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Microbeam studies over the past decade have garnered unique insight into manganese
(Mn) homeostasis in plant species that hyperaccumulate this essential mineral
micronutrient. Electron- and/or proton-probe methodologies employed to examine tissue
elemental distributions have proven highly effective in illuminating excess foliar Mn
disposal strategies, some apparently unique to Mn hyperaccumulating plants. When
applied to samples prepared with minimal artefacts, these are powerful tools for extracting
true ‘snapshot’ data of living systems. For a range of reasons, Mn hyperaccumulation
is particularly suited to in vivo interrogation by this approach. Whilst microbeam
investigation of metallophytes is well documented, certain methods originally intended for
non-biological samples are now widely applied in biology. This review examines current
knowledge about Mn hyperaccumulators with reference to microbeam methodologies,
and discusses implications for future research into metal transporters.
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INTRODUCTION
The intrinsic value of plant hyperaccumulation as a resource
for expanding fundamental knowledge is as equally well recog-
nized as are its potential practical benefits (Brooks, 1987; Baker
and Brooks, 1989; Baker et al., 1992; Brooks, 1998; Brooks and
Robinson, 2000; Chaney et al., 2000; Pollard, 2000; Reeves and
Baker, 2000; Lombi et al., 2001; Macnair, 2003; Whiting et al.,
2004; Meharg, 2005; Reeves, 2005; Chaney et al., 2007). On a
global scale, it is clear that natural systems are increasingly under
threat from human activities, with dire predictions for the future
survival of many biota. There is thus a pressing need to address
habitat conservation of these extraordinary plants and to gain a
better understanding of their ecology and evolutionary histories
(Pollard, 2000; Reeves and Baker, 2000; Baker and Whiting, 2002;
Boyd, 2004; Whiting et al., 2004). Macnair (2003) points out that
notwithstanding the potential commercial benefit of hyperaccu-
mulation yet to be realized in any real sense, “the phenomenon
is of sufficient intrinsic interest that its investigation is justified
without any immediate commercial applications.” Whilst eco-
nomic and environmental factors are major drivers of scientific
research in this area, it is likely that accessibility and ease of
propagation also influence species selection for study. Ubiquitous
herbaceous Ni hyperaccumulators in the Brassicaceae remain the
most investigated subgroup to date (Brooks and Radford, 1978;
Lee et al., 1978; Gambi et al., 1979; Baker, 1987; Baker and Brooks,
1989; Baker et al., 1992, 2000; Krämer et al., 1997; Brooks, 1998;
Nicks and Chambers, 2000; Mengoni et al., 2003; Asemaneh et al.,
2006).

The possible benefits of seeking to understand lesser-known
hyperaccumulators with restricted distributions and/or more
unusual hyperaccumulated elements include: (a) further illu-
minating hyperaccumulation per se, (b) obtaining novel per-
spective on the physiological roles of those hyperaccumulated
elements essential to plant nutrition, (c) gaining new insights
into plant metal specificity and detoxification. Around 22 Mn
hyperaccumulators are known worldwide (Table 1), their highly
restricted collective distribution centered almost entirely over
New Caledonia and Eastern Australia. Reports of two herbaceous
Polygonum species described as Mn-hyperaccumulating on Mn
mine sites in China (Wang et al., 2007; Deng et al., 2010) are diffi-
cult to access and may require further confirmation. Among well
confirmed Mn hyperaccumulators are seven trees and a shrub
species from Australia (Bidwell et al., 2002; Fernando et al., 2009),
seven woody plants from New Caledonia (Brooks, 1998), a tree
and a herb native to China (Xue et al., 2004; Yang et al., 2008),
a herb native to the USA (Min et al., 2007; Pollard et al., 2009)
and a tree native to Japan (Mizuno et al., 2008). The single
Malaysian tree species whilst documented has not been identi-
fied below generic level (Proctor et al., 1989). The identities of
certain herbaceous Mn hyperaccumulators are yet to be veri-
fied taxonomically at the species level, while several trees within
the Australian group are listed as threatened due to habitat loss.
Given that conservation and research are underpinned by cor-
rect identification of hyperaccumulator species, plant taxonomy
is integral to the topic. Currently it is an uncommon practice
to provide herbarium vouchers on hyperaccumulator plants in
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Table 1 | Current worldwide listing of Mn hyperaccumulators.

Plant (family) species (citation) Native country

(Araliaceae)

Chengiopanax species formerly in Eleutherococcus

*Chengiopanax sciadophylloides (1) Japan

(Apocynaceae)

Alyxia rubricaulis (2) New Caledonia (NC)

(Celastraceae)

Denhamia species formerly in Maytenus

*Denhamia fournieri (2) NC

Denhamia cunninghamii (3) Australia (AU)

(Clusiaceae)

*Garcinia amplexicaulis (2) NC

(Myrtaceae)

Eugenia sp.1 (2) NC

Eugenia sp. 2 (4) Malaysia

Gossia species formerly in Austromyrtus

Gossia bamagensis (3) AU

*G. bidwillii (5) AU

G. gonocla (3) AU

*G. fragrantissima (3) AU

G. lucida (3) AU

G. sankowsiorum (3) AU

G. shepherdii (3) AU

(Phytolaccaceae)

*Phytolacca acinosa (6) China (CH)

P. Americana (7) USA

(Polygonaceae)

Polygonum pubescens (8) Eurasia (E)

P. hydropiper (9) E/USA

(Proteaceae)

Beaupreopsis paniculata (10) NC

Virotia species formerly in Macadamia

Virotia angustifolia (10) NC

*V. neurophylla (10) NC

(Theaceae)

Schima superba (11) CH

*Species examined by microprobe analysis.

References: 1, (Mizuno et al., 2008); 2, (Jaffré, 1977); 3, (Fernando et al., 2009);

4, (Proctor et al., 1989); 5, (Bidwell et al., 2002); 6, (Xue et al., 2004); 7, (Min

et al., 2007; Pollard et al., 2009); 8, (Deng et al., 2010); 9, (Wang et al., 2007); 10,

(Jaffré, 1979); 11, (Yang et al., 2008).

published research; however, it should be encouraged in order to
enable independent verification of species. The majority of Mn
hyperaccumulators are woody plants with sclerophyllous leaves
and xerophytic anatomies, traits strongly favorable to retaining
leaf-tissue integrity for in vivo microprobe examination.

Plant Mn hyperaccumulation was originally defined by a
notional threshold foliar Mn concentration of 10,000 µg g−1 dry

weight (DW) (Baker et al., 2000). More recently, there has been
argument supporting a downward revision (Baker et al., 2000;
Fernando et al., 2009). It is widely accepted that Mn predominates
in its lowest (+2) oxidation state in planta, and this has been con-
firmed for several Mn hyperaccumulators, using X-ray absorption
near-edge spectroscopy (XANES) (Graham et al., 1988; Fernando
et al., 2010). There are multiple physiological functions to which
Mn is essential, primarily photosynthesis and oxidative stress
mitigation. Based on crop plants, “normal” nutritional require-
ments for Mn are met at ∼50–800 µg g−1 DW even though
it is widely tolerated at concentrations above (Graham et al.,
1988; Marschner, 2002; Foulds, 2003). This is in marked con-
trast to other trace metal nutrients. Manganese crop toxicity is
a significant problem in certain regions of the world where soils
are Mn-enriched and acidic (Heenan and Carter, 1977; Temple-
Smith and Koen, 1982; Hung et al., 1987; Davis, 1996; González
et al., 1998; StClair and Lynch, 2005). The ability of tolerant crop
lines to sequester excess Mn, along with Mn sensitivity in other
varieties is not well understood, nor is the observed variation
in plant physiological responses. Therefore, Mn hyperaccumu-
lators can be exploited to address these questions given they
shine a novel light on Mn nutrition and could potentially yield
important new information regarding specific Mn chelators and
transporters.

The first reports of Mn hyperaccumulation occurred over 35
years ago upon discovery of the New Caledonian group (Jaffré
and Latham, 1974; Jaffré, 1977, 1979). At that time, the now little-
used term “hypermangansphores” was introduced to describe
Mn hyperaccumulators. In the early 1980s a group of Japanese
Mn-accumulating species was the subject of detailed physiolog-
ical investigation, including microprobe analysis (Memon and
Yatazawa, 1980, 1981, 1982, 1984). Over the past decade it has
become apparent via in vivo microbeam studies at least that these
are somewhat unusual among hyperaccumulators (Fernando
et al., 2006a,b, 2008). Between 2002 and 2008, additional Mn
hyperaccumulators were discovered in eastern Australia (Bidwell
et al., 2002), China (Xue et al., 2004) and Japan (Mizuno et al.,
2008), that has now led to recognition of several new species and
renewed interest in the phenomenon. To date, the woody species
have only been investigated through a series of ecophysiological
studies, whereas the two herbaceous Phytolacca (Phytolaccaceae)
species have mainly been examined in controlled experiments
(Xue et al., 2005; Fernando et al., 2006b; Mizuno et al., 2006;
Xu et al., 2006a,b, 2009; Fernando et al., 2007a,b). Unlike
their herbaceous metal-hyperaccumulating counterparts, Mn-
hyperaccumulating trees and shrubs are extremely slow growing
and often difficult to propagate.

Pioneering studies on plant hyperaccumulation using widely
accessible Ni-, Cd- and Zn-hyperaccumulating herbs provide an
invaluable framework for current focus on Mn hyperaccumu-
lation. This has led to: (a) the discovery of several new Mn
hyperaccumulators, which has augmented the overall biogeo-
graphic knowledge base of hyperaccumulators by providing new
perspective on Mn-accumulating taxa analogous to those with
already well-established links to other metals (Baker and Brooks,
1989; Baker et al., 1992; Pollard et al., 2000, 2002; Fernando
et al., 2009); (b) the discovery that foliar Mn detoxification varies
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specifically in a manner possibly unique to Mn hyperaccumula-
tors (Fernando et al., 2008); (c) indication that the physiological
mechanisms associated with excess Mn uptake and storage in
herbaceous Mn hyperaccumulators are similar to those found
in herbaceous hyperaccumulators of other metals (Küpper et al.,
2000, 2001; Xu et al., 2006a,b); and (d) the pursuit to identify
Mn-specific transporters, particularly in woody species where Mn
is compartmentalized in highly localized vacuolar concentrations
(T. Mizuno unpublished data).

METAL LOCALIZATION METHODOLOGIES APPLIED TO
HYPERACCUMULATORS AND OTHER PLANTS
Early studies utilizing microbeam techniques to investigate excess
Mn sequestration in certain tolerant crop lines established that
dermal tissues were primary deposition sites (Blamey et al.,
1986; Edwards and Van Steveninck, 1987, 1988). Scanning elec-
tron microscopy energy dispersive spectroscopy (SEM/EDS),
proton (or particle)-induced X-ray emission energy disper-
sive spectroscopy (PIXE/EDS) and synchrotron methodologies
are by far the most widely used techniques for localizing
excess metal deposition within plant tissues. To obtain reli-
able artifact-free data from in vivo methods such as these,
it is imperative that sample preparations effectively immobi-
lize cell metabolic and diffusional processes, thereby avoiding
artifactual cell-content removal or relocation of diffusible ele-
ments (Marshall, 1980c; Morgan, 1980; Echlin, 1992; Marshall
and Xu, 1998). This subject will be addressed in greater detail
below. Other techniques including 31P-nuclear magnetic reso-
nance (NMR) (Roby et al., 1988; Quiquampoix et al., 1993a,b)
radioactive tracer studies (Lasat et al., 1996), and cell frac-
tionation (González and Lynch, 1999) have also provided use-
ful information regarding metal localization in plants. Mention
should also be made of histochemical techniques utilized by
Severne (1974) to locate foliar Ni in situ in a hyperaccu-
mulator using dimethyl glyoxime stain; and by Horiguchi
(1987) to localize oxidized Mn in rice plants by staining with
benzidine.

In vivo microprobe investigation has been applied to hyper-
accumulating plants to reveal that with the exception of
Mn hyperaccumulators, primary sequestration occurs in non-
photosynthetic tissues (Vázquez et al., 1992; Krämer et al., 1997;
Küpper et al., 1999, 2000, 2001; Mesjasz-Przybylowicz et al.,
2001; Lombi et al., 2002; Ager et al., 2003; Bhatia et al., 2003;
Bidwell et al., 2004; Broadhurst et al., 2004; Fernando et al.,
2006a,b, 2010; Xu et al., 2006a,b; Smart et al., 2010). For exam-
ple, Küpper et al. (2000) described the accumulation of Zn and
Cd in leaves of the hyperaccumulator Arabidopsis halleri (L.)
O’Kane and Al-Shehbaz Novon (Brassicaceae), and found the
strongest deposition in trichomes, and to a lesser extent in the
mesophyll. Bidwell et al. (2004) found Ni predominantly localized
in the leaf epidermal vacuoles with some apoplastic localiza-
tion in the mesophyll tissues of Hybanthus floribundus (Lindley)
F. Muell (Violaceae). These and numerous other studies demon-
strated that leaf epidermal cell-layers and associated structures
such as hairs and trichomes are primary sequestration sites for
hyperaccumulated elements, i.e., where highest localized concen-
trations were detected in vivo. Such findings are consistent with

reasoning that, (a) dermal tissues generally have a high apoplas-
tic component, (b) the essentially non-photosynthetic status of
dermal tissues renders them suited to storing potentially toxic
concentrations of metals that might otherwise disrupt vital phys-
iological processes in the mesophyll, and (c) excess metal storage
in the dermal layers may contribute to chemical defence against
animal and/or insect herbivory. In contrast to all other hyper-
accumulators examined to date, Mn hyperaccumulators exhibit
a distinct variety of primary detoxification strategies, i.e., in
photosynthetic tissues, in non-photosynthetic tissues, and simul-
taneously across all tissue types (Fernando et al., 2008). Currently
there is no clear explanation for this observation. It has been
argued that the highly vacuolated xerophytic leaf anatomies of
woody Mn hyperaccumulators along with the essential role of
Mn in photosynthesis might be associated with its concentra-
tion in photosynthetic cells. Most recently however, PIXE/EDS
localization studies showed that primary foliar-metal sequestra-
tion in a Co-, Ni- and Zn-accumulating Mn hyperaccumulator
tree Gossia fragrantissima (F. Muell. ex Benth.) N. Snow and
Guymer (Myrtaceae) occurred in photosynthetic cells for Mn,
Ni and Co; and in non-photosynthetic cells for Zn (Fernando
et al., 2013). In further illuminating primary Mn-sequestration in
the leaf mesophyll cells of a woody Mn hyperaccumulator, these
latest findings indicate involvement of tonoplastal metal trans-
porters not exclusive to Mn since in this species at least, Ni and Co
were in addition to Mn, primarily located in photosynthetically
important cells.

LOCALIZATION STUDIES ON Mn HYPERACCUMULATORS
As discussed earlier, original in vivo examination of foliar Mn
microdistribution was performed on Mn accumulators from
Japan, including Chengiopanax sciadophylloides (Franch. and
Sav.) C. B. Shang and J. Y. Huang (Araliaceae) now identified as
a “true” Mn hyperaccumulator (Mizuno et al., 2008). However,
these samples were prepared by freezing leaf material directly
in liquid nitrogen, an approach now regarded as unreliable in
achieving adequate cryo fixation at the cellular level (see Echlin,
1992). About 25 years later, Gossia bidwillii (Benth.) N. Snow
and Guymer (Myrtaceae), a Mn-hyperaccumulating Australian
rainforest tree; and P. acinosa Roxb, a herbaceous Chinese Mn
hyperaccumulator were examined in separate Mn localization
studies utilizing cryo-SEM/EDS and synchrotron radiation X-ray
fluorescence spectroscopy (SRXRF), respectively, (Fernando et al.,
2006b; Xu et al., 2006a,b). Whilst the latter authors showed
foliar Mn to be most strongly deposited in the upper epidermis
of P. acinosa, they also conceded that their sample preparation
might have been a confounding factor. Methodology lacking
the essential initial step of immediate rapid-freezing of leaf tis-
sue will likely yield unreliable data as a result of artifactual
movement of cell solutes and water during subsequent sam-
ple processing and/or microbeam analysis. Studies on woody
Mn hyperaccumulators utilized appropriate sample fixation that
retained cellular content in close representation of the in vivo
status. Leaf anatomical features of these species typically include
substantial cuticles, particularly for the New Caledonian group;
multiple layers of large palisade mesophyll cells, and an over-
all distinct lack of intercellular spaces throughout (Fernando
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et al., 2006a,b, 2007b, 2008, 2012). These leaves are dermally
fortified around closely packed and highly vacuolated cells that
account for an overall high vacoular component of the total
leaf volume. After field sampling, it is often necessary to main-
tain material in cool humid packaging over transit periods of
least 24 h between remote field collection sites and laboratories
where they are immediately cryo-fixed prior to storage or any
subsequent processing. Their physical robustness combined with
highly localized cellular Mn concentrations that fall well within
the detection limits of widely used microprobe methodologies
render leaf samples of these woody Mn hyperaccumulators ideal
for in vivo microprobe localization studies on bulk specimens.
Their characteristic leaf sclerophylly on the other hand poses
challenges to sample infiltration steps essential to ultrastruc-
tural examination by transmission electron microscopy (TEM),
and/or analysis by scanning transmission electron microscopy
(STEM) EDS.

LEAF SAMPLE PREPARATION FOR In vivo MICROPROBE
EXAMINATION OF HYPERACCUMULATORS
Appropriate sample preparation is mandatory to obtaining reli-
able in vivo microprobe analytical data from biological material.
Reference to “sample” here should be taken to mean leaf tissues.
Sample preparation methodology can determine the degree of
anatomical resolution achievable by SEM, as can instrumenta-
tion. The latter also governs the limits of analytical resolution
and sensitivity, for example, factors such as operating condi-
tions, the choice of incident microbeam, detector and analyzer.
There is ample evidence that biological sample preparation for
in vivo microprobe analysis requires initial rapid cryo-fixation
to immobilize metabolic processes and prevent delocalization
of diffusible elements (e.g., Echlin et al., 1980; Marshall, 1980a;
Echlin, 1992; Marshall and Xu, 1998). Plunging samples directly
into liquid nitrogen, while commonly used, does not achieve
rapid cryo-fixation since the sample at room temperature upon
contact with liquid nitrogen forms a self-enveloping “nitro-
gen gas vapor cloud,” which has an insulating effect not con-
ducive to rapid freezing. This is known as the “Leidenfrost
effect”. Plunge- and metal-mirror contact-freezing methods can
be employed to achieve rapid sample vitrification free of ice
crystals, which can lead to cell content relocation and mem-
brane rupture. It is desirable to maintain as small a sample
size as possible to achieve artifact-free vitrification. Following
appropriate cryo-fixation, samples can then be used for analy-
sis after surface polishing or sectioning by cryo-ultramicrotomy.
Bulk frozen tissue is cryo-planed to optimize X-ray collection
by the detector since a rough sample surface causes irregu-
lar absorption, which can then produce inconsistent analytical
data. Planing is done cross-sectionally to enable examination
of the in vivo spatial distribution patterns of elements includ-
ing Mn through the leaf tissue. Samples can also be processed
from a frozen cryo-fixed state to a dry state, depending on
the constraints and requirements of an investigation. Whether
wet or dry, samples are commonly surface-coated with a fine
conductive layer of metal or carbon to avoid charge accumu-
lation from the incident beam provided it does not confound
analytical data.

Melting nitrogen, liquid propane and isopentane have previ-
ously been used to cryo-fix Mn hyperaccumulator samples for
wet and dry sample preparations examined by qualitative and
quantitative electron and proton probe studies (Fernando et al.,
2006a,b, 2013). Whether applied to wet or dry samples, quan-
titative approaches are more time consuming and expensive.
Qualitative X-ray mapping used on freeze-dried bulk tissue cut
open to expose a clean cross-sectional surface has to date been
best exploited to locate primary Mn sinks in Mn hyperaccumu-
lator samples (Figure 1) (Fernando et al., 2006a, 2007b, 2008).
Again, it is noteworthy that the sclerophyllous nature of these
leaves is a distinct advantage when hand-cutting freeze dried tis-
sue. This is a relatively straightforward yet effective approach
given that Mn hyperaccumulators harbour highly localized foliar
Mn. If necessary, these findings can then be followed up by quan-
titative techniques to characterize Mn sinks in greater detail,
using additional samples prepared appropriately. For example,
SEM/EDS measurement of vacuolar elemental concentrations
within individual cells can be carried out on frozen hydrated cryo-
planed samples treated to improve anatomical clarity by superfi-
cial surface-sublimation and metal coating (Figure 2) (Fernando
et al., 2006b, 2012, 2013). A preparation such as this offers
minimal disruption to metabolic processes, and is the closest
achievable representation of the true in vivo state for a fixed sam-
ple, provided it was correctly cryo-fixed at the outset. Among the
disadvantages of this approach however, is that the sample water
content has a “diluting” effect that renders cellular elements less
detectable than in correspondingly dry tissue, although Mn is
generally localized in sufficiently high concentrations to be eas-
ily detected even in fully hydrated tissue. Here, Figures 1, 2 are
presented side-by-side to reinforce the point that leaves of woody
Mn hyperaccumulators by virtue of their physical robustness,
leaf anatomy combined with extraordinary foliar Mn concentra-
tions, are almost uniquely equally well suited to both wet and
dry sample preparation for in vivo analyses—be they qualita-
tive or quantitative. Hydrated samples are advantageous in that
the analytical resolution is higher than in freeze-dried samples
since it is partially determined by sample depth. However, high
incident beam energies can lead to beam damage on the sample

FIGURE 1 | Dry specimen preparation. Figure taken from Fernando et al.
(2006a). Qualitative PIXE X-ray Mn maps of carbon-coated hand-cut leaf
cross-sectional surfaces of cryo-fixed and freeze-dried Virotia neurophylla
(LHS) and Gossia bidwillii (RHS) samples. High Mn deposition is
represented as orange to yellow (highest).
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FIGURE 2 | Wet specimen preparation. Figure taken from Fernando et al.
(2012). Cryo-fixed frozen hydrated and planed leaf cross sectional surfaces
of Virotia neurophylla (A) and Maytenus fournieri (B) lightly surface
sublimed and Al-coated. LHS panels show cryo-SEM images (15 kV); and
RHS panels show corresponding quantitative X-ray maps with localized
vacuolar Mn highlighted in orange to yellow (highest).

(Marshall, 1980c). Küpper et al. (1999, 2000, 2001) and Robinson
et al. (2003) have similarly employed cryo-SEM/EDS on cryo-
fixed frozen samples to examine Ni, Cd, and Zn localization in
herbaceous hyperaccumulators, and achieved subcellular spatial
resolution of metal distribution in hydrated tissues. Freeze drying
cryo-fixed material on the other hand, while elevating analytical
detection limits, leads to further loss of analytical resolution when
the water matrix is removed from cells. Analysis of sections using
STEM enables examination of tissue ultrastructure with cell con-
tents intact. This is achieved by anhydrous freeze-substitution as
used by Bidwell et al. (2004) to quantify foliar Ni sequestration
in vivo in a herbaceous Ni hyperaccumulator. In an initial pro-
cess of cryo-substitution, tissue-water as ice is slowly replaced
with a non-polar solvent, subsequently followed by resin infiltra-
tion (Pallaghy, 1973; Marshall, 1980b). Thick sections (1–2 µm)
can then be used for energy dispersive analysis in STEM. It is
unlike TEM sample preparations routinely used for anatomi-
cal/ultrastructural studies, in which cellular ions are washed out
in polar solvents such as acetone and ethanol (Morgan, 1980).
The authors’ previous experience in attempting to infiltrate scle-
rophyllous leaf tissues of woody Mn hyperaccumulators for TEM
studies were unsuccessful due to the apparent impermeabilty
of samples. Major considerations when preparing woody hyper-
accumulator plant material for in vivo microprobe analysis is
broadly summarized in Figure 3, however, caution needs to be
exercized when interpreting these steps for other material and
species. For example, “soft” herbaceous plant material while more
permeable to fixatives, requires far more rapid handling between
collection sites and laboratory, and are considerably less suited to
dry hand-sectioning.

FIGURE 3 | Schematic summary of important steps in preparing

(woody) Mn hyperaccumulator leaf-tissue for in vivo microprobe

analysis.

Mn TRANSPORTER STUDIES AND FUTURE DIRECTIONS
The accumulation of shoot tissue Mn concentrations significantly
above normal plant nutritional requirements is not an
uncommon observation that raises questions about trans-
porters associated with foliar Mn compartmentalization and
specificity at the root-soil interface. Plants that hyperaccumulate
Mn can be viewed as exceptional in this regard. There has been
little success in the search for Mn transporters responsible for
Mn acquisition by model plants. As reviewed by Pittman (2005),
certain classes of divalent-metal transporters such as the ZIP
(ZRT1/IRT1-related protein) and NRAMP (natural resistance-
associated macrophage protein) appear to be implicated in Mn
transport. Recently, a group of NRAMP transporters including
OsNramp5 in rice (Ishimaru et al., 2012; Sasaki et al., 2012),
and AtNramp1 in Arabidopsis thaliana (Cailliatte et al., 2010)
were found to be involved in Mn uptake at the root surface.
The NRAMP group is recognized as being associated with heavy
metal transport and possibly contributing to plant adaptation to
metal homeostasis (Thomine et al., 2000). In certain instances
they are more highly expressed in metal-hyperaccumulating
plants than in models such as A. thaliana (Weber et al., 2004;
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Oomen et al., 2009). This suggests that NRAMP transporters are
important to metal hyperaccumulation either at the uptake level,
root to shoot translocation, or detoxification via vacuolar com-
partmentation. Similarly, the ZIP transporters are known to be
highly expressed in metal hyperaccumulators. However, since nei-
ther NRAMP nor ZIP transporters appear to be highly expressed
in Mn hyperaccumulators, there is little evidence of their involve-
ment in Mn-hyperaccumulative uptake and/or accumulation (T.
Mizuno, pers. comm.). Delhaize et al. (2003) identified ShMTP8
as a vacuolar transporter responsible for Mn-accumulative tol-
erance in Stylosanthes hamata (Fabaceae), and also described
AtMTP11 as a Mn transporter in prevacuolar compartments of
Arabidopsis (2007). Peiter et al. (2007) found that the Mn trans-
porter MTP11 was associated with Golgi bodies in Arabidopsis
mtp 11 mutants exhibiting an enhanced ability to accumulate Mn
in their shoots and roots.

In vivo microprobe localization methodologies have expanded
knowledge about the compartmentalization of excess foliar

Mn in hyperaccumulators by revealing remarkable tonoplas-
tal specificity within certain cell types, particularly the palisade
mesophyll (Fernando et al., 2006a,b, 2012). These findings pro-
vide basis for future genetic studies to identify drivers of Mn
hyperaccumulation, which could ultimately contribute to dis-
cussion on plant Mn accumulation in the context of Mn crop
toxicity. Discovery that foliar Mn is variously co-localized with
excess Zn, Co, and Ni in different palisade cell-layers of a Mn
hyperaccumulator provides further insight into metal trans-
porters (Fernando et al., 2013). Currently there is no published
research on the genetic basis of Mn hyperaccumulation. With
a single exception, Mn transporter studies in yeast, plant mod-
els (Delhaize et al., 2003, 2007; Mizuno et al., 2005; Pittman,
2005), and the Mn hyperaccumulator C. sciadophylloides (T.
Mizuno, pers. comm.) have largely been unsuccessful in charac-
terizing the molecular basis of detoxification mechanisms asso-
ciated with excess foliar Mn sequestration in Mn-accumulating
plants.
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