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Striking a balance: does nitrate uptake and metabolism
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Nitric oxide (NO) influences many aspects
of plant development and responses to
stress.The concentration of NO can play
an important role in influencing its action
(for example, in stomatal regulation;
Wilson et al., 2009) so that the mecha-
nisms through which NO content is mod-
ulated must be an important facet of NO
research. Whilst NO generation mecha-
nisms are clearly important, NO removal
is of equal relevance, especially as plants
will be continually exposed to NOx (NO +
NO2) gases derived from soil microbial
activity (Mur et al., 2013). Establishing
and regulating a poise between NO gen-
eration, NO fumigation from external
sources and NO scavenging, which also
needs to be flexible enough to change in
response to a variety of physiological cues,
is an under-considered aspect of plant NO
biology.

HOW ARE NO GENERATION
MECHANISMS INTEGRATED AND
REGULATED?
Initially, many sought to find an equiv-
alent to the mammalian Nitric Oxide
Synthase (NOS) enzymes in plants. NOS
is a cytochrome P450-like enzyme which
oxidizes arginine to citrulline to gen-
erate NO (Gorren and Mayer, 2007).
However, the existence of this enzyme in
higher plants is still debatable (Frohlich
and Durner, 2011) and is mainly based
on pharmacological evidence and assays
for NOS-like enzyme activity reviewed by
Frohlich and Durner (2011) and Mur et al.
(2013). In this context, it is also rele-
vant that arginase mutants in Arabidopsis
also displayed increased NO levels (Flores
et al., 2008). However, NOS-activity has
not been linked to a given gene. Resolution
of this conundrum may derive from the
observation that polyamine leads to NO
production from Arabidopsis roots (Tun

et al., 2006). As L-arginine is a precursor
to polyamine biosynthesis, any pertur-
bance of L-arginine metabolism would
affect any polyamine-mediated NO gener-
ation mechanism and would explain the
effects of NOS-inhibitors without needing
NOS. Such a mechanism would be eas-
ily linked to the most well-characterized
plant NO mechanism which is based on
nitrate reductase (NR). NR acts by reduc-
ing nitrite to NO with NAD(P)H acting
as an electron donor. NR-generated NO
has been shown to regulate floral develop-
ment, root formation, stomatal opening,
and responses to biotic and abiotic stresses
[reviewed in Mur et al. (2013)]. NR has
high affinity for nitrate but switches to
its lower affinity substrate nitrite to pro-
duce NO (Planchet et al., 2005). Therefore,
NR requires high nitrite concentrations
to produce NO; and a low pH is also
required. Considering both NR and NOS-
like NO generation mechanisms together
it is possible to suggest some regulatory
nodes. Thus, NO generation can be reg-
ulated at the level of NO−

3 uptake via
nitrate channels, post-translational mod-
ification of NR activity (Mur et al.,
2013), influencing NO2 availability, pH
and the expression and/or activity of any
of the amino acid and polyamine biosyn-
thetic enzymes. These potential regula-
tory mechanisms need to be systematically
assessed.

Interestingly, NO−
3 also plays a cen-

tral role in anoxic/hypoxic NO generation.
Under hypoxia, the resulting energy crisis
leads to a decrease in pH which inhibits
plasidal NiR, leading to NO−

3 accumu-
lation and NO production (Ferrari and
Varner, 1971). NADH-dependent NO−

3
reduction occurs at the mitochondrial
inner membrane, via cytochrome c oxi-
dase and/or reductase and possibly by
alternative oxidase (AOX) leading to the

production of NO and ATP (Stoimenova
et al., 2007). NO production via this
mechanism occurs below 1% oxygen with
a Ki value of 0.05% (0.6 µM) (Gupta
and Igamberdiev, 2011). Again NO−

3 and
now also NADH are limiting factors
and represent possible important regu-
latory steps and could be the mecha-
nism through which nitrite is transported
to mitochondria which is currently not
known.

Regulating the availability of NO−
3 also

seems to be important in other less well-
characterized NO generation mechanisms.
NO may be generated in the peroxi-
some by a xanthine oxidoreductase (XOR)
which can reduce NO−

3 to NO (Del Rio
et al., 2004). NO is also generated by
a plasma membrane nitrite:NO reduc-
tase (NiNOR) where NO−

3 is supplied
by an apoplasmic, plasma membrane-
bound NR.

BALANCING THE EQUATION:
MECHANISMS OF NO REMOVAL
In planta NO content must represent the
net of rates of production minus scaveng-
ing. These scavenging mechanisms must
be highly efficient in order to maintain
appropriate NO poise in crop species
where the extensive use of nitrogen-
fertilizers can result in external fumigation
at rates that may be in excess of 20 nmol
m−2 h−1 (Voldner et al., 1986; Benkovitz
et al., 1996). Various means to reduce NO
content have recently emerged; perhaps
the most important being nonsymbiotic
forms of hemoglobin (Hb). Oxygenated
ferrous (Fe2+) Hb converts NO to NO−

3
and becomes MetHb (ferric, Fe3+) (meta-
moglobin) form which is then reduced
to oxygenated ferrous (Fe2+) by meta-
moglobin reductase (MetHb) (Hill, 2012).
NO oxidation by Hb plays an important
role in NO accumulation during stress
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Mur et al. Generation and scavenging of NO

FIGURE 1 | In planta sources of NO generation and scavenging. In planta NO content reflects
the net effect of NO generation (shown as “push” in the Figure) and scavenging (shown as “pull”
in the Figure) mechanisms. NO generation can involve the listed pathway (PM-NR NiNOR, plasma
membrane associated nitrate reductase coupled to nitrite reductase; Mt NiR, mitochondrial nitrite
reductase). The likely role of NO−

3 in regulating in planta NO content is highlighted.

(Hebelstrup et al., 2012; Mur et al.,
2012) thus the regulation of Hb expres-
sion is vitally important to understand-
ing how NO poise is established (Mur
et al., 2013). It is highly relevant that
NO−

3 induces Hb (Wang et al., 2000) again
showing how NO−

3 regulates NO con-
tent, on this occasion by influencing NO
scavenging.

Other enzymes through which
NO effects are modulated include S-
Nitrosoglutathione Reductase (GSNOR).
NO reacts with glutathione GSH and
forms S-nitrosoglutathione (GSNO),
which represents a significant reservoir
for NO (Sakamoto et al., 2002). GSNO
levels are controlled by GSNOR with
converts GSNO into glutathione and
sulphinamide using NADH as electron
donor. Thus, GSNOR represents a means
through which NO signaling may be sup-
pressed as has been demonstrated using
GSNOR mutants (Feechan et al., 2005).
Additionally, under aerobic conditions
mitochondria are highly efficient NO scav-
engers (87% of supplied NO −180 pmol)
(Gupta et al., 2005). Mechanistically,
this has been linked to AOX via leaking
electron flow from the electron trans-
port chain to terminal electron acceptor
oxygen or nitrite in the cytochrome
pathway (Cvetkovska and Vanlerberghe,
2012).

This opinion piece seeks to highlight
some key questions regarding how in
planta NO content is regulated (Figure 1).
In developing these questions we have

highlighted the role of NO−
3 . We suggest

that understanding the regulation of NO−
3

uptake, assimilation and processing into a
myriad of biosynthetic pathways will be
central to understanding how in planta
NO content is established.
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