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Nitric oxide (NO) plays an important role in many different physiological processes in plants.
It mainly acts by post-translationally modifying proteins. Modification of cysteine residues
termed as S-nitrosylation is believed to be the most important mechanism for transduction
of bioactivity of NO. The first proteins found to be nitrosylated were mainly of cytoplasmic
origin or isolated from mitochondria and peroxisomes. Interestingly, it was shown that
redox-sensitive transcription factors are also nitrosylated and that NO influences the redox-
dependent nuclear transport of some proteins.This implies that NO plays a role in regulating
transcription and/or general nuclear metabolism which is a fascinating new aspect of NO
signaling in plants. In this review, we will discuss the impact of S-nitrosylation on nuclear
plant proteins with a focus on transcriptional regulation, describe the function of this
modification and draw also comparisons to the animal system in which S-nitrosylation
of nuclear proteins is a well characterized concept.
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INTRODUCTION
Nitric oxide (NO) is a small, highly reactive gaseous radical.
Although it is cytotoxic in high concentrations, NO plays a key
role as a biological messenger in all kingdoms. In plants, it is
implicated in various physiological processes like flowering, stom-
atal closure, germination, root development, gravitropism, and
responses to abiotic and biotic stresses (Delledonne et al., 1998;
Durner et al., 1998; Garcia-Mata and Lamattina, 2002; Pagnussat
et al., 2002; He et al., 2004; Hu et al., 2005; Lombardo et al., 2006;
De Michele et al., 2009; Sirova et al., 2011; Tanou et al., 2012).

Due to its instable nature, NO has a very rich chemistry.
Besides direct dative binding to metal ions NO can further react
with superoxide and molecular oxygen, resulting in the forma-
tion of peroxynitrite and dinitrogen trioxide N2O3 (or higher
oxides like NO2), respectively. Moreover, adding or removing
one electron from the antibonding highest occupied molecular
orbital by reducing or oxidizing chemicals yields nitroxyl anion
(NO−) and nitrosonium cation (NO+). Collectively, these species
are referred to as reactive nitrogen species (RNS) each having
distinct chemical properties leading to numerous reactions with
biological molecules like lipids, carbohydrates, nucleic acids, and
proteins. Although most of these reactions were assumed to be
indicative for nitrosative stress in the past, it has become clear that
some of these RNS also function as important redox-signaling
molecules in the cell by binding covalently to target proteins
(Suzuki et al., 2012; Yun et al., 2012). This as redox-signaling
termed mechanism should not be considered as a discrete set of
signaling cascades. Rather, the cell should be seen as set of com-
partments each having distinct redox-sensitive proteins as well as
redox buffering capacities. Changes in the redox potential of these
compartments could then influence other signaling pathways by
modifying redox-sensitive proteins (Foyer and Noctor, 2013).

There are three important NO-dependent modifications: metal
nitrosylation, tyrosine nitration, and cysteine S-nitrosylation.

In a direct reaction termed metal nitrosylation, NO (Lewis base)
binds to the transition metal (Lewis acid) of metalloproteins yield-
ing a metal–nitrosyl complex. One example from mammals is the
binding of NO to the heme center of soluble guanylate cyclase
which activates this enzyme by inducing conformational changes
and this in turn leads to the production of cyclic GMP (Russwurm
and Koesling, 2004).

Reactive nitrogen species can modify the activity of proteins
by covalently binding to tyrosine and cysteine residues. Tyrosine
nitration refers to the addition of a nitro group to susceptible
tyrosine residues in ortho position to the hydroxyl group thus
leading to 3-nitrotyrosine. The main nitrating species is peroxyni-
trite which is produced in a diffusion controlled reaction between
NO and superoxide (Ferrer-Sueta and Radi, 2009). Tyrosine nitra-
tion was originally considered to be indicative for oxidative and
nitrosative stress but evidence accumulates that this modification
also has a signaling function in plant cells (Cecconi et al., 2009;
Gaupels et al., 2011).

S-nitrosylation of protein cysteine residues is believed to be
the most important mechanism for transduction of bioactivity of
NO in plants. The formation of nitrosothiols is still debated. The
direct reaction of thiol groups with NO is too slow to occur in vivo,
instead it is assumed that N2O3 is the main nitrosylating species in
aerobic conditions although the formation of dinitrogen trioxide
is controversially discussed (Folkes and Wardman, 2004; Ridnour
et al., 2004). Other RNS described to mediate S-nitrosothiol for-
mation are nitrosonium and nitroxyl ions (Ridnour et al., 2004).
Nitroso groups can also be transferred between thiols in a process
termed as transnitrosylation. Transnitrosylation occurs between
proteins and between proteins and low molecular weight SNOs
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(e.g., S-nitrosylated glutathione GSNO) in animals; in plants,
however, evidence for this mechanism is lacking (Hogg, 2002;
Nakamura and Lipton, 2013). Enzymatic denitrosylation is medi-
ated by GSNO reductase (GSNOR) and thioredoxins (Trx), both
proteins are crucial for maintaining SNO-homeostasis (Sakamoto
et al., 2002; Feechan et al., 2005; Sengupta and Holmgren, 2013).

Initial proteomic screens for S-nitrosylated proteins in
A. thaliana revealed 53 mainly cytoplasmic proteins but this num-
ber increased drastically over the last years (Lindermayr et al.,
2005). Up to date several screens targeting the proteomes of differ-
ent organelles like mitochondria and peroxisomes identified more
than 250 candidate proteins to be S-nitrosylated involved in a wide
range of physiological processes ranging from stress response to
metabolism (Kovacs and Lindermayr, 2013; Lounifi et al., 2013).
Interestingly, microarray analysis and amplified fragment-length
polymorphism (AFLP) transcript profiling of plants treated with
gaseous NO and sodium nitroprusside, respectively, showed that
NO leads to changes in the transcriptome of Arabidopsis (Huang
et al., 2002; Polverari et al., 2003). Promoter analysis of the genes
co-expressed after NO treatment revealed the accumulation of cer-
tain transcription factor binding sites, like octopine synthase gene
(ocs) elements and WRKY-sites (Palmieri et al., 2008). This raised
the question whether NO affects transcription directly by nitro-
sylating transcription factors or other transcriptional regulators.
In some bacteria, for instance, redox-sensitive cysteine residues of
the transcriptional activator OxyR can undergo redox-dependent

post-translational modifications like oxidation to sulfinic acid,
S-glutathionylation, or S-nitrosylation. Each of these modifica-
tions affects binding affinity and specificity of OxyR to DNA
thus resulting in distinct transcriptional responses (Marshall et al.,
2000). Besides regulation of DNA-binding, S-nitrosylation of
nuclear proteins could also affect their subcellular localization or
regulate the association with binding partners thereby modulating
transcription and/or general nuclear metabolism. In animals, for
instance, S-nitrosylation of the nuclear export receptor CRM1
(karyopherin chromosomal region maintenance 1) leads to a
decrease in the export rate and a subsequent nuclear accumula-
tion of its target protein Nrf2, an antioxidant transcription factor
(Wang et al., 2009). The possible modes of action of NO on gene
transcription are shown in Figure 1.

In this review, we will summarize the current knowledge about
S-nitrosylated nuclear plant proteins. What is the impact and func-
tion of this post-translational modification? Comparisons to the
animal system will be drawn in which much more is known about
the effect of S-nitrosylation on transcription.

S -NITROSYLATED NUCLEAR PROTEINS
GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE AND CYTOSOLIC
ALDOLASE
It is well-known that glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) not only plays an important role in glycolysis but also
participates in nuclear events like regulation of gene transcription,

FIGURE 1 | S-nitrosylation can affect gene transcription in several

ways. Upon S-nitrosylation proteins can change their subcellular localization
which may lead to either import in (A) or export out (B) of the nucleus
(Qu et al., 2007; Malik et al., 2010). Alternatively, S-nitrosylation is also
described to alter DNA-binding activity of certain proteins (C,D; Serpa et al.,

2007; Lindermayr et al., 2010; Sha and Marshall, 2012). Additionally,
SNO-formation can lead to association/dissociation of macromolecular
complexes which may result in dissociation from chromatin (E; Nott et al.,
2008). Various combinations including indirect regulation are also
conceivable (F).
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RNA transport and DNA replication. In animal cells, the link
between NO signaling and nuclear action of GAPDH is well
established. GAPDH lacks a nuclear localization signal and the
homotetramer is too large (150 kDa) to pass passively through
nuclear pores. Upon stress GAPDH is specifically nitrosylated
at Cys150 by inducible NO-synthase (iNOS) leading to complex
formation with seven in absentia homolog 1 (Siah1), an E3
ubiquitin ligase. Siah1 has a very rapid turnover in HEK293
cells but binding to GAPDH markedly increases its stability.
The nuclear import signal of Siah1 enables the translocation of
the GAPDH/Siah1 complex into the nucleus (Hara et al., 2005).
Interestingly, it was shown that nitrosylated GAPDH can transni-
trosylate nuclear proteins including deacetylating enzyme sirtuin
1 (SIRT1), histone deacetylase 2 (HDAC2), and DNA-activated
protein kinase (DNA-PK) thereby affecting gene transcription
(Kornberg et al., 2010). This mechanism can elegantly explain
specificity of S-nitrosylation in the nucleus in the absence of a
nuclear NO-synthase (Stamler and Hess, 2010).

In Arabidopsis, both GAPDH isoforms GapC1 and GapC2
were shown to be nitrosylated and glutathionylated on Cys155
and Cys159 (Holtgrefe et al., 2008). These cysteine modifications
inhibit GAPDH in vitro, but activity could be restored upon addi-
tion of dithiothreitol (DTT) demonstrating the reversibility of
these modifications. A GFP–GAPDH fusion protein was local-
ized in both the cytosol and nucleus in A. thaliana protoplasts
indicating partial nuclear localization of GAPDH (Holtgrefe et al.,
2008). Moreover, a complex of a GAPDH isoform and NtOSAK
(Nicotiana tabacum osmotic stress-activated protein kinase) par-
tially localized to the nucleus in BY2 cells after salt stress. Both
proteins of this complex seem to be regulated by NO: GAPDH
is directly S-nitrosylated, whereas the regulation of NtOSAK is
rather indirect, involving the NO-dependent phosphorylation of
a serine residue in the activation loop of the kinase (Wawer et al.,
2010). In addition, cadmium stress induced a strong nuclear accu-
mulation of GapC1 in Arabidopsis root tips, which was – in sharp
contrast to animal cells – not dependent on S-nitrosylation of the
catalytic Cys-residue (Vescovi et al., 2013). Interestingly, GAPDH
was found to bind to the malate dehydrogenase promoter by using
electrophoretic mobility shift assays pointing toward a possible
role as transcriptional activator/repressor (Holtgrefe et al., 2008).
In conclusion, in contrast to animal cells, the molecular function of
S-nitrosylation of GAPDH in plants is rather unclear, and further
work is needed to decipher the role of GAPDH in NO-mediated
signaling.

Aldolases catalyze the reversible condensation of D-
glyceraldehyde-3-phosphate and dihydroxyacetone phosphate and
are involved in glycolysis, gluconeogenesis, and the Calvin cycle.
Higher plants possess different isoforms of aldolases localized to
either the cytosol or plastids. It was shown that the enzymatic activ-
ity of one isoform of cytosolic aldolase from A. thaliana is inhibited
by different redox modifications. Cys68 and Cys173 were both glu-
tathionylated, while nitrosylation was only detected at Cys173 (van
der Linde et al., 2011). Several studies support the idea that cytoso-
lic aldolase might take over functions in the nucleus. First, this
enzyme was found to be localized in the pea leaf nucleus (Ander-
son et al., 2005). Second, cytosolic aldolase was identified as an
interaction partner of the MADS-box transcription factor NMH7

in Medicago sativa (Paez-Valencia et al., 2008). Third, a GFP-fusion
construct partially localized to the nucleus in A. thaliana proto-
plasts (van der Linde et al., 2011). Fourth, this enzyme was shown
to be associated with the NADPH-malate dehydrogenase promoter
(Hameister et al., 2007). However, nothing is known about the
impact of redox modifications on nuclear activity of cytosolic
aldolase.

MYB TRANSCRIPTION FACTORS
In plants, MYB factors are one of the largest families of transcrip-
tion factors (Stracke et al., 2001). In the genome of A. thaliana,
approximately 9% of the estimated number of transcription fac-
tors belongs to the MYB family (Riechmann et al., 2000). MYB
transcription factors are involved in the regulation of a wide
range of physiological processes including metabolic pathways,
cell fate and identity, developmental processes and responses to
biotic and abiotic stresses (Dubos et al., 2010). They are char-
acterized by a highly conserved DNA-binding domain (MYB
DBD). The MYB DBD consists of up to four sequence repeats
of about 52 amino acids, each forming three α-helices (Dubos
et al., 2010). The third helix of each repeat is the “recognition
helix” that makes direct contact with the major groove of DNA
(Dubos et al., 2010). The repeated domains increase specificity
of DNA-binding and depending on their number, MYB proteins
can be divided into different classes. R2–R3 MYB factors consti-
tute an expanded family of MYB proteins in plants that contain a
N-terminal DNA-binding domain formed by two adjacent MYB
repeats (R2 and R3) and an activation or repression domain usu-
ally located in the C-terminus (Dubos et al., 2010). In contrast to
the highly conserved MYB domain, the other regions of R2R3-
MYB proteins are highly variable which can explain the wide
range of regulatory roles of members of this family in plant-
specific processes (Wilkins et al., 2009). R2R3-MYB factors contain
a highly conserved Cys at position 53 (Cys53) which is also present
in MYB proteins from animals and fungi (Serpa et al., 2007). The
presence of this surface exposed Cys-residue within the DNA-
binding domain raises the question whether DNA-binding activity
is regulated by oxidative modifications of this amino acid. Indeed,
the DNA-binding of M2D (a fully active DNA-binding domain
of AtMYB2) is inhibited by S-nitrosylation of Cys53 (Serpa et al.,
2007). This mechanism might be conserved throughout differ-
ent kingdoms as it was demonstrated that NO-donors (SNP and
SNOG) severely inhibited DNA-binding of the chicken c-Myb
minimal DNA-binding domain R2R3 and that Cys130 (equiv-
alent to Cys53 in plants) is essential for this inhibitory effect
(Brendeford et al., 1998).

NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 AND TGA1
In mammalian immunity, the cofactor inhibitor of kappaB (IκB),
which shares structural features with plant non-expressor of
pathogenesis-related genes 1 (NPR1; Cao et al., 1997; Ryals et al.,
1997), functions to sequester the transcription factor nuclear
factor kappaB (NF-κB) in the cytoplasm and prevents it from
activating gene expression. In response to pathogen attack, IκB is
rapidly phosphorylated and targeted for ubiquitin-mediated pro-
teolysis, allowing NF-κB to localize to the nucleus and activate
target genes (Hayden and Ghosh, 2004).
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NF-κB itself is a redox-regulated transcription factor in
mammals. Within the DNA-binding domain, Cys62 of the p50
subunit is critical for ROS-regulated DNA-binding (Matthews
et al., 1992) and is modified by S-nitrosylation (Matthews et al.,
1996).

The transcription cofactor NPR1, a key regulator of systemic
acquired resistance (SAR), is essential for salicylic acid (SA)-
mediated signal transduction (Rockel et al., 2002). Recently, it has
been shown that NPR1 binds SA and works as a SA receptor (Wu
et al., 2012). In unchallenged plants, Cys residues in NPR1 form
intermolecular disulfide bonds, driving the formation of NPR1
oligomers (Mou et al., 2003). These NPR1-oligomers are retained
in the cytosol. Upon pathogen challenge, the level of SA increases
followed by changes in the cellular redox state, resulting in reduc-
tion of disulfide bonds in NPR1. Reduction of the NPR1 oligomers
releases monomers that translocate to the nucleus where they
interact with TGA transcription factors and subsequently acti-
vate the expression of pathogenesis-related (PR) genes (Kinkema
et al., 2000). Moreover, NPR1 regulates the transcript accumula-
tion of callose synthase genes during defense response (Dong et al.,
2008). Interestingly, S-nitrosylation of C156 of NPR1 facilitates its
oligomerization (Tada et al., 2008). Trx catalyze the monomer-
ization of NPR1 and allow the translocation into the nucleus.
Surprisingly, the nuclear translocation of NPR1 is also induced
by GSNO (Lindermayr et al., 2010). However, the S-nitrosylation-
mediated oligomerization is not considered to be an inhibitory
effect of NPR1 signaling but rather as a step prior to monomer
accumulation.

The TGACG motif binding transcription factors (TGA) belong
to the group of basic leucine zipper (bZIP) proteins and the
DNA-binding sites for several bZIP factors were enriched in pro-
moter regions of NO-regulated genes (Palmieri et al., 2008). In the
nucleus, NPR1 interacts with TGA that binds to cis-elements of
the PR1 promoter, promoting PR1 gene expression and defense
(Zhou et al., 2000; Despres, 2003). Redox-dependent interaction
with NPR1 is only described for TGA1 and TGA4 which comprise
group I and possess four cysteine residues. TGA2, TGA3, TGA5,
TGA6, and TGA7 interact with NPR1 independently of the cellular
redox status (Zhang et al., 1999; Zhou et al., 2000; Despres, 2003).
The Cys residues C260 and C266 of TGA1 form a disulfide bond
under oxidizing conditions precluding its interaction with NPR1.
These Cys residues are conserved in TGA4, but not in the other
TGA isoforms.

Redox regulation of TGA1 and NPR1 has been proposed to
involve S-nitrosylation (Lindermayr et al., 2010). Both proteins
are S-nitrosylated in vitro after S-nitrosoglutathione (GSNO)
treatment (Tada et al., 2008; Lindermayr et al., 2010), resulting
in enhanced DNA-binding activity of TGA1 toward its cognate
target in the presence of NPR1 (Lindermayr et al., 2010). The
GSNO-dependent modifications probably result in conforma-
tional changes of TGA1 and/or NPR1, which allow a more effective
TGA1–NPR1 interaction and enhanced DNA-binding of TGA1
(Lindermayr et al., 2010). The redox status of C172/C287 of TGA1
seems to be important for its DNA-binding activity. Reducing this
disulfide bridge and subsequent GSNO-dependent modification
of the corresponding cysteine residues positively affect DNA-
binding of this transcription factor (Lindermayr et al., 2010).

HISTONE DEACETYLASES
Acetylation of histone lysine residues is a very important epigenetic
regulatory mechanism. Histone acetyltransferases (HATs) catalyze
the transfer of acetyl groups from acetyl-coenzyme A on lysine
residues of histone tails thereby neutralizing the positive charge of
the lysine residue. This reduces the affinity of histones for nega-
tively charged DNA resulting in a loose chromatin structure that
is easily accessible for the transcriptional machinery. In contrast,
histone deacetylases (HDACs) remove the acetyl group of histone
tails and condense the chromatin, thereby resulting in reduced
gene expression (Luo et al., 2012). Histones are not the only sub-
strates of HATs and HDACs, acetylation and deacetylation of a
wide variety of proteins is catalyzed by these enzymes (Wu et al.,
2000). In animals, members of both enzyme groups are known
to be regulated by S-nitrosylation. Here, we will focus on HDACs
because so far there is nothing known about S-nitrosylation of
HATs in plants.

Brain-derived neurotrophic factor (BDNF) and other neu-
rotrophins play a crucial role in the development of the rat and
mouse nervous system by influencing the expression of many spe-
cific genes that promote differentiation, cell survival, etc. (Nott
et al., 2008). Since studies on the effect of NO on chromatin
remodeling in neurons showed that NO alters the acetylation
state of chromatin associated with the promoter of neurotrophin-
regulated genes, one function of NO in the nucleus might be to
regulate gene expression by influencing the interaction of tran-
scription factors with chromatin (Nott et al., 2008). Nott et al.
(2008) investigated whether NO affects histone acetylation by
modifying HDAC activity and found that NO is a key regu-
lator of human histone deacetylase 2 (HDAC2). It was shown
that BDNF triggers NO synthesis and also a rapid and sustained
S-nitrosylation of HDAC2 in neurons. HDAC2 contains three cys-
teine residues and only double mutation of Cys262 and Cys274
completely abolished its S-nitrosylation (Nott et al., 2008). S-
nitrosylation of HDAC2 did not affect its deacetylase activity, in
contrast, it induced its release from chromatin, which lead to
an increase of histone acetylation at specific promoter regions
and transcription of genes associated with neuronal develop-
ment including c-fos, egr1, VGF, and nNos (Riccio et al., 2006;
Nott et al., 2008). NO-dependent inhibition of HDAC2 func-
tion has also been reported in muscle cells (Colussi et al., 2008).
Interestingly, S-nitrosylation decreases HDAC2 deacetylase activ-
ity (Colussi et al., 2008) whereas in neurons HDAC2 enzymatic
activity remains unchanged (Nott et al., 2008). This divergence
could be due to different S-nitrosylated cysteine residue(s) of
HDAC2 in muscle cells and neurons (Nott and Riccio, 2009).

In mammals, class I HDACs are ubiquitously expressed and
are localized predominantly in the nucleus. In contrast, class II
and IV HDACs are expressed tissue-specific and they are regulated
by controlling their subcellular localization (Watson and Riccio,
2009). In unstimulated cells, class II HDACs (e.g., HDAC4/5) are
retained in the cytoplasm due to phosphorylation by calcium–
calmodulin-dependent kinases (CaMKs) and subsequent associ-
ation with the cytoplasmic chaperone 14-3-3 (McKinsey et al.,
2001). Upon stimulation, dephosphorylation leads to the disso-
ciation of the complex allowing class II HDACs to shuttle into
the nucleus. Class II HDACs are indirectly regulated by NO.
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S-nitrosylation of PP2A enforces its binding to HDAC4/14-3-3
leading to dephosphorylation and subsequent nuclear localization
of HDAC4 (Illi et al., 2008).

In plants, three families of HDACs can be distinguished based
on sequence similarity. The largest family in Arabidopsis con-
sists of 12 members – characterized by a highly conserved HDAC
domain – and shares homology with yeast RPD3 (reduced potas-
sium dependency protein 3) or HDA1 (histone deacetylase 1).
Sirtuins (two members in Arabidopsis) are homologous to yeast
SIR2 (silent information regulator 2) and have a different catalytic
mechanism as they need NADH as a cofactor. The HD2-like fam-
ily seems to be plant-specific, no homologs have been identified in
other organisms so far (Luo et al., 2012). HD2-like proteins play
an important role during the hypersensitive response in tobacco:
Bourque et al. (2011) showed that NtHD2a/b act as negative regu-
lators of cryptogein induced cell death by using HDAC inhibitors,
RNAi, and overexpression approaches. Alignment of Arabidopsis
RPD3-like HDACs revealed the presence of some highly con-
served cysteine residues. Interestingly, Cys262 or Cys274 of human
HDAC2 (which were shown to be nitrosylated; Nott et al., 2008) are
also preserved in many Arabidopsis HDACs (for instance Cys209
and Cys221 of HDA19), making these proteins interesting can-
didates for further studies. Data from our lab support the idea
that histone deacetylases might also be redox regulated in plants
(Floryszak-Wieczorek et al., 2012).

CONCLUSION
S-nitrosylation is emerging as one of the most important redox-
dependent modifications in plants but only very few detailed stud-
ies are available about the impact of this modification on nuclear
plant proteins. Important knowledge about S-nitrosylation in
general in the nucleus is still lacking. Specifically, the pres-
ence of NO or nitrosylating species in this compartment has

not been proven so far. It is also known that GSH – the main
reductant of the cell – accumulates to very high concentrations
in the nucleus at certain cell cycle stages, probably to protect
the DNA from oxidative damage (Garcia-Gimenez et al., 2013).
This raises the question how S-nitrosylation in the nucleus is
maintained and temporally/spatially controlled. Nevertheless, evi-
dence accumulates that S-nitrosylation of nuclear plant proteins
(for instance transcription factors) probably participates in reg-
ulation of transcription. In animals, several transcription factors
are known to be regulated by this post-translational modification:
results from studies in neuronal physiology have demonstrated
that NO modulates gene expression through the formation of
SNO-bonds in multiple transcriptional activators (Nott and Ric-
cio, 2009). For instance, S-nitrosylation mediates NO-dependent
regulation of various zinc-finger-containing transcription fac-
tors, including egr-1 and NFκB. As zinc-finger motifs are very
sensitive to S-nitrosylation this class of TFs might also be inter-
esting to study in plants. Besides acting on transcription factors,
NO also seems to be involved in epigenetic regulation of plant
chromatin by modifying key remodeler enzymes like HDACs,
which is a new and fascinating aspect of NO-mediated redox
signaling in plants. However, important questions are remain-
ing. Work so far has mostly been carried out in vitro, the in
vivo relevance as well as the exact molecular mechanism still
needs to be determined leaving much space for future investi-
gations.
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