked to a major
QTL responsible for a shoot Fe accumulation phenotype in A.
halleri (Willems et al., 2010). In addition, by both its expression
in root stele and complementing shoot Fe content in irt1-1, IRT3
could play a role in Fe uptake and translocation in A. halleri (Lin
et al., 2009; Shanmugam et al., 2011). Together, the high expression
of these ZIP transporters could contribute to Fe acquisition in
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Table 1 | Expression and transport properties of ZRT/IRT-like protein (ZIP) transporters.

Transporter Regulated

by

Metal

transport

Expression

(Ah to At )

Related reports

IRT1 Fe, Zn Zn, Fe, Mn,

Cd, Co

< Eide et al. (1996), Korshunova et al. (1999), Guerinot (2000), Vert et al. (2002), Connolly et al.

(2002), Shanmugam et al. (2011)

IRT2 Fe, Zn Fe, Zn < Guerinot (2000), Vert et al. (2002), Shanmugam et al. (2011)

IRT3 Fe, Zn Fe, Zn > Guerinot (2000), Chiang et al. (2006), Talke et al. (2006), Lin et al. (2009), Assunção et al. (2010)

ZIP1 Zn Zn, Mn > Grotz et al. (1998), Guerinot (2000), Talke et al. (2006), Assunção et al. (2010), Milner et al. (2013)

ZIP2 Zn Zn, Mn – Grotz et al. (1998), Guerinot (2000), Wintz et al. (2003), Yang et al. (2010), Milner et al. (2013)

ZIP3 Zn Zn, Fe, Mn > Grotz et al. (1998), Guerinot (2000), Chiang et al. (2006), Talke et al. (2006), Yang et al. (2010),

Assunção et al. (2010)

ZIP4 Zn Zn, Cu > Grotz et al. (1998), Wintz et al. (2003), Talke et al. (2006),Yang et al. (2010), Assunção et al. (2010)

ZIP5 Zn Zn, Mn – Wintz et al. (2003), Assunção et al. (2010), Milner et al. (2013)

ZIP6 – Mn > Becher et al. (2004), Milner et al. (2013)

ZIP7 – Zn, Mn – Milner et al. (2013)

ZIP8 – – –

ZIP9 Zn Zn, Mn > Weber et al. (2004), Talke et al. (2006), Yang et al. (2010), Assunção et al. (2010), Milner et al.

(2013)

ZIP10 Fe, Zn Zn > Talke et al. (2006), Assunção et al. (2010), Milner et al. (2013)

ZIP11 Fe, Zn Zn – Assunção et al. (2010), Milner et al. (2013)

ZIP12 Fe, Zn Zn > Chiang et al. (2006), Assunção et al. (2010), Milner et al. (2013)

Ah, A. halleri; At, A. thaliana; –, not determined.

A. halleri and prevent loss of control of the Fe-regulated multi-
metal transporters IRT1 and IRT2 under excess Zn. The major
uptake of Zn through Zn-regulated ZIP transporters in coor-
dination with a Zn detoxification mechanism helps in Zn tol-
erance. Thus, the balanced control of Fe- and Zn-regulated
ZIP transporters could be an adaptive mechanism in metal-rich
environments.

CONCLUSIONS AND FUTURE PERSPECTIVES
Our knowledge of metal tolerance and hyperaccumulation in
plants has greatly improved in recent years with the identifica-
tion of key genes and regulators involved in the metal homeostasis
network. In addition to the proposed mechanisms for metal tol-
erance and hyperaccumulation, specificity in metal uptake could
be a beneficial mechanism. Studies of the Zn hyperaccumulator A.
halleri suggest that repression of Fe-regulated multi-metal trans-
porters and overexpressing metal (Fe)-specific transporters may
be a useful strategy for engineering plants tolerant to heavy met-
als. Tight control of the uptake system may also be an important

strategy for tolerance of excess Zn. The function of several ZIP
transporters has not been clear to date. At least, more research
into the role of ZIP transporters with high expression in A. halleri
will help in understanding their role in metal uptake and tolerance.

Apart from the transporters, several transcriptional regulators
might be involved in the balanced Zn and Fe uptake in A. hal-
leri, when considering the similar biological property of many ZIP
transporters, but our knowledge in this area remains limited. In
A. halleri, the major Fe deficiency regulator FIT was less regulated
under Fe deficiency or Zn excess stress. This finding again suggests
the occurrence of a complex process apart from what is already
known in maintaining Fe homeostasis in a Zn-rich environment.
In addition, the involvement of chelator complexes and their roles
in facilitating the control of metal uptake and tolerance are not
known. More research in these directions is needed.
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