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Ascorbate (vitamin C) deficiency leads to low immunity, scurvy, and other human diseases
and is therefore a global health problem. Given that plants are major ascorbate sources for
humans, biofortification of this vitamin in our foodstuffs is of considerable importance.
Ascorbate is synthetized by a number of alternative pathways: (i) from the glycolytic
intermediates D-glucose-6P (the key intermediates are GDP-D-mannose and L-galactose),
(ii) from the breakdown of the cell wall polymer pectin which uses the methyl ester of
D-galacturonic acid as precursor, and (iii) from myo-inositol as precursor via myo-inositol
oxygenase. We report here the engineering of fruit-specific overexpression of a bacterial
pyrophosphatase, which hydrolyzes the inorganic pyrophosphate (PPi) to orthophosphate
(Pi). This strategy resulted in increased vitamin C levels up to 2.5-fold in ripe fruit as well
as increasing in the major sugars, sucrose, and glucose, yet decreasing the level of starch.
When considered together, these finding indicate an intimate linkage between ascorbate
and sugar biosynthesis in plants. Moreover, the combined data reveal the importance of
PPi metabolism in tomato fruit metabolism and development.
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INTRODUCTION
Nutrition is, by definition, aimed at maintaining human cell and
organ homeostasis (Goodacre, 2007). In this context, a balance
diet should be considered not just to include carbohydrates, pro-
teins, and lipids, but also other physiologically active components
such as certain amino acids and vitamins. Plants are the main
dietary source in almost all trophic chains. Therefore, human
nutritional health is ultimately dependent on the intake of mayor
and minor nutrients from plants, especially given that humans are
unable to synthesize certain organic compounds such as vitamins
(Fitzpatrick et al., 2012).

L-ascorbate (AsA) is commonly called “vitamin C.” In plants,
it acts as a scavenger of the free radicals generated by photosynthe-
sis, cellular respiration, and abiotic stresses such as ozone and UV
radiation (Conklin et al., 1996; Noctor and Foyer, 1998; Smirnoff
and Wheeler, 2000). AsA has additionally been described to play
an important role as an enzyme cofactor while participating in
defense, cellular elongation, division and fruit ripening (Arrigoni
and De Tullio, 2002; Pastori et al., 2003; Green and Fry, 2005).
In humans, AsA has an integral role as cofactor of some dioxy-
genases enzymes which are involved in biosynthesis of carnitine
and collagen (Padayatty et al., 2003). Therefore, its deficiency
is associated with conditions such as scurvy and low immu-
nity, which is mainly a consequence of the inactivation of these
dioxygenases (De Tullio, 2012). AsA has also been associated
to molecular events such as oxygen sensing, redox homeostasis,

and carcinogenesis (Valko et al., 2006). In addition, different
epidemiological studies have established a positive link between
AsA content in food and health benefits such as the prevention
of cardiovascular disease, cancer, and other inflammatory dis-
eases (Blot et al., 1993; Steinmetz and Potter, 1996). Current
approaches to relieve micronutrient deficiencies include the pro-
motion of balanced diets, supplementation and food fortification,
such as iodination of salt or fluoride fortification of toothpaste
and tap water (Fletcher et al., 2004; Poletti et al., 2004). However,
AsA is a difficult micronutrient for food fortification since it is
oxidized very easily. AsA biofortification through metabolic engi-
neering therefore represents an attractive alternative strategy to
increase the intake of natural AsA in rich and poor countries alike
(Muller and Krawinkel, 2005).

In plants, the biosynthetic pathway of AsA occurs by four
different pathways, D-mannose/L-galactose (D-Man/L-Gal) or
Smirnoff–Wheeler pathway, the major AsA biosynthetic route
in plants, which involves GDP-D-mannose in the initial step
(Wheeler et al., 1998). An alternative pathway with L-galacturonic
acid as intermediate has been reported in strawberry, which pro-
ceeds via D-galacturonic acid to L-galactono-1,4-lactone (Agius
et al., 2003) that serves as the linkage with the D-Man/L-
Gal pathway. There are also alternative pathway of synthesizing
AsA through the intermediates of L-gulose (Wolucka and Van
Montagu, 2003) and myo-inositol (Lorence et al., 2004). However,
the myo-inositol pathway remains controversial due to the lack
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of strong evidence. The AsA concentration remains the same in
wild type and MiOX overexpression lines (Endres and Tenhaken,
2009).

Formation of GDP-D-mannose is the initial step in the
D-Man/L-Gal pathway, which is synthesized from D-mannose-
1P via GDP-mannose pyrophosphatase (Conklin et al., 1999)
(Figure A1). This reaction generates inorganic pyrophosphate
(PPi) as by-product. In plants, PPi plays a central role not only as
by-product of activation and polymerization steps (Sonnewald,
1992; Geigenberger et al., 1998; Rojas-Beltran et al., 1999; Farre
et al., 2001), if not as an energy donor per se (Stitt, 1998; Lopez-
Marques et al., 2004). PPi is generally removed by inorganic
pyrophosphatases, which hydrolyze PPi to orthophosphate (Pi).
Heterologous expression of the Escherichia coli pyrophosphatase
in an untargeted manner, conferring cytosolic localization of the
encoded protein, showed an important role in the partitioning
between sucrose (Suc) and starch (Sonnewald, 1992; Farre et al.,
2001; Lee et al., 2005). In contrast, expression of the E. coli
pyrophosphatase targeted to the plastid displayed only minor
changes in metabolites levels (Farre et al., 2006). A transient
down-regulation of plastid-targeted soluble pyrophosphatase in
Nicotiana benthamiana, revealed an important role in photosyn-
thesis as well as in the regulation of water exchanges under mild
drought stress (George et al., 2010).

In this study, we generated Solanum lycopersicum cv
MoneyMarker lines, which overexpress the gene encoding the
inorganic pyrophosphatase from E. coli in an untargeted man-
ner under the control of a fruit specific promoter. This strategy
resulted in increased vitamin C levels up to 2.5-fold in ripe fruit
as well as increasing in the major sugars, sucrose, and glucose,
yet decreasing the level of starch. When considered together, these
finding indicate an intimate linkage between ascorbate and sugar
biosynthesis in plants.

RESULTS
GENERATION OF B33-PPi OVEREXPRESSION TOMATO LINES
To assess the effect of over expression of a pyrophosphatase
from E. coli (Sonnewald, 1992) in tomato fruit we introduced
this gene in the sense orientation under the control of the
patatin B33 promoter (Jelitto et al., 1992). This promoter has
been shown to be ripening-specific promoter in tomato fruit
(Frommer et al., 1994; Centeno et al., 2011). An initial screen-
ing was carried out on the basis of pyrophosphatase activity of
ripe tomato fruits (data not shown). This screen allowed the iden-
tification of four lines displaying considerably elevated activity
(L9, L28, L29, and L39), which were taken to the next generation.
Eight T2 plants per line were grown in the greenhouse and young
leaves (3 weeks old plants) as well as fruits at green (35 days after
pollination; DAP) and red (60 DAP) stages were harvested. Assay
of alkaline pyrophosphatase activity revealed that the selected
lines displayed considerable increase in activity in red fruit
(Figure 1). To ensure that this increase of target enzyme activity
was restricted to fruits, the activity of the enzyme was addition-
ally tested in young leaves where they were unaltered (10.8 ± 0.2;
11.1 ± 0.5; 11.4 ± 0.4; 10.4 ± 0.3; 10.5 ± 0.5 µmol min−1 g−1

FW in wild type, L9, L28, L29, and L39, respectively; values are
mean ± SE).

FIGURE 1 | Pyrophosphatase activity of B33-PPi tomato lines.

Pyrophosphatase activity in red tomato fruit (60 DAP). An asterisk indicates
the values that were determined by the t-test to be significantly different
(P < 0.05) from wild type.

FRUIT SIZE AND YIELD
Fruit size and weight per fruit were determined in red fruit (60
DAP). All four lines exhibited a significantly lower weight per
fruit (Figure 2A) as well as smaller fruit size in three of the four
lines (L9, L28, and L29; Figure 2B). The total fruit number was,
however, essentially unaltered (Figure 2C).

PYROPHOSPHATE AND INORGANIC PHOSPHATE LEVELS
Having determined that the transformants displayed the desired
alteration in enzyme activity, we next evaluated pyrophosphate
levels themselves. For this purpose, pericarp tissues of red fruit
at 60 DAP and young leaves (3 weeks old plants) were har-
vested and pyrophosphate levels were determined taking care to
observe all control procedures required to minimize the influ-
ence of contaminants (Farre et al., 2001). These analyses revealed
significant decreases in pyrophosphate levels in all lines ranking
from 25 for L39 to 55% for L29 in red tomato fruit (Table 1).
However, as anticipated both from the specificity of expression of
the transgene and the lack of change in the activity no changes in
pyrophosphate levels were observed in leaves (Table 1). Relatively
consistent changes were also seen in the level of inorganic phos-
phate in red fruit. Inorganic phosphate level increased in three
transgenic lines (L9, L28, and L39; Table 1).

METABOLITE PROFILING OF GREEN AND RED FRUITS OF THE B33-PPi
LINES
In order to further characterize the effects of the reduction
of pyrophosphate content, we next applied and established gas
chromatography (GC)-MS-based metabolite profiling method
(Osorio et al., 2012) to pericarp tissue derived from green and
red fruits. Surprisingly, at the green stage the metabolite profiles
of the transgenic lines were remarkable similar to those of the WT
(Figure 3). However, similar analysis in red stage revealed impor-
tant changes in the levels of several few metabolites (Figure 4). In
all four lines Suc was significantly increased in red tomato fruit
by up to 2.5-fold in comparison to WT (Figure 4). This increase
in Suc was accompanied by increases in Glc in three lines but
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FIGURE 2 | Characterization of B33-PPi tomato lines. (A) Fruit yield
(g per fruit), (B) fruit size, and (C) total fruit number of B33-PPi lines. All
measurements were done in red stage (60 DAP). For all parameters, values
are presented as the mean ± SE of eight biological replicates (one
biological replicate is represented by one individual plant). An asterisk
indicates the values that were determined by the t-test to be significantly
different (P < 0.05) from wild type.

no significant changes in Fru (only L9 showed slight decrease).
The changes in these sugars were coupled to a decrease in starch
content (Table 2) as well as an increase in the total soluble solids
content (Brix) in all transgenic red fruit (6.2 ± 0.3; 7.4 ± 0.2;
8.4 ± 0.4; 6.9 ± 0.2 for the wild type, L9, L28, L29, and L39,
respectively). To better understand these metabolic alterations, we
next measured the AGPase in the red B33-PPi fruits. We observed
a decrease in this activity in all transformants with the excep-
tion of the L39. However, the activation stage of this enzyme was
invariant (Table 3).

Interestingly, a strong increase in metabolites related to ascor-
bate biosynthesis, such as dehydroascorbic acid (all four lines),
myo-inositol (all four lines), galacturonic acid (lines L28 and L39)

Table 1 | Pyrophosphate and inorganic phosphate concentration in

the B33-PPi red tomato fruits (60 DAP) and leaves (3 weeks old

plants).

WT L9 L28 L29 L39

PPi content (nmol g−1 FW−1)

Fruit 4.3 ± 0.8 2.5 ± 0.7 2.3 ± 0.4 1.8 ± 0.6 3.2 ± 0.5

Leaves 12.3 ± 2.5 10.8 ± 2.4 11.5 ± 2.2 13.4 ± 3.5 12.9 ± 2.4

Pi content (µ mol g−1 FW−1)

Fruit 3.5 ± 0.5 7.1 ± 0.7 6.9 ± 0.5 8.5 ± 0.7 4.5 ± 0.5

Values are presented as the mean ± SE of 6 biological determinations. The

values that are significantly different by t-test from the wild type are set in bold

type (P < 0.05).

(Figure 4) as well as a substantial increase of ascorbate (approxi-
mately between 2 and 3-fold) were observed (Figure 5).

Additionally, the transformants revealed an increase in two
amino acids Ala (L28 and L39), and Asp (L28, L29, and L39) as
well as a reduction in putrescine (L9, L28, L39) (Figure 4).

EXPRESSION OF E. Coli PYROPHOSPHATASE IN TOMATO FRUITS
LEADS TO ALTERATION IN ASCORBIC ACID BIOSYNTHESIS
Since some related ascorbate biosynthesis metabolites as well as
ascorbate were modified in the red B33-PPi tomato fruits, we next
evaluated if ascorbate biosynthesis and/or recycling were altered
in these fruits. For this purpose we examined the different AsA
biosynthetic pathways. First, we analyzed the transcript levels of
some genes in the D-Man/L-Gal pathway. The expression of the
two GDP-L-galactose phosphorylase (GGP) genes, a key point for
the control of ascorbate pathway (Dowdle et al., 2007; Laing et al.,
2007; Bulley et al., 2012) was up-regulated in all transgenic lines as
well as the L-galactono-1,4-lactone dehydrogenase (GaLDH) gene,
while the L-galactose dehydrogenase (GDH) gene showed a sig-
nificant decrease only in one line (L9) (Figure 6). The higher
activity of the last enzyme in this pathway, GaLDH, corrobo-
rated that D-Man/L-Gal pathway was up-regulated in red ripened
B33-PPi fruits (Table 3). Second, related with the D-galacturonic
acid pathway, we observed an increase in the level of its pre-
cursor, galacturonic acid, in two lines (Loewus and Kelly, 1961;
Agius et al., 2003). However, the enzyme activities of the last
two enzymes of this pathway, D-galacturonate reductase (GalUR)
and aldonolactonase, were unaltered in these fruits (Table 3).
Third, we observed that the myo-inositol level was altered in all
transformants and considering that myo-inositol has been pro-
posed as a precursor of ascorbate (Lorence et al., 2004), we
determined the total myo-inositol oxygenase activity in red fruits
(Table 3). Intriguingly, a significant decrease in the total myo-
inositol oxygenase activity was observed in all transgenic lines
(Table 3).

Additionally, we also determined the gene expression of
three monodehydroascorbate reductase (MDHAR) and two dehy-
droascorbate reductase genes (DHAR) found in tomato. Both are
involved in ascorbate recycling pathway. Interestingly, all trans-
formats displayed a significant increase in MDHAR1, MDHAR2,
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FIGURE 3 | Primary metabolite levels in the receptacle of WT and B33-PPi lines at green stage. Data are normalized to the mean value of WT at the G stage.
Values are means SE of six replicates. Asterisks indicate significant differences by t-test (P < 0.01) of the transgenic lines compared with WT at green stage.

and MDHAR3 transcript abundances (Figure 7). This result was
in agreement with an increase in the MDHAR activity (Table 3).
In contrast, we did not observed changes in the expression of the
DHAR1 and DHAR2 genes (Figure 7).

DISCUSSION
Until now, the breeding of tomato has been dominated by a
focus on traits that benefit the grower, such as yield, plant and
fruit size, and storage characteristics (Schuch, 1994; Giovannoni,
2006; Cong et al., 2008). As a result, there has been a loss of
consumer quality traits such as flavor and nutritional value, and
this has focused recent interest on the molecular genetics of such
traits (Giovannoni, 2001; Causse et al., 2002, 2004; Fraser et al.,
2009; Mounet et al., 2009; Enfissi et al., 2010; Centeno et al.,
2011; Morgan et al., 2013). The accumulation of a range of sol-
uble metabolites is important for both flavor and nutrition. In
this paper, we characterized the consequences of over-expressing
an E. coli pyrophosphatase gene under fruit-specific promoter.
This manipulation had a broad impact on fruit development
and ripening, emphasizing both the important role of pyrophos-
phatase in ascorbate and starch biosynthesis.

EFFECT OF INCREASING PYROPHOSPHATASE ACTIVITY ON STARCH
AND SUGARS METABOLISM
Detailed analysis of sugars level revealed that starch content
decreased while the major sugars, Suc and Glc increased in
red ripe B33-PPi fruit. These data support the contention that
active starch accumulation is an important contributory fac-
tor in determining the soluble solids content of mature fruit
(Schaffer and Petreikov, 1997; Baxter et al., 2005). Here, we
demonstrated that alterations in PPi metabolism have a strong
effect on sugars metabolism and, hence, influence agronomic
yield. Intriguingly, the data presented here are analogous to those
previously described for transgenic potato plants in which higher
PPi levels increased starch accumulation and decrease the level of
Suc (Fernie et al., 2001a; Geigenberger et al., 2001), and decreased
levels have been associated with lower starch biosynthetic rates
(Geigenberger et al., 2001).

Different studies concerning starch metabolism in potato and
tomato have suggested that AGPase activity plays an important
role in its regulation (Geigenberger et al., 1999; Sweetlove et al.,
1999). Regulation of the AGPase reaction has been very well char-
acterized for several years. This enzyme is sensitive to allosteric
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FIGURE 4 | Primary metabolite levels in the receptacle of WT and B33-PPi lines at red stage. Data are normalized to the mean value of WT at the G stage.
Values are means SE of six replicates. Asterisks indicate significant differences by t-test (P < 0.01) of the transgenic lines compared with WT at red stage.

Table 2 | Starch content in the B33-PPi red tomato fruits (60 DAP).

WT L9 L28 L29 L39

Starch (nmol g−1 FW−1)

Fruit 438.3 ± 9.5 354.2 ± 13.1 316.4 ± 16.9 275.5 ± 20.5 384.6 ± 27.7

Values are presented as the mean ± SE of 6 biological determinations. The

values that are significantly different by t-test from the wild type are set in bold

type (P < 0.05).

regulation, being inhibited by inorganic phosphate and activated
by 3PGA (3-phosphoglycerate) (Sowokinos, 1981; Sowokinos
and Preiss, 1982). Additionally, it has been demonstrated to
be transcriptionally regulated by sugars, nitrate, phosphate and
trehalose-6-phosphate (Muller-Rober et al., 1990; Nielsen et al.,
1998; Kolbe et al., 2005; Michalska et al., 2009). Moreover, it
has been described that AGPase is also redox regulated (Tiessen
et al., 2002; Centeno et al., 2011; Osorio et al., 2013) with
malic acid potentially being a key component in this process

at least in photosynthetically active tissues (Szecowka et al.,
2012).

In this study, a strong correlation was found between starch
concentration and AGPase activity in red ripe B33-PPi stage.
Additionally, we observed that redox-state of AGPase was not
altered in these transgenic fruit. This observation described here
have lead us to propose that the activity of this enzyme was
modified due to either a change in the rate of sugar influx into
the tomato fruit and/or in the lower PPi levels found in these
transgenic fruits.

INCREASED ACTIVITY OF PYROPHOSPHATASE CORRELATES WITH
INCREASED ASCORBATE CONTENT IN TOMATO FRUIT
There is a large potential for improving ascorbate content in food
products by means of both genetic engineering and breeding. The
exploitation of the large natural variation in ascorbate content in
many fruit crops gives the opportunity of improving their nutri-
tional value by classical breeding. The generation of linkage maps
and the conduction of quantitative trait loci (QTL) analysis allow
the identification of genomic regions associated with ascorbate
content (Davey et al., 2006; Stevens et al., 2007; Zorrilla-Fontanesi
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Table 3 | Enzyme activities in the B33-PPi red tomato fruits (60 DAP).

Enzymatic activities WT L9 L28 L29 L39

nmol min−1 g−1 FW−1

AGPase 6.65 ± 0.75 3.98 ± 0.73 4.65 ± 0.42 3.97 ± 0.89 6.38 ± 1.02

AGPase activation state (Vsel/Vred) 0.67 ± 0.08 0.58 ± 0.09 0.73 ± 1.04 0.63 ± 0.76 0.76 ± 0.06

MDHAR 6.35 ± 0.31 12.34 ± 0.21 15.22 ± 0.46 11.10 ± 0.36 9.43 ± 0.42

GalUR 15.65 ± 0.86 14.89 ± 0.75 16.24 ± 0.65 15.23 ± 0.54 16.33 ± 0.76

Aldonolactonase 11.23 ± 1.34 10.34 ± 0.78 12.36 ± 1.06 13.23 ± 1.03 12.54 ± 0.87

µmol min−1 g−1 FW−1

MYOX 12.43 ± 0.93 8.24 ± 0.85 7.77 ± 0.74 9.26 ± 0.82 10.52 ± 0.69

GaLDH 0.35 ± 0.09 0.78 ± 0.07 0.97 ± 0.04 1.12 ± 0.07 0.67 ± 0.05

Values are presented as the mean ± SE of 6 biological determinations. The values that are significantly different by t-test from the wild type are set in bold type

(P < 0.05).

FIGURE 5 | Ascorbate of B33-PPi tomato lines. Ascorbic acid was
determined in red tomato fruit (60 DAP). The values are presented as the
mean ± SE of six biological replicates. An asterisk indicates the values that
were determined by the t-test to be significantly different (P < 0.05) from
wild type.

et al., 2011). Such QTL analyses therefore increase our knowledge
of the molecular mechanism by which ascorbate is regulated in
plants.

The strategy to improve the amount of ascorbate by genetic
engineering has been based on the up-regulation of genes encod-
ing for enzymes of the biosynthetic or recovery pathways. In
general, plants transformed with genes from different pathways
have shown variable increases in ascorbate content in different
plant tissues (Agius et al., 2003; Chen et al., 2003; Tokunaga
et al., 2005; Eltayeb et al., 2007; Badejo et al., 2008, 2009; Bulley
et al., 2009, 2012; Hemavathi et al., 2009; Qin et al., 2011; Zhang
et al., 2011; Cronje et al., 2012). Mean increases in ascorbate
content were usually two- to three-fold i.e., similar to those
reported here. Other approaches have used genes that do not
encode enzymes of the ascorbate biosynthetic pathway in plants.
Thus, the ectopic expression of a rat L-gulonolactone oxidase,
a gene involved in the synthesis of ascorbate in animals, pro-
duced an increase of about 7-fold in lettuce (Jain and Nessler,
2000). Similar levels were observed in potato plants ectopically

FIGURE 6 | Expression of GGP, GaLDH, and GDH genes in red B33-PPi

fruits. The abundance of GGP1(acc. number Solyc06g073320), GGP2 (acc.
number Solyc02g091510), GaLDH (acc. number Solyc10g079470), and GDH
(acc. number Solyc01g106450) mRNAs were measured by quantitative
RT-PCR, respectively. An asterisk indicates the values that were determined
by the t-test to be significantly different (P < 0.05) from wild type.

expressing a bacterial pyrophosphorylase or a yeast invertase
(Farre et al., 2008).

In this study, a strong correlation was displayed between
the cellular PPi and ascorbate levels (up to 2.5-fold increase in
red ripe transgenic fruits) and it was demonstrated that this
was mechanistically linked to pyrophosphatase activity as pre-
viously was observed in potato tuber overexpressing a bacteria
pyrophosphatase with a plastid targeting sequence (Farre et al.,
2006). Additionally, an increase in some intermediates of ascor-
bate biosynthesis such as dehydroascorbate, galacturonate, and
myo-inositol were also observed.

Formation of GDP-D-mannose is the initial step in the
D-Man/L-Gal pathway of ascorbate biosynthesis, which is
synthetized from D-mannose-1 phosphate via GDP-mannose
pyrophosphatase (Conklin et al., 1999; Keller et al., 1999)
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FIGURE 7 | Expression of MDHAR, and DHAR genes in red B33-PPi

fruits. The abundance of MDHAR1 (acc. number Solyc09g009390 ),
MDHAR2 (acc. number Solyc02g086710), MDHAR3 (acc. number
Solyc08g081530), DHAR1 (acc. number Solyc05g054760), and DHAR2 (acc.
number Solyc11g011250). mRNAs were measured by quantitative RT-PCR,
respectively. An asterisk indicates the values that were determined by the
t-test to be significantly different (P < 0.05) from wild type.

(Figure A1). This reaction in the direction of ascorbate biosyn-
thesis produces PPi as by-product. It is thus conceivable that the
removal of PPi is favorable for ascorbate synthesis. Furthermore,
the observed higher expression of GGP1, GGP2 genes, a key point
for the control of ascorbate pathway (Dowdle et al., 2007; Laing
et al., 2007; Bulley et al., 2012), and GalDH, the last gene in
the AsA biosynthesis pathway, corroborates that D-Man/L-Gal
pathway is activated in the B33-PPi fruits in comparison to WT
fruits.

We also evaluated if other alternative pathways of AsA
biosynthesis were altered in these fruits. When looked at
the D-galacturonic acid pathway, an increase in the level of
its precursor, galacturonic acid, was observed. However, the
enzyme activities that catalyze the two last steps in this path-
way, GalUR and aldonolactonase, were not altered. Increasing
myo-inositol production has also shown varied results, with
both increased (Lorence et al., 2004) and unaffected (Endres
and Tenhaken, 2009) leaf AsA being reported. Together with
an increase in myo-inositol levels, we observed a decrease in
the myo-inositol oxygenase activity in the B33-PPi red fruits,
suggesting that myo-inositol can act as a precursor for AsA
biosynthesis as suggested by Lorence et al. (2004). Although, a
previous study suggests that the L-galactose-1-phosphate phos-
phatase enzyme from the D-Man/L-Gal pathway, has a dual
function that impacts both myo-inositol and AsA biosynthe-
sis pathways (Torabinejad et al., 2009), further investigation
are required to understand the impact of myo-inositol on AsA
biosynthesis.

Also, our results revealed that ascorbate recycling pathway
was altered in the B33-PPi red fruits since we found higher
dehydroascorbic acid content and expression of the three tomato
MDHAR genes.

INCREASED ACTIVITY OF PYROPHOSPHATASE ALSO AFFECTS OTHER
METABOLIC CHANGES
When other areas of metabolism are considered some interest-
ing observations are apparent. Interestingly, the total level of
organic acids and amino acids were largely invariant in the B33-
PPi lines in comparison with WT. The exception to this was that
we observed an accumulation in two amino acids, namely Ala
and Asp. The accumulation of Asp can be explained because it
acts as precursor in the synthesis of Asn via asparagine synthase.
This reaction produces PPi as by-product that can be removed
via pyrophosphatase. Therefore, we expect a shift in the reaction
equilibrium to favor the Asn synthesis direction. Although signif-
icant differences were not found in the levels of Asn, this may be
due to a co-ordinate up regulation of its metabolism. The reason
for the increase in alanine is less clear but may merely reflect the
additional availability of glucose for glycolytic reactions.

MORPHOLOGICAL EFFECTS ON B33-PPI FRUITS
In addition to the increase in soluble solids content, the fruit
of the transgenic lines were compromised in size. This observa-
tion was also largely to be expected, since several direct genetic
studies (Zrenner et al., 1996; Sonnewald et al., 1997; Sturm and
Tang, 1999) have implicated Suc mobilization as a key determi-
nant of sink strength in a broad range of species. As much as 10%
(w/v) Suc has been reported in the phloem of plants (Hayashi
and Chino, 1990), and the presence of AsA in the phloem sap
was confirmed by radiolabeling (Franceschi and Tarlyn, 2002).
It was also reported that the presence of sugar within the plant
acts as potent signal that promotes AsA biosynthetic gene expres-
sion (Nishikawa et al., 2005). Within tomato fruit itself, a positive
correlation between Suc feeding and the expression level in some
genes of the D-Man/L-Gal pathway was described (Badejo et al.,
2012), supporting the view that transportation of sugars from
source tissues affect the AsA content in sink tissues through the
up-regulation of AsA biosynthesis pathway genes. Despite the
wide changes in morphological parameters, metabolic changes in
the transgenic fruit were, by and large, confined to sugar and AsA
metabolisms. We believed that fruit growth is largely dependent
on the relationship between import of photoassimilate and AsA
intake and/or biosynthesis.

In summary, the results presented in this study provide direct
evidence that the reduction in PPi content had strong effects on
metabolism of sugar and ascorbate contents. Detailed analysis
of starch metabolism revealed that this phenomenon was due to
alteration in AGPase activity, caused by either a change in the rate
of sugar influx into the tomato fruit and/or in the lower PPi lev-
els found in these transgenic fruits. During ripening, the lack of
accumulation of transitory starch was reflected by a decrease of
soluble sugars. Moreover, we demonstrated that alterations in the
level of PPi resulted in dramatic effect on ascorbate metabolism.
These lines displaying low PPi content showed and increased
flux to, and accumulation of, ascorbate. This occurred in spite
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of increases the ascorbate level via D-mannose-1P and via GDP-
mannose pyrophosphatase. Further investigation is required to
define this control, especially in fruit such as tomato, where it
may contribute to taste (sugars and organic acids) and nutritional
value (ascorbate) of the fruit which are important in determining
fruit quality.

MATERIALS AND METHODS
PLANT MATERIAL
The gene encoding a pyrophosphatase from E. coli (Sonnewald,
1992) was introduced in the sense orientation into the vector
pBinAR between the patatin B33 promotor (Rocha-Sosa et al.,
1989) and the octopine synthase polyadenylation signal. This
construct was introduced into tomato (Solanum lycopesicum, L.)
cv Moneymaker plants by an Agrobacterium-mediated transfor-
mation protocol, and plants were selected and maintained as
described in the literature (Tauberger et al., 2000). An initial
screening was carried out on the basis of pyrophosphatase activ-
ity. This screen allowed the identification of four lines, which were
taken to the next generation.

METABOLITE DETERMINATIONS
PPi and Pi determination
PPi was extracted from tomato fruit by TCA/ether method (Jelitto
et al., 1992). PPi was determined using the colorimetric PiPer
Pyrophosphate assay kit (Invitrogen) according to the manufac-
turer’s specifications. All glassware was pretreated overnight with
0.1 M HCl to remove residual phosphate. PPi levels were deter-
mined by a sample blank with or without sPPase, and total Pi
was calculated by comparison at 595 nm with a linear Pi standard
curve.

Pi was determined in the TCA extracts with a colorimetric
assay as described by Taussky and Shorr (1953).

Primary metabolic profiling
Metabolite extraction derivatization, standard addition, and sam-
ple injection for GC-MS were performed according (Osorio et al.,
2012). Both chromatograms and mass spectra were evaluated
using TAGFINDER (Luedemann et al., 2008).

Ascorbic acid determination
Ascorbic acid extraction and analysis were performed as described
(Lima-Silva et al., 2012). Ascorbic acid content was determined by
comparison with a linear ascorbic acid standard curve.

Starch determination
The level of starch in the tissues were determined exactly as
described previously (Fernie et al., 2001b).

ENZYME ACTIVITIES
Alkaline pyrophosphatase activity
The protein extraction and enzyme activity were analyzed as
described Farre et al. (2001).

AGPase
AGPase activity was measured in the pyrophosphorolysis direc-
tion with a spectrophotometric assay, as described Tiessen et al.

(2002, 2003). Frozen tissues were homogenized in liquid N2 and
approx. 100 mg was extracted rapidly (1 min) with 1 ml of extrac-
tion buffer (50 mM Hepes-KOH, pH 7.8, and 5 mM MgCl2)
at 4◦C. After centrifugation (30 s at 13,000 g at 4◦C), 10 µl of
the supernatant was used for the AGPase assay. The reaction
was performed in a total volume of 200 µl containing 50 mM
Hepes-KOH, pH 7.8, 5 mM MgCl2, 10 µM Glc-1,6-bisP, 0.6 mM
NADP+, 2.5 mM Na-PPi, 1 unit/ml phosphoglucomutase, 2.5
units/ml Glc-6-P dehydrogenase, and a range of concentrations
of ADP-Glc (0.4 − 1 mM) in the absence of Pi, with or with-
out DTT (10 mM) for activation assay. Reactions were followed
on line at 340 nm and were linear up to 30 min. The activation
state of AGPase is defined as the ratio of Vsel (−DTT) to Vred
(+DTT).

Myo-inositol oxygenase
Two-hundred mg of tissue was incubated for 30 min at 30◦C in
a buffer containing 100 mM KPO4 (pH 7.2), 2 mM L-cysteine,
1 mM ammonium ferrous sulfate hexahydrate, and 60 mM
myo-inositol. The reaction was stopped by boiling for 10 min
and denatured protein removed by centrifugation (20,000 g,
15 min). Glucuronic acid was determined at 540 nm before and
after samples developed a pink color with addition of a 3-
hydroxybiphenylphenol color reagent (van den Hoogen et al.,
1998).

D-galacturonate reductase
One gram of samples were homogenized in liquid nitrogen and
extracted with 50 mM sodium phosphate buffer, pH 7.2, contain-
ing 2 mM EDTA, 2 mM dithiothreitol, 20% glycerol and PVPP.
GalUR activity was measured by the decrease in absorbance at
340 nm at 25◦C after the addition of 100 µl of crude enzyme
extract to the assay mixture (1 ml) consisted of 50 mM phos-
phate buffer (pH 7.2), 2 mM EDTA, 0.1 mM NADPH, 30 mM
D-galacturonic acid and 2 mM dithiothreitol. The GalUR activ-
ity in the crude enzyme extract was recorded as nmol of NADPH
oxidized min-1 mg-1 protein (Agius et al., 2003).

Aldonolactonase
The activity was measured by the change in absorbance of
p-nitrophenol through acidification at 405 nm essentially as
described Ishikawa and Shigeoka (2008).

L-galactono-1,4-lactone dehydrogenase
Samples were prepared as described by Mieda et al. (2004) and
assayed at 340 nm by measuring the reduction of NAD+ in a reac-
tion mixture containing 0.5 mM NAD+, 1 mM L-Gal, and the
enzyme extract. L-Galactono-1,4-lactone dehydrogenase activity
was assayed by the reduction of cytochrome c resulting in an
increase in absorbance at 550 nm in a reaction mixture contain-
ing 50 mM TRIS-HCl, pH 8.5, 1 mM sodium azide, 42 mM L-Gal,
0.1% Triton X-100, 1.05 mg−1 ml cytochrome c, and the extract in
a final volume of 1 ml as described by Yabuta et al. (2000).

Monodehydroascorbate reductase
The activity was measured according to the method of Hossain
and Asada (1984).
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MEASUREMENT OF FRUIT BRIX
Ripe fruit tissue was homogenized with a razor blade, and the
soluble solids (Brix) content of the resulting juice measured on
a portable refractometer (Digitales Refrktometer DR6000; Krüss
Optronic GmbH, Hamburg, Germany).

ANALYSIS OF GENE EXPRESSION BY QRT-PCR
Total RNA was extracted according to Bugos et al. (1995) with
minor modifications. Integrity of the extracted RNA was checked
by electrophoresis under denaturing conditions after treating the
RNA with RNase-free DNaseI (Roche). First-strand cDNA syn-
thesis of 1 mg of RNA in a final volume of 20 mL was performed
with Moloney murine leukemia virus reverse transcriptase, Point
Mutant RNase H Minus (Promega), according to the supplier’s
protocol using oligo(dT) T19 primer.

Expression of the monodehydroascorbate reductase
(MDHAR), dehydroascorbate reductase (DHAR), L-galactono-
1,4-lactone dehydrogenase (GaLDH), and L-galactose
dehydrogenase (GDH) genes was analyzed by real-time qRT-
PCR using the fluorescent intercalating dye SYBR Green in
an iCycler detection system (Bio-Rad; http://www.bio-rad.

com/). Relative quantification of the target expression level
was performed using the comparative Ct method. The
following primers were used: for analysis of MDHAR1
transcript levels (GenBank accession no. Solyc09g009390),
forward, 5′-TCTACGGTGATAATGTGGGTGA-3′, reverse, 5′-
ATTGCCTTGTTCTCTTCAGGTG-3′; for MDHAR2 (GenBank
accession no. Solyc02g086710), forward, 5′-TTGAGTGATAAACC
AGAGCCATC-3′, reverse, 5′-TTCTACGCCTCCTACCATACCA-
3′; for MDHAR3 (GenBank accession no. Solyc08g081530),
forward, 5′-ATTTCAAGGGTTTCGGTTCCT-3′, reverse, 5′-CAT

TTCCTCCTCCAACTACCAC-3′ ; for DHAR1 (GenBank acces-
sion no. Solyc05g054760), forward, 5′-TTTCCTACCTTCGT
CTCATTTCTG-3′, reverse, 5′- GAACAAACATTCTGCCCATTGA
-3′; for DHAR2 (GenBank accession no. Solyc11g011250), for-
ward, 5′-GCTTCATTTGCGACTTCTATCAA-3′, reverse, 5′-A
AAACCTCTTCTGGGTGCTCTG-3′; for GaLDH (GenBank
accession no. Solyc10g079470), forward, 5′-GCTATTTCG
GTATGCTCCGTTG-3′, reverse, 5′-CCTCACATTCGCTTCT
TTCACT-3′; for GDH (GenBank accession no. Solyc01g106450),
forward, 5′-TGTTTGTCAGTTCAACGAGGTC-3′, reverse, 5′-
TTGTTTTAGATGTCCAAGTGCAA-3′ (Gilbert et al., 2009);
for GGP1 (GenBank accession no.Solyc06g073320) forward,
5′-AGGGTGCAACTGAGGCAAATGC-3′, reverse, 5′-ATG
GGCTGTGGAGGTGTGACA-3′; for GGP2 (GenBank acces-
sion no.Solyc02g091510) forward, 5′-GTCTTGGTTGGAGGTTG
TAAT-3′, reverse, 5′-TGCACAAAAGTTGCTAGTCCT-3′. To
normalize gene expression for differences in the efficiency
of cDNA synthesis, transcript levels of the constitutively
expressed elongation factor 1a of tomato (GenBank accession
no. X14449) were measured using the following primers: for-
ward, 5′-ACCACGAAGCTCTCCAGGAG-3′, reverse, 5′-CAT
TGAACCCAACATTGTCACC-3′ (Zanor et al., 2009).
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APPENDIX

FIGURE A1 | The proposed biosynthetic pathways for ascorbate in

plants. L-Gal, L-galactose; L-GalL, l-galactono-1,4-lactone; -LGul, L-gulose;
L-GuL, L-gulono-1,4-lactone; D-Man, d-mannose; UDP, uridine diphosphate;
GGP, GDP-L-galactose phosphorylase; GDH, L-galactose dehydrogenase;
GaLDH, L-galactono-1, 4-lactone dehydrogenase; GalUR, D-galacturonate
reductase MYOX, myo-inositol oxidase; MDHAR, monodehydroascorbate
reductase ; DHAR, dehydroascorbate reductase.
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