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Since the time of Darwin, biologists have understood the promise of crop plants and
their wild relatives for providing insight into the mechanisms of phenotypic evolution. The
intense selection imposed by our ancestors during plant domestication and subsequent
crop improvement has generated remarkable transformations of plant phenotypes. Unlike
evolution in natural settings, descendent and antecedent conditions for crop plants
are often both extant, providing opportunities for direct comparisons through crossing
and other experimental approaches. Moreover, since domestication has repeatedly
generated a suite of “domestication syndrome” traits that are shared among crops,
opportunities exist for gaining insight into the genetic and developmental mechanisms
that underlie parallel adaptive evolution. Advances in our understanding of the genetic
architecture of domestication-related traits have emerged from combining powerful
molecular technologies with advanced experimental designs, including nested association
mapping, genome-wide association studies, population genetic screens for signatures
of selection, and candidate gene approaches. These studies may be combined with
high-throughput evaluations of the various “omics” involved in trait transformation,
revealing a diversity of underlying causative mutations affecting phenotypes and their
downstream propagation through biological networks. We summarize the state of our
knowledge of the mutational spectrum that generates phenotypic novelty in domesticated
plant species, and our current understanding of how domestication can reshape gene
expression networks and emergent phenotypes. An exploration of traits that have been
subject to similar selective pressures across crops (e.g., flowering time) suggests that
a diversity of targeted genes and causative mutational changes can underlie parallel
adaptation in the context of crop evolution.

Keywords: adaptation, artificial selection, association mapping, crop improvement, domestication syndrome,

evolutionary genomics, parallel evolution

INTRODUCTION
The recognition that domesticated species serve as excellent mod-
els for studying morphological evolution can be traced to Charles
Darwin, who famously opens his Origin of Species with a chapter
devoted to “Variation under Domestication.” In his introduc-
tion, Darwin highlights the value of domesticated organisms for
understanding the evolutionary process:

At the commencement of my observations, it seemed to me probable
that a careful study of domesticated animals and cultivated plants
would offer the best chance of making out this obscure problem. Nor
have I been disappointed; in this and in all other perplexing cases I
have invariably found that our knowledge, imperfect though it be,
of variation under domestication, offered the best and safest clue. I
may venture to express my conviction of the high value of such stud-
ies, although they have been very commonly neglected by naturalists
(Darwin, 1859).

These comments turned out to be remarkably (but not sur-
prisingly) prescient. The subsequent 150 years of advances

in the fields of evolutionary and developmental biology have
demonstrated that studies of domestication, particularly in
plants, provide a wealth of insights into the genetic and develop-
mental bases of morphological evolution. This is partly due to the
central role that crops play in sustaining civilization. Crop species
supply the vast majority of humankind’s caloric intake, either
directly as food or indirectly as livestock feed, and crop species
have long been studied by breeders and other plant biologists
for purposes of crop improvement. A result has been the devel-
opment of a rich toolkit in many crops for studying the genetic
basis of agronomically-related traits; these resources may include
extensive germplasm collections, advanced generation pedigrees
for use in genetic manipulations, and ever-expanding “omics”
databases such as genome sequences and transcriptome, small
RNA and proteome profiles in various tissues. A growing number
crop species now feature annotated reference genome sequences
[reviewed by Feuillet et al. (2011)], with at least ten reference
genomes released since 2012 alone (e.g., D’Hont et al., 2012;
Garcia-Mas et al., 2012; Mayer et al., 2012; Paterson et al., 2012;
Sato et al., 2012; Varshney et al., 2012; Zhang et al., 2012a; Guo
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et al., 2013; Jia et al., 2013; Ling et al., 2013). Equally importantly,
the recent time frame during which domestication has occurred
(generally <10,000 years, with the origins of agriculture) means
that for most crops, wild forms representing genetically close
models of the actual ancestors still exist. The domesticated and
progenitor forms can therefore be directly compared and crossed
experimentally, providing insights into the molecular, develop-
mental, and physiological impacts of selection during domesti-
cation. Together these features make many crops highly tractable
model systems for studying genomic and phenotypic evolution
during domestication.

An additional advantage of crop species for evolutionary anal-
ysis is the opportunity they provide for studying parallel evo-
lution. The repeated evolution of adaptive traits is a hallmark
of evolution; this phenomenon characterizes a wide spectrum
of organisms from across the tree of life (Arendt and Reznick,
2008; Losos, 2011). Understanding the genetic and developmen-
tal mechanisms that underlie parallel adaptation has emerged
as one of the key questions of modern evolutionary biology, as
these analyses hold promise for revealing not only the mecha-
nisms that underlie the origin of novel phenotypes, but also the
nature of evolutionary constraints and the likelihood of specific
evolutionary trajectories or processes. Crop species are eminently
positioned for yielding insight into these questions, because selec-
tion during domestication has generated a suite of traits that are
shared across many crop species (the “domestication syndrome”;
Hammer, 1984; Harlan, 1992). These independently evolved
traits can be studied at various levels of phylogenetic divergence,
including separate lineages within a single crop species (e.g., fra-
grance in Asian rice; Kovach et al., 2009), different crop species
within a single genus (e.g., grain color in Asian and African rice;
Gross et al., 2010), and different genera at higher taxonomic lev-
els (e.g., grain shattering in cereal crops; Paterson et al., 1995;
Lin et al., 2012). Comparisons of independently domesticated
crop lineages can thus facilitate inferences into the molecular and
developmental underpinnings of parallel adaptation, providing
insight into the relative roles of constraint and lability in shaping
evolution.

As in many areas of biology, studies of crop domestication
have undergone a quantum leap in the last decade with the
development of massively parallel, next-generation sequencing
(NGS) and related “omics” approaches. Advances have been
particularly evident in research aimed at understanding the
genotype–phenotype connection. The dense, genome-wide SNP
marker coverage afforded by NGS genotyping [reviewed by Davey
et al. (2011)] is now readily applied in genetic mapping of
domestication-related traits, including in mapping populations
derived from traditional biparental crosses (e.g., crop X wild par-
ents), advanced intercrossed populations derived from diverse
parental lines [e.g., nested association mapping (NAM); Buckler
et al., 2009; McMullen et al., 2009; Larsson et al., 2013, and
genome-wide association mapping in populations of unrelated
individuals (GWAS); Ramsay et al., 2011; Harper et al., 2012;
Huang et al., 2012b; Riedelsheimer et al., 2012]. Genome rese-
quencing and/or genome-wide SNP scans are also being used
to identify candidate genomic regions bearing molecular sig-
natures of selection during domestication (e.g., low nucleotide

diversity, augmented linkage disequilibrium) (He et al., 2011;
Harper et al., 2012; Huang et al., 2012a; Cavanagh et al., 2013;
Hufford et al., 2013). Unlike methods based on trait mapping,
such selection screens do not require any a priori assumptions
about the traits that were subject to selection during domestica-
tion, and they can thus potentially reveal genes underlying subtle
phenotypic changes such as metabolic shifts (e.g., Hufford et al.,
2012). Followed by fine mapping and functional characterization
of candidate genes, these assorted mapping strategies are proving
highly effective at revealing the molecular bases of domestication
phenotypes.

As a complementary approach to genetic mapping,
domestication-related changes in transcriptomes and gene
expression networks can be explored to assess the genome-scale
impacts of domestication on the emergent plant phenotype
(e.g., Hovav et al., 2008; Rapp et al., 2010; Hufford et al., 2012;
Swanson-Wagner et al., 2012). As with genome-wide SNP
screens, these approaches require no a priori assumptions about
traits of interest, and hence offer powerful exploratory tools for
revealing the effects of domestication at a diversity of biological
scales, ranging from DNA sequence through the metabolome to
the phenotype.

In this review, we highlight recent insights into the genotype–
phenotype connection in crop species and how selection during
domestication has shaped phenotypic evolution. We first summa-
rize recent findings across diverse crop species on the molecular
genetic basis of domestication-related phenotypes and the nature
of the targeted genes and mutational mechanisms. We then dis-
cuss recent studies that have examined the effects of selection
at biological levels of organization downstream of the coding
sequence (e.g., transcriptome, proteome). Finally, as an explo-
ration of parallel evolution among crop species, we examine
the genetic basis of changes in flowering time, a trait that has
been subject to selection in many crops, to assess the degree to
which parallel adaptation has occurred through shared genetic
mechanisms.

GENETIC BASIS OF DOMESTICATION PHENOTYPES
THE DOMESTICATION SYNDROME AND CROP IMPROVEMENT TRAITS
When our ancestors began to shift from collecting wild plants
to actively cultivating them, they imposed intense selective pres-
sures for traits that facilitate human cultivation and harvesting
of the crop. The resulting phenotypic changes, shared among
many food crops, are collectively referred to as the domestica-
tion syndrome (Hammer, 1984; Harlan, 1992). Domestication
traits in the strict sense may be considered those that distin-
guish a crop from its wild relatives. For annual cereal crops,
which collectively make up the genetically best characterized crop
species, traits favored during the initial stages of domestication
are generally those that facilitate uniform planting and efficient
harvesting. These traits include not only those that are likely to
have evolved through conscious selection (e.g., loss of seed shat-
tering, increased yield, decreased chemical, and morphological
defenses), but also changes more likely to reflect unconscious
selection (e.g., loss of seed dormancy, uniformity in germination
and growth phenology, erect growth to facilitate increased plant
density in crop fields).

Frontiers in Plant Science | Plant Evolution and Development August 2013 | Volume 4 | Article 290 | 2

http://www.frontiersin.org/Plant_Evolution_and_Development
http://www.frontiersin.org/Plant_Evolution_and_Development
http://www.frontiersin.org/Plant_Evolution_and_Development/archive


Olsen and Wendel Evolution through crop domestication

After the initial stages of domestication, cultivated crops have
been subject to selection for crop improvement traits (e.g.,
increased palatability and productivity), and for a diversification
in traits that characterize varietal differences (e.g., fruit pigmen-
tation variation, diversification in grain starch composition, and
adaptation to different climates and latitudes). While the dis-
tinction between domestication traits and later improvement or
diversification traits is not always clear (e.g., increased fruit or
grain size), the latter traits often may be discerned because they
remain variable among different varieties or landraces. Table 1
provides a list of phenotypic changes commonly observed as a
result of domestication and crop improvement (see also Harlan,
1992; Miller and Gross, 2011; Meyer et al., 2012).

GENETIC CHANGES ASSOCIATED WITH DOMESTICATION AND CROP
BREEDING
As recently as 2006, the number of crop domestication and
improvement traits for which the molecular basis was well-
understood was just over two dozen (Doebley et al., 2006).
Since then, there has been an explosion in studies characteriz-
ing domestication-related traits; dozens of genes and causative
genetic mutations have now been described, including at least 19
since 2012. Table 2 provides examples of traits and their associ-
ated genes that have been molecularly characterized within the
last 5 years.

A comparison of Tables 1 and 2 reveals some of the current
limitations and biases in our understanding of the genetics of
domestication phenotypes. First, the vast majority of genes char-
acterized to date have been identified at least partly through
trait mapping using advanced generation mapping populations—
primarily biparental QTL mapping populations (see Table 2).
Nearly all such mapping populations are created using species
where at least one generation can be produced per year. A conse-
quence is that our inferences presently are limited almost entirely
to traits in sexually propagated, annual crop species; indeed, all
but two of the crops in Table 2 (grapes and citrus) are grown as
annuals, and the majority of these are cereal crops. Reliance on
biparental mapping populations has also predisposed inferences
toward the identification of a relatively few QTLs of large effect,
since only the genetic variation present in the two parental lines
is represented in the mapping population. As association stud-
ies now begin to make use of more genetically diverse mapping
populations (e.g., NAM, GWAS), it is becoming increasingly clear
that, as with complex traits in wild species, the genetic architec-
ture of many domestication-related traits involves many genes
with small effects (see, e.g., Buckler et al., 2009; Kump et al., 2011;
Poland et al., 2011; Tian et al., 2011; Zhao et al., 2011; Cook et al.,
2012; Huang et al., 2012b).

An additional bias evident in Table 2 is toward traits where
obvious candidate genes are already known based on previous
research in model organisms. Knowledge of candidate genes facil-
itates identification of the causative gene within a genomic region
containing a QTL peak or selection signature. For example, the
Arabidopsis flowering time pathway is among the best character-
ized developmental pathways in plants, providing clear candidate
genes for studies of selection on flowering time. Correspondingly,
nearly one-third of the examples in Table 2 involve changes in

Table 1 | Phenotypic evolution during domestication and

improvement of food crops.

Wild ancestor Domesticated crop

PLANT ARCHITECTURE, MORPHOLOGY, 2◦ CHEMISTRY

Prostrate, spreading
growth

Erect, compact plant growth

Axillary branching Reduced axillary branching

Spines, thorns Reduced defensive structures

Toxic or unpalatable
defense compounds

Reduced toxicity, unpalatability

PLANT LIFE HISTORY, GROWTH, AND REPRODUCTION

Seed dormancy Reduced seed dormancy

Perennial life history Annual life history

Sexual reproduction Asexual/vegetative reproduction

Asynchronous flowering,
maturation

Uniform flowering, maturation

Outcrossing Self-fertilizing

Indeterminate growth Determinate growth

Photoperiod sensitivity Reduced or altered photoperiod
response:

• Vernalization requirement

• Shifted flowering time during growing
season

Variable resource
allocation

Increased resource allocation to
harvested organ (fruit, root, stem, etc.)

INFLORESCENCE DEVELOPMENT

Open inflorescences or
panicles

Compact inflorescences/panicles

Many inflorescences,
few florets per
inflorescence

Reduced inflorescence number, increased
florets per inflorescence

Enclosed grains Exposed, free-threshing grains

FRUIT AND SEED MORPHOLOGY

Dehiscent fruit Indehiscent fruit

Smaller grains/fruit Larger grains/fruits or increased number

Spines/Bristles/awns
present

Spines/bristles/awns reduced or absent

Uniform morphology Diversified morphology

FRUIT AND SEED COMPOSITION

Toxic or unpalatable 2◦

compounds
Reduced or altered defense compounds

Uniform pigmentation Diversified and/or reduced pigmentation

Uniform carbohydrate
composition

Diversified starch and sugar composition

photoperiod response or other aspects of flowering time. Keeping
in mind the caveats that the taxa, traits, and genes in Table 2
are not representative of all crops and domestication phenotypes,
we explore below what might be inferred about the nature of
molecular changes during domestication and crop improvement.

Genetic targets of selection
In their 2006 review of the molecular genetics of crop domes-
tication, Doebley and colleagues noted that changes in devel-
opmentally or morphologically complex phenotypes typically
involve selection on genes that encode transcriptional regulators,
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as opposed to genes encoding structural proteins or enzymes.
This observation has continued to hold true for domestication-
related traits, and it reflects a pattern that appears to be more
generally characteristic of morphological evolution (Brakefield,
2011; De Bruijn et al., 2012). For those phenotypic categories
in Table 2 that involve changes in complex morphological traits
or developmental processes (plant architecture, plant growth and
reproductive timing, inflorescence development, and fruit and
seed morphology), nearly all characterized genes encode either
transcriptional regulators or other proteins that function in reg-
ulating basic developmental processes, such as cell growth and
division (e.g., rice GS5, GIF1, and GW2, all controlling grain
development) or hormone synthesis (e.g., rice SD1, controlling
plant height). In contrast, traits that involve specific metabolic
pathways, such as carbohydrate or pigment synthesis, may arise
either through selection on regulatory genes (e.g., grape and
orange fruit pigmentation; Walker et al., 2007; Fournier-Level
et al., 2010; Butelli et al., 2012) or through selection on structural
genes in the pathway. For example, in several different grain crops
there has been selection for glutinous (waxy) varieties, which lack
the starch amylose (e.g., rice, maize, barley, sorghum, millets,
and amaranths). In all of these cases, the glutinous phenotype
has arisen through selection for loss-of-function mutations at the
Waxy (GBSS1) locus, which encodes the starch synthase required
for amylose synthesis (see Table 2 for recent examples).

Mutational mechanisms
Evolution is fundamentally opportunistic with respect to its
causative mechanisms. It is perhaps unsurprising, then, that
Table 2 reveals a wide diversity in the nature of the mutations
that underlie domestication-related phenotypes. These include
cis-regulatory mutations that increase gene expression (e.g., rape-
seed BnFLC.A10, controlling vernalization; Hou et al., 2012),
and mutations in coding regions that result in modified pro-
teins that remain functional but have altered activity (e.g., sun-
flower HaFT1, controlling flowering time; Blackman et al., 2010).
The largest proportion of these domestication-related genetic
changes, however, are those that result in a loss of gene func-
tion. Common mechanisms by which this occurs include: SNPs
in coding regions that generate premature stop codons (e.g., rice
GS3, controlling grain length; Takano-Kai et al., 2009); indels in
coding regions that create frameshift mutations (e.g., pea HR,
controlling photoperiod sensitivity; Weller et al., 2012); amino
acid replacements that lead to a loss of protein function (e.g., rice
PROG1, controlling erect plant growth; Jin et al., 2008; Tan et al.,
2008); intron splice site mutations (e.g., rice TAC1, controlling
tiller angle; Yu et al., 2007); and indels or SNPs in cis-regulatory
regions that disrupt transcription (e.g., grape VvMybA1, control-
ling fruit pigmentation; Lijavetzky et al., 2006; Fournier-Level
et al., 2010). The apparent prevalence of loss of function muta-
tions in crop plants likely reflects the fact that coding sequences
and their promoters provide relatively large mutational targets.
Loss of function mutations might also be differentially tolerated
in agricultural settings, if their negative pleiotropic consequences
are sufficiently offset by the desirability of a domestication-related
trait. In addition, since loss of function mutations occur more fre-
quently than those leading to a gain in function, they would be

Frontiers in Plant Science | Plant Evolution and Development August 2013 | Volume 4 | Article 290 | 8

http://www.frontiersin.org/Plant_Evolution_and_Development
http://www.frontiersin.org/Plant_Evolution_and_Development
http://www.frontiersin.org/Plant_Evolution_and_Development/archive


Olsen and Wendel Evolution through crop domestication

expected to represent a greater proportion of the mutations that
have arisen since the origins of agriculture.

Insofar as mutational mechanisms are concerned, two key pro-
cesses are implicated as especially significant sources of genetic
variation in crop plants, namely, transposable element (TE) activ-
ity (a portion of which also entail loss-of-function mutations)
and gene duplication events. We consider each of these separately
below for crop domestication phenotypes.

Transposable elements. TE proliferation has played a major role
in shaping the evolution of plant genomes, including crop species.
A recent review indicates that TEs constitute between 22% and
85% of the genomes of 11 crop species examined (Morrell
et al., 2011). The replication and proliferation of TEs not only
affects genome size and structure, but it can also have major
phenotypic consequences—either directly through TE insertions
into genes and their cis-regulatory regions, or through genomic
structural changes such as gene duplications and chromosomal
rearrangements that alter levels of gene expression. Consistent
with this mutational capacity, a number of TE-mediated muta-
tions have been documented to underlie domestication-related
traits. This includes the causative mutation at what is perhaps
the most celebrated of all domestication loci, the maize locus tb1.
Domesticated maize (Zea mays subsp. mays) differs from its wild
ancestor, teosinte (Zea mays subsp. parviglumis), in lacking axil-
lary branch development; this change is largely due to increased
expression of tb1, a transcriptional regulator that represses growth
(Doebley et al., 1997). Through a combination of fine-mapping
in maize-teosinte introgression lines and selection screens in a
diverse germplasm panel, Doebley and colleagues demonstrated
that tb1 upregulation in the crop results from the insertion of
a Hopscotch retroelement into the gene’s cis-regulatory region,
which, remarkably, is located ∼60 kb upstream of the coding
region (Studer et al., 2011). Molecular dating of this TE insertion
suggests that it predates the time frame of maize domestication
and so likely existed as standing genetic variation in teosinte prior
to selection by humans.

Fruit characteristics provide other well-documented examples
of human selection on TE-mediated mutations. In grapes, non-
pigmented (“white”) berry color arises through the absence of
anthocyanin synthesis during fruit development. The modern
white grape phenotype appears to have arisen through sequen-
tial selection for loss-of-function mutations in two adjacent
anthocyanin regulatory genes: first, a single-nucleotide non-
synonymous mutation in VvMYBA2, and then a Gret1 gypsy-
type retrotransposon insertion in the promoter of VvMYBA1
(Kobayashi et al., 2005; Walker et al., 2007; Fournier-Level
et al., 2010). In domesticated tomato, the elongated fruit shape
found in some heirloom varieties is attributable to a Copia-
like retrotransposon-mediated duplication of the SUN gene;
the duplicated gene copy is positioned so that it is under cis-
regulatory control of a different gene (encoding a defensin pro-
tein) that is expressed at high levels during fruit development
(Xiao et al., 2008). In oranges, the anthocyanin production that
produces the blood orange phenotype occurs through the activ-
ity of another Copia-like retrotransposon. In this case, exposure
of ripening fruits to cold induces retrotransposon-mediated

transcriptional activation of Ruby, a Myb regulatory gene in
the anthocyanin synthesis pathway (Butelli et al., 2012). Other
domestication-related traits that have evolved through TE activity
include determinate growth in common bean (PvTFL1y; Repinski
et al., 2012); vernalization requirement in rapeseed (BnFLC.A10;
Hou et al., 2012) and wheat (Vrn1; Golovnina et al., 2010); and
photoperiod sensitivity in rice (Ehd1; Saito et al., 2009).

Gene duplication. The tomato fruit shape example above illus-
trates the potential for TE-mediated gene duplications to alter
crop phenotypes. More generally, gene duplication is a promi-
nent feature of plant genome evolution, reflecting a history that
includes repeated episodes of whole-genome doubling (Jiao et al.,
2011), as well as other duplication processes including TE activity,
unequal crossing over, and other chromosomal structural aber-
rations (Flagel and Wendel, 2009). Accordingly, nearly all genes
in modern plant genomes exist as members of small to large
multigene families, with paralogous gene copies sharing various
degrees of relatedness as a function of the amount of time elapsed
since duplication (and with some paralogs predating the origin of
seed plants) (Jiao et al., 2011).

In the context of crop domestication, a wealth of indirect
evidence suggests a role for polyploidization in generating adap-
tive plasticity and novel phenotypic variation for domestication-
related traits [reviewed by Paterson (2005); Udall and Wendel
(2006)]. Some of the clearest evidence is found in the grain hard-
ness and free-threshing phenotypes of hexaploid bread wheat, a
crop that originated through hybridization of a tetraploid wheat
(containing the A and B ancestral diploid genomes) and a diploid
(contributing the D genome). Grain hardness has been subject to
diversifying selection in wheat, with hard grains favored in the
tetraploid wheats grown for pasta, soft grains favored for bread
flour, and semi-hard grains favored in some bread wheat varieties.
The trait is controlled by the complex hardness locus (Ha), which
was present in all three ancestral diploid genomes, and which
generates the soft wheat phenotype when functional. Deletions
of Ha from both of the ancestral genomes of tetraploid wheat
created the hard grain phenotype, and the ancestral soft grain
phenotype was restored in bread wheat by the contribution of
the D-genome Ha locus; subsequent selection for deletions and
complex rearrangements in the D-genome locus gave rise to the
semihard hexaploid wheats (Chantret et al., 2004). The wheat
Q locus, which controls the free-threshing phenotype and other
aspects of plant and inflorescence development, has an even more
complex history (Zhang et al., 2011). In this case, free-threshing
grains originated through a combination of ancient gene dupli-
cations within the ancestral diploid genomes, loss of alternate
paralogs in the different genomes, post-polyploidization selection
for a single amino acid replacement in the A-genome homeolog,
pseudogenization of the B-genome homeolog (but with contin-
ued transcription, contributing to expression regulation of the
other homeologs), and subfunctionalization of the D-genome
homeolog.

In other cases, gene duplications unrelated to polyploidiza-
tion have played a role in crop domestication phenotypes. The
TE-mediated duplication of the tomato SUN gene described
above provides one such example. Another well documented
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instance involves paralogous copies of the flowering time gene FT
(FLOWERING LOCUS T) in sunflower and selection for changes
in flowering time during domestication and later crop improve-
ment (Blackman et al., 2010, 2011). FT genes function as positive
regulators of reproductive meristem development, and Blackman
and colleagues were able to identify four paralogous copies in
sunflower, three of which appear to be functional and show evi-
dence of having played a role in a shift toward later flowering time
during sunflower domestication. Specifically, the paralogs show
divergence in expression patterns between wild and domesticated
sunflowers, co-localization with flowering time QTLs, and molec-
ular signatures consistent with selection during domestication. In
addition, one of the paralogs, HaFT1, shows evidence of selec-
tion for a protein-coding frameshift mutation that alters floral
developmental timing through interference with the expression
of another paralog HaFT4 (see Table 2). Interestingly, modern
commercial sunflower varieties have been selected for early flow-
ering, the opposite direction as was favored during domestication.
The ability of the crop to respond to these contrasting selec-
tive pressures may have been facilitated by the partial functional
redundancy conferred by the presence of multiple of FT paralogs
[see discussion by Blackman et al. (2011)].

BETWEEN GENOTYPE AND PHENOTYPE
Given the rapid expansion in the application of high-throughput
technologies to the study of crop plant evolution, we anticipate
that the pace of discovery of the underpinnings of domestica-
tion and improvement traits will continue to increase. In addition
to enriching our understanding of the spectrum and relative
frequency of causal mutations and the underlying genetic archi-
tecture of specific traits, the increasing application of genome-
scale systems biology approaches promises to shed qualitatively
new light on crop plant evolution. The simultaneous analysis of
multiple “omics” (e.g., genomics, transcriptomics, proteomics,
metabolomics) in combination with analyses of pathways and
networks across various scales (temporal, developmental) offer
new opportunities to reveal the intricacies of domestication and
crop improvement, and by extension (echoing the words of
Darwin invoked in the introduction to this review), the evolu-
tionary process in general. Much of this review has focused on
the mutations responsible for phenotypes found in crop plants,
and to be sure, considerable progress has been made in this regard
(Table 2). But there is a vast biology lying between genotype and
phenotype, with the latter reflecting the end product of a com-
plex transduction and propagation from genotype through the
transcriptomic, proteomic, and metabolomic networks that lead
to biosynthesis and, ultimately, to phenotype.

Recent studies in this area have provided clues into the types
of complexity we might expect. Working in maize, Hufford
et al. (2012) combined genome resequencing with comparative
expression profiling and found a surprisingly large number of
genomic regions that may have been targets of selection dur-
ing domestication (484 regions) and crop improvement (695
regions). Candidate domestication genes show greater changes
in gene expression between maize and teosinte than do non-
candidate genes, are on average expressed at higher levels, and
have reduced expression variability; the latter is interpreted as

potentially reflecting directional selection for a reduction in cis-
regulatory variation. An extension of this work (Swanson-Wagner
et al., 2012) used comparative expression profiling of seedlings in
24 teosinte and 38 maize accessions; many of the 600 differentially
expressed genes occur in genomic locations that were identified
in population genomic diversity screens as potential targets of
selection (Hufford et al., 2012).

Studies in cotton also reveal evidence of large-scale rewiring
of the transcriptome in response to domestication. Rapp
et al. (2010) studied the transcriptome of developing cotton
(Gossypium hirsutum) “fibers” (seed epidermal trichomes) in
both wild and domesticated cotton during five stages representing
primary and secondary wall synthesis. They detected significantly
altered expression for 9645 genes, or about 25% of the genes in
the genome. This is especially remarkable, not just because of
the high level of “transcriptomic rewiring” that this reflects, but
also because it is observed for a single-celled structure. Other
transcriptomic studies in the cotton model system are revealing
a comparable, massive rewiring of the transcriptome accompa-
nying domestication (Chaudhary et al., 2008, 2009; Yoo et al.,
unpublished).

We will also likely soon see the fruitful extension of these types
of analyses to levels beyond the transcriptome, toward an under-
standing of how the transcriptional network propagates through
the proteome and beyond to condition new phenotypes. A recent
example is provided by Hu et al. (2013), who used advanced
proteomic profiling tools in an elite cotton cultivar and a wild
accession to gain insight into cotton fiber development and evolu-
tion. Using iTRAQ LC-MS/MS technology, they identified ∼1000
different proteins in fiber cells, of which about 20% showed dif-
ferential expression between wild and cultivated forms. A key
observation was that human selection appears to have shifted the
timing of developmental modules, such that some of these occur
earlier in domesticated than in wild cotton.

The results of Hu et al. (2013) demonstrate the power of
complementary transcriptomic and proteomic approaches for the
study of the domestication process. This also is exemplified by
a second study in cotton (Bao et al., 2011), where genomic and
proteomic tools were used to investigate one of the protein fam-
ilies (profilin) implicated as highly up-regulated during cotton
domestication. Rather than occurring through upregulation of
a single profilin gene, all five of the profilin genes expressed in
cotton fibers were simultaneously up-regulated. This pattern pre-
sumably reflects the downstream effects of upstream regulatory
alterations (or potentially just a single mutation) whose effects
are propagated through the system during cellular development
to affect transcriptome and proteome levels for the entire profilin
gene family.

An exciting prospect for the future will be to begin to dis-
sect or partition the complexity that underlies the evolution-
ary transformation of phenotypes into its constituent parts, so
that we can begin to appreciate the effects of and interrelation-
ships among these components on the various “omics” that lie
between genotype and phenotype (Mackay et al., 2009). Progress
in this direction will almost assuredly emerge from the simul-
taneous utilization of the tools of systems biology, combined
with more traditional QTL analyses and other advanced breeding
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populations, such as introgression lines. As an example of this
systems approach, one can envision multidimensional omics and
computional comparisons among near-isogenic introgression
lines that have been generated between wild and domesticated
populations of a given crop plant.

PARALLEL EVOLUTION IN DOMESTICATED CROPS
Unlike in earlier decades, when “parallelism” or “convergence”
(Arendt and Reznick, 2008) were limited to observations at the
morphological level, modern technologies permit the analysis
of these phenomena at multiple biological scales. In the con-
text of crop domestication, parallel responses to selection have
been studied both at the level of gene expression and at the
level of underlying mutational changes. Recent studies in cot-
ton serve to illustrate the types of parallel changes that may
be observed with respect to gene expression. Within the genus
Gossypium, three independent domestications occurred, involv-
ing two allopolyploids (G. barbadense and G. hirsutum, the latter
of which constitutes ∼90% of the world cotton crop) and one
diploid (G. herbaceum). In their study of the profilin gene fam-
ily described above, Bao et al. (2011) were able to document that
upregulation of the entire profilin gene family has occurred not
only with the domestication of G. hirsutum, but also in parallel
in the two other domestication events. In another study of cot-
ton fiber development, Chaudhary et al. (2009) examined changes
in a class of genes implicated as developmentally important for
their roles in fine-tuning cellular redox levels (reactive oxygen
species, or ROS genes), which are important for cell expansion;
they discovered that several antioxidant genes were substan-
tially up-regulated in the three domesticated forms of cotton, in
comparison to their wild antecedents. Remarkably, many of the
ROS-related processes diagnosed as possible targets of selection
were shared among the diploid and allopolyploid cultigens, but
involved different sets of antioxidant genes. This finding suggests
that selection may have operated to achieve similar ends by dif-
ferent underlying genetic mechanisms. It will be of considerable
interest to elucidate and compare the specific genomic changes
in each of the cotton species that have mediated these parallel
responses to domestication.

THE GENETIC BASIS OF PARALLEL EVOLUTION: FLOWERING TIME AS
AN EXAMPLE
As discussed earlier in this review, much of what we currently
understand about the mutational basis of domestication-related
phenotypic evolution comes from traits and genes related to flow-
ering time. Shifts in the timing of reproduction generally are
not associated with the initial stages of domestication; rather,
these changes have occurred through later diversifying selection,
as domesticated crop varieties were introduced into latitudes
and climates where the native-range flowering time response
would be suboptimal or maladaptive, or for the development of
earlier maturing varieties in the native range. For rice, maize,
sorghum, cotton, and other crops that were domesticated in trop-
ical and near-tropical regions, flowering is often promoted under
short-day (SD) photoperiod. The spread of these crops into tem-
perate regions was enabled by selection for reduced or altered SD
response, allowing them to be cultivated in the long-day (LD)

summer growing seasons of higher latitudes (e.g., Murphy et al.,
2011; Hung et al., 2012; Matsubara et al., 2012). Similarly, culti-
vation of the potato in temperate latitudes was only possible with
selection for varieties lacking a SD tuberization response (Murphy
et al., 2011). In the case of some temperate crops, including peas
and lentils, reproduction occurs under long days in the native
range (the Mediterranean and Fertile Crescent in the case of these
pulses), and selection against LD photoperiod response allowed
for emergence of the spring-flowering varieties grown at higher
latitudes (Weller et al., 2012).

Other temperate crops have undergone selection to either lose
or acquire a vernalization requirement, whereby flowering occurs
only following exposure to an extended period of cold. Crop vari-
eties possessing a vernalization requirement have a winter growth
habit, germinating in the fall and increasing biomass throughout
the winter months before flowering in the spring. This growth
habit is adaptive in climates with mild winters and hot, dry
summers that are inhospitable for growth. Selection for the acqui-
sition of a vernalization requirement has occurred in winter wheat
varieties (Yan et al., 2003) and some varieties of rapeseed (Hou
et al., 2012). In contrast, selection for a loss of vernalization
requirement has occurred in spring barley (e.g., Turner et al.,
2005; Comadran et al., 2012) and spring wheat (Yan et al., 2004),
where the spring growth habit allows planting and harvesting in
northern latitudes with short growing seasons.

In considering changes in flowering time as a case study of par-
allel evolution in crops, it is important to recognize that not all
crops have been subject to selection for the same changes, nor
do all crops share identical developmental genetic components of
the flowering time pathway. For example, whereas selection on
vernalization requirements has played a major role in the devel-
opment of winter and spring varieties of temperate cereals such
as wheat and barley, the vernalization signaling pathway is absent
in tropical cereals such as rice, maize, and sorghum. Thus, selec-
tion on flowering time in the tropical grasses is restricted to shifts
toward earlier or later flowering within the active growing sea-
son, as opposed to selection for spring vs. winter growth habit. It
is also important to note that identifying orthologous flowering
time genes in two species does not guarantee that they actually
share the same function. For example, the Arabidopsis photope-
riod pathway gene CONSTANS (CO) functions as an activator
of downstream floral pathway integrators under LD photoperiod,
while its rice ortholog, Hd1, has the opposite effect, repressing
downstream genes under LD photoperiod and activating them in
SD conditions (Tsuji et al., 2011).

Depending on the crop species and the nature of its flow-
ering time response, changes in flowering time could poten-
tially arise from either decreased or increased expression of
diverse regulatory factors in the flowering time pathway [see
reviews by Ehrenreich et al. (2009); Andrés and Coupland (2012);
Matsoukas et al. (2012)]. Figure 1 provides a schematic repre-
senting the portions of the Arabidopsis and rice flowering time
pathways that contain genes or gene homologs that have been
targets of selection in crop species. Potential targets of selec-
tion could include: (1) genes that mediate photoperiod and
related circadian clock functions [e.g., orthologs of Arabidopsis
EARLY FLOWERING 3 (ELF3) and CONSTANS (CO)]; (2) those
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FIGURE 1 | Flowering time genes recently identified as targets of

selection in crop species. The Arabidopsis flowering time pathway is
represented as a simplified schematic based on Ballerini and Kramer (2011)
and references in Table 2; photoperiod response occurs under long-day (LD)
conditions. The gray inset shows a simplified schematic of the rice
photoperiod response pathway and immediate downstream genes (Hd3a and
RFT1, both Arabidopsis FT homologs), based on Tsuji et al. (2011) and
references in Table 2. Small red circles correspond to rice flowering time

genes in Table 2, with known regulatory interactions among them indicated
by arrows and lines; interactions are for short-day (SD) photoperiod unless
long-day (LD) is indicated. Letters in red circles correspond to homologous
genes from other crop species, as follows: (A) barley HvCEN, (B) barley
Ppd-H1, (C) rapeseed BnFLC.A10, (D) wheat Vrn1, (E) wheat Vrn2, (F) lentil
SN, (G) maize ZmCCT, (H) pea HR, (I) sorghum Ma1, (J) soybean E1, (K)

sunflower HaFT1 and paralogs. Positions of letters indicate known
homologies to Arabidopsis or rice genes.

that mediate vernalization cues [e.g., orthologs of Arabidopsis
FLOWERING LOCUS C (FLC)]; (3) those involved in other
components of floral induction signaling (e.g., the autonomous
and gibberellin (GA) signaling pathways); and (4) those that
function further downstream in the flowering pathway as inte-
grators of the different signaling pathways [e.g., orthologs of
FLOWERING LOCUS T (FT) and APETALA1 (AP1)]. Among
the domestication-related flowering time genes that have been
molecularly characterized in recent years (Table 2), most involve
some aspect of photoperiod response, either directly involving
photoperiod and circadian clock signaling (e.g., ELF3 in legumes
and rice; (Matsubara et al., 2012; Weller et al., 2012)) or involv-
ing downstream floral pathway integrators (e.g., FT and AP1
homologs in sunflower and wheat, respectively; Yan et al., 2003;
Blackman et al., 2010) (Figure 1).

At least seventeen domestication-related flowering time genes
have been molecularly characterized in the last 5 years (Table 2),
not counting genes that were subject to selection in the 20th cen-
tury (e.g., rice Hd5; Fujino et al., 2013). More than one-third
of these come from the genomic model species rice, but other
cereals (maize, sorghum), legumes (pea, lentil, soybean), and sun-
flower are also represented. Some sharing of genetic targets of
selection is evident across these crops (Figure 1). For example,
mutations in the photoperiod pathway gene ELF3 have played a
role in the emergence of early flowering varieties of peas, lentils,
and rice (Matsubara et al., 2012; Weller et al., 2012). Similarly,
homologs of the downstream photoperiod regulator Ghd7 were
targets of selection in both rice and maize for earlier flowering
under LD photoperiod (Xue et al., 2008; Hung et al., 2012),

and in wheat for spring growth habit (Distelfeld et al., 2009).
On the other hand, it is equally noteworthy that a diverse num-
ber of different flowering time genes have been identified to
date as targets of selection in crops. These include at least six
different photoperiod response genes in rice alone, as well as
orthologs of the well-characterized Arabidopsis genes FLC (rape-
seed BnFLC.A10; Hou et al., 2012), FT (sunflower HaFT1 and
paralogs; Blackman et al., 2011) and AP1 (wheat Vrn1; Yan et al.,
2003) (Figure 1). While flowering time is admittedly a single trait
and the studies published to date provide a relatively small sam-
ple size, these findings potentially suggest a wide breadth in the
number and types of genes that may serve as targets of selec-
tion conditioning a common phenotype in a diversity of species.
The underlying mutational mechanisms are similarly diverse,
involving a variety of cis-regulatory and protein-coding changes
(Table 2).

CONCLUSIONS
It is an exciting time in evolutionary biology, one character-
ized by unprecedented experimental power. The application of
a suite of advanced technologies to domestication-related traits
in multiple crop-wild plant model systems is rapidly increas-
ing our ability to discover the genes affected by human selec-
tion during both initial domestication and subsequent phases
of crop improvement. This collective effort is providing a rich
comparative database of the mutational spectra underlying crop
evolution and the manner in which changes at the genetic level
propagate through various levels of organization to confer the
targeted phenotypes. As the number of molecularly characterized
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traits continues to grow, it will become increasingly possi-
ble to capitalize on these traits and genes to study how the
broader developmental context in which they function has shaped
the evolutionary process. It is likely that the most exciting
and novel insights will derive from the utilization of multiple
“omics” tools in an integrative framework, all brought to bear
on specific genotype-to-phenotype transformations [reviewed by
Ghosh et al. (2011); Lucas et al. (2011); Papp et al. (2011)].
We expect that this systematic exploration of the systems biol-
ogy of domestication will lead to an enriched, mechanistic

view of both the nature of “adaptation” and of “parallel
evolution.”
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