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The robustness of plant effector-triggered immunity is correlated with massive alterations
of the host transcriptome. Yet the molecular mechanisms that cause and underlie this
reprogramming remain obscure. Here we will review recent advances in deciphering
nuclear functions of plant immune receptors and of associated proteins. Important open
questions remain, such as the identities of the primary transcription factors involved
in control of effector-triggered immune responses, and indeed whether this can be
generalized or whether particular effector-resistance protein interactions impinge on
distinct sectors in the transcriptional response web. Multiple lines of evidence have
implicated WRKY transcription factors at the core of responses to microbe-associated
molecular patterns and in intersections with effector-triggered immunity. Recent findings
from yeast two-hybrid studies suggest that members of theTCP transcription factor family
are targets of several effectors from diverse pathogens. Additional transcription factor
families that are directly or indirectly involved in effector-triggered immunity are likely to be
identified.
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INTRODUCTION
A common and early event in effector-triggered immunity (ETI)
is the rapid up- or downregulation of pathogenesis-responsive
genes. The advent of genomics and transcriptomics provided a
comprehensive description of the magnitude of the transcriptional
reprogramming that occurs in cells responding to detected effec-
tors (Tao et al., 2003; Caldo et al., 2004; Adams-Phillips et al., 2008;
Moscou et al., 2011). Subsequent findings of resistance proteins
in the nucleus led to the suggestion that some resistance proteins
directly affect transcriptional changes. A few well-discussed exam-
ples exist, but it is also clear that this proposed nuclear role is
not a general feature of all resistance proteins. Interestingly, tran-
scriptomics studies also highlighted the fact that transcriptional
responses to avirulent and virulent pathogens mainly differ quan-
titatively (in the speed and amplitude of transcriptional changes),
not qualitatively (in the identity of regulated genes; Tao et al., 2003;
Katagiri and Tsuda, 2010). The layered nature of the plant innate
immune system, where ETI is layered on top of the pathogen-
associated molecular pattern-triggered immunity (PTI) network,
makes it difficult to distinguish between genuine ETI-specific sig-
naling steps, the guarding of PTI nodes by resistance proteins, and
an accelerator function of resistance proteins that speeds up and
amplifies an underlying PTI response (Shen et al., 2007; Gassmann
and Bhattacharjee, 2012). Here we briefly review existing evidence
for and against a nuclear function of resistance proteins and other
ETI-associated proteins, but mainly focus on gaps that need to be

filled to understand how to connect resistance proteins to the vast
transcriptional response observed during ETI.

From a pathogen’s perspective, ETI is an unintended conse-
quence of deploying effector proteins to colonize a host (Dangl
and Jones, 2001; Jones and Dangl, 2006; Dodds and Rathjen,
2010). Effector proteins evolved to increase the fitness of a
pathogen on its host by modulating host physiology in a vari-
ety of ways. Some examples of diverse effector functions include
modifying components of the immune system to evade detec-
tion (Block and Alfano, 2011), and redirecting nutrients to the
apoplast to support pathogen growth (Chen et al., 2010). Detec-
tion of these effectors by resistance proteins can occur when
resistance proteins directly bind cognate effectors, or indirectly
when resistance proteins detect changes to an associated host pro-
tein brought about by effectors (van der Biezen and Jones, 1998).
In terms of their virulence function, one might postulate that
the most potent effectors would target transcription architectures
that regulate defense genes. However, in a recent comprehensive
screening, transcriptional regulators are under-represented in the
identified hubs targeted by multiple effectors from two different
pathogens, Pseudomonas syringae and Hyaloperonospora arabidop-
sidis (Mukhtar et al., 2011). This deficiency may be caused by
a general under-representation in the libraries screened or by
elimination from consideration of auto-activating transcription
factors and chromatin-associated components in yeast two-hybrid
assays. In biological terms, this finding could also signify that the
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transcriptional response is a late event that is not a primary barrier
to an invading pathogen, or more likely that a robust transcrip-
tional network is not an ideal target for disruption (Tsuda et al.,
2009).

RESISTANCE PROTEINS AS DIRECT SIGNAL TRANSDUCERS
The activation of Arabidopsis resistance to Ralstonia solanacearum-
resistant allele (RRS1-R) in the presence of the Ralstonia
solanacearum effector Pseudomonas outer protein P2 (PopP2)
was, until recently, considered a classic example of a system in
which an activated resistance protein may directly stimulate ETI-
related transcriptional changes (Deslandes et al., 2002). RRS1-R
contains a WRKY transcription factor-like C-terminal domain.
Native RRS1-R is unstable, and co-expression of PopP2 stabi-
lizes nuclear RRS1-R (Deslandes et al., 2003; Tasset et al., 2010).
However, subsequent findings showed that RRS1-R functions as
a negative regulator of defense and that PopP2 acetyltransferase
activity is required for RRS1-R activation, but not stabilization
(Noutoshi et al., 2005; Tasset et al., 2010). This suggests that a yet
to be identified PopP2 substrate or a protein interacting with acti-
vated RRS1-R functions in co-ordination with RRS1-R to mediate
the majority of ETI gene modulations. Candidates include the
resistance protein RPS4, which genetically was shown to function
with RRS1-R in providing resistance to multiple pathogen effectors
from diverse organisms (Birker et al., 2009; Narusaka et al., 2009,
2013), and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1),
which was found to be in protein complexes with RPS4 and related
resistance proteins (Bhattacharjee et al., 2011; Heidrich et al., 2011;
see below).

A second example is the barley resistance protein Mildew locus
A 10 (MLA10), which upon activation by powdery mildew effec-
tor AvrA10 interacts with WRKY1 and WRKY2 in the nucleus.
Silencing of these WRKYs enhances resistance to both compat-
ible and incompatible pathogens, suggesting that these WRKYs
function as defense repressors (Shen et al., 2007). Arabidopsis
WRKY18, WRKY40 and WRKY60, which have sequence homol-
ogy to barley WRKY1/2, bind to promoter elements of the positive
defense regulator EDS1 and the jasmonate pathway repressor gene
JASMONATE-ZIM-DOMAIN PROTEIN8 (JAZ8) to repress their
expression (Pandey et al., 2010). However, constitutive activation
of defenses is not apparent in wrky18 wrky40 wrky60 mutants.
Instead, up-regulated basal defense genes prime these plants for
enhanced resistance toward both virulent and avirulent pathogens
(Shen et al., 2007; Pandey et al., 2010). WRKYs that have recently
been identified as positive regulators of defenses also affect both
layers of immunity (Bhattarai et al., 2010; Gao et al., 2013).

The transcriptome alterations that characterize ETI likely
involve specialized transcription factors that cue from activated
resistance proteins and amplify an existing PTI response. A
recent advancement in understanding MLA10-mediated immu-
nity supports this model (Chang et al., 2013). At resting state,
MLA10 cannot interfere with the WRKY1 function to sequester
the positive defense transcription factor MYB6. Upon activation,
MLA10 not only abolishes WRKY1 repression of MYB6 but also
potentiates the DNA-binding activity of MYB6. A remaining ques-
tion is which transcription factor enables the reported conserved
function of MLA1 in Arabidopsis (Maekawa et al., 2012), since

HvMYB6-orthologous genes are likely limited to the grasses and
are absent in Arabidopsis (Chang et al., 2013).

Padmanabhan et al. (2013) also recently reported that the
tobacco resistance protein N, upon activation, acquires nuclear
binding to SQUAMOSA PROMOTER BINDING PROTEIN-
LIKE6 (SPL6). They demonstrated that SPL6 controls the expres-
sion of several defense genes such as PR1 and PAD4, and
is essential for TIR-NBS-LRR-triggered ETI. Interestingly, both
MLA10 and N only interacted with MYB6 and SPL6, respec-
tively, after activation, possibly reflecting conformational changes
or oligomerization of resistance proteins as a prerequisite for
these protein interactions (Chang et al., 2013; Padmanabhan
et al., 2013). More recently, Panicle blast 1 (Pb1), a broad-
spectrum rice resistance protein against Magnaporthe oryzae, was
reported to interact with and stabilize nuclear-localized WRKY45
by inhibiting its ubiquitin-mediated degradation (Inoue et al.,
2013). Knockdown plants in a susceptible background were unaf-
fected in basal resistance against the blast fungus. For Pb1 it is
not clear yet what the activation step is, since Pb1 possesses a
degenerate NB domain that lacks a functional P-loop (Inoue et al.,
2013). Nevertheless, these studies demonstrate direct induction
of defense genes by resistance proteins via specific transcription
factors.

ONE SIZE DOES NOT FIT ALL: MULTIPLE PATHWAYS TO
RESISTANCE
Resistance proteins are deployed where they can intercept effector
functions. Plasma membrane localized RPM1 is activated upon
sensing host-modification of RIN4 by the action of membrane-
targeted effectors AvrRpm1 and AvrB (Nimchuk et al., 2000;
Mackey et al., 2002; Liu et al., 2011). Nucleocytoplasmic N is acti-
vated upon sensing and interacting with the liberated chloroplast
protein NRIP1 following perturbations by the tobacco mosaic
virus effector p50 (Caplan et al., 2008). While a nuclear sub-
pool of some resistance proteins are required for their immune
functions (Burch-Smith et al., 2007; Shen et al., 2007; Wirth-
mueller et al., 2007; Cheng et al., 2009), RPM1 relocalization
from the plasma membrane to the nucleus is not required to
induce an ETI-response to AvrRpm1 (Gao et al., 2011). Therefore,
nuclear signaling during ETI does not always involve activated
resistance proteins as the sole carriers. This is also supported
by the evolutionary evidence that, while several resistance-like
proteins from other plant species like Populus (Tuskan et al.,
2006) have domains resembling DNA-binding elements, most
characterized Arabidopsis resistance proteins neither possess tran-
scription factor-like domains nor have been generally identified
as direct associates of transcription factors. Thus, nucleotide
binding-leucine-rich repeat (NB-LRR) proteins did not evolve
from transcriptional regulators. This conclusion may not be very
surprising, since resistance-like proteins are increasingly being
identified in defense-independent roles, not all of which directly
relate to transcription (Faigón-Soverna et al., 2006; Kim et al.,
2012). In addition, a small but measurable nuclear pool for many
resistance proteins already exists at resting state, and the major-
ity of these proteins remain cytoplasmic even after activation.
Small changes in amounts of nuclear protein are therefore dif-
ficult to measure, and it has not been shown convincingly yet that
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resistance proteins relocate to the nucleus after activation. Nev-
ertheless, within the confines of the nucleus even small changes
in the number of protein molecules relative to the bulk protein
in the cytoplasm, either by import or by preventing cycling out
of the nucleus, may increase the concentration of nuclear protein
considerably.

An in-depth understanding of immune signaling is also being
formed by studies of the activated resistance-like protein SUP-
PRESSOR OF npr1-1, CONSTITUTIVE1 (SNC1) that is proposed
to function by repressing transcription of negative regulators of
defense (Johnson et al., 2013). Even though a bona fide avirulence
gene recognized by wild-type SNC1 has not been identified, it
was shown that SNC1 exists in comparable protein complexes
as the resistance proteins RPS4 and RPS6, and contributes to
AvrRps4 recognition in the absence of RPS4 (Kim et al., 2010;
Bhattacharjee et al., 2011). Genetic screens and subsequent molec-
ular approaches on the auto-active mutant allele of SNC1 identi-
fied TOPLESS (TPL) gene family involvement, suggesting a nuclear
function for activated snc1. TPL members function as transcrip-
tional co-repressors in many plant signaling pathways (Pauwels
et al., 2010; Krogan et al., 2012; Wang et al., 2012). The demon-
stration that a TPL family member, TOPLESS RELATED1 (TPR1),
forms a complex with SNC1 leads to a model in which SNC1 inter-
acts with TPR1 to recruit HISTONE DEACETYLASE 19 (HDA19)
to remodel chromatin at promoters of negative defense regulators
(Zhu et al., 2010). A recent large scale search for interactors of
TPL members identified transcriptional regulators belonging to
diverse families, suggesting a wide role of TPL members as co-
repressors (Causier et al., 2012). Intriguingly, one of the identified
members, TCP14, is a target of at least two unrelated pathogen
effectors (Mukhtar et al., 2011). Members of the TCP transcrip-
tion factor family regulate leaf morphology and have been recently
implicated in hormonal signaling (Koyama et al., 2007; Danisman
et al., 2012; Steiner et al., 2012). Interestingly, a TCP-family pro-
tein was reported to be involved in the activation of several WRKY
genes in cotton (Hao et al., 2012). It is a common observation
that uncontrolled induction of immunity compromises regular
growth and development of plants (Alcazar et al., 2011). Whether
TCPs are direct transcriptional mediators that contribute to this
fine balance needs to be determined.

VIRULENCE TARGETS AS CO-SIGNALING COMPONENTS
OF ETI
A recent large protein interactome dataset identified multiple host
targets that a given effector may act upon in its pursuit for viru-
lence (Mukhtar et al., 2011). However, what is the modus operandi
of an effector in this ever-expanding protein–protein interaction
network of resistance-associated proteins? The P. syringae type
III effectors are functionally versatile and may mediate processes
as diverse as proteolytic processing, ubiquitination, or nucleotide
transfer on host targets (Block and Alfano, 2011). These manip-
ulations of host targets may play synergistic roles with activated
resistance proteins toward transcriptional modulation during ETI.
The P. syringae effectors AvrRps4 and HopA1 cause disruptions of
EDS1 associations with their cognate resistance proteins RPS4 and
RPS6, respectively, at a microsomal location (Bhattacharjee et al.,
2011). The effector AvrRps4 is processed in planta (Sohn et al.,

2009), and although it was deduced from transient overexpression
studies in turnip that the processed C-terminal domain is sufficient
for the triggering of ETI in Arabidopsis, two independent reports
seem to suggest the potential of each of these processed AvrRps4
domains as interactors with EDS1 and an RPS4-containing com-
plex (Bhattacharjee et al., 2011; Heidrich et al., 2011). The precise
functions of these interactions require further experimentation to
resolve the issue. The observation that EDS1 is enriched in the
nucleus during ETI (García et al., 2010) may indicate that EDS1
liberated from tight molecular associations in the cytoplasm is a
candidate transcriptional modulator. However, as seen with resis-
tance proteins, forced nuclear enrichment of EDS1 alone does not
trigger ETI. Therefore, biochemical functions of these unrelated
effectors on EDS1 need to be identified.

Plasma membrane localized RPM1 and RPS2 resistance pro-
teins guard RIN4, a common virulence target of the unrelated
effectors AvrB, AvrRpm1, and AvrRpt2 (Nimchuk et al., 2000;
Axtell and Staskawicz, 2003; Jin et al., 2003). The cysteine pro-
tease activity of AvrRpt2 cleaves RIN4 (Axtell et al., 2003; Axtell
and Staskawicz, 2003; Mackey et al., 2003), whereas in the pres-
ence of AvrB or AvrRpm1 the host kinase RIPK phosphorylates
RIN4 (Liu et al., 2011). These alterations of RIN4 trigger activation
of the cognate resistance proteins RPS2 and RPM1, respectively.
Since a nuclear pool of activated RPM1 is not necessary for func-
tion (Gao et al., 2011), other components of these systems are
likely mediators for nuclear signaling. Indeed, Holt et al. (2002)
identified the interaction of specific RPM1 domains with a DNA-
binding protein, TIP49a. TIP49a functions as a negative regulator
of plant defense, and mammalian orthologs of TIP49a are involved
in transcriptional regulation (Kanemaki et al., 1997). The interac-
tion between RPM1 and AtTIP49a is suggestive of a cytoplasmic
sequestering of negative regulators by an activated resistance
protein. The AvrRpt2/RPS2 system also identifies a putative com-
ponent that may act in transcriptional reprogramming. Unlike
the membrane-tethered native RIN4, the AvrRpt2-processed RIN4
fragments are soluble (Afzal et al., 2011). Whether these fragments
translocate to the nucleus or remain cytoplasmic, and whether
other host proteins that are substrates for AvrRpt2 protease func-
tion mediate gene induction regulation, requires further study.
Perhaps strengthening the above notion is the observation that
modified RIN4 proteins which are deficient in plasma membrane
binding constitutively activate ETI-type responses (Afzal et al.,
2011).

Other post-translational modifications of proteins, for exam-
ple through ubiquitination or SUMOylation, are likely to play
a role in ETI as well. Ubiquitination has been observed to reg-
ulate resistance protein stability (Goritschnig et al., 2007; Tasset
et al., 2010), and its roles in plant immunity have been reviewed
recently (Cheng and Li, 2012; Furlan et al., 2012). The covalent
attachment of SMALL UBIQUITIN-LIKE MODIFIER (SUMO) to
a protein also affects its function (Mazur and van den Burg, 2012;
Cubenas-Potts and Matunis, 2013). SUMOylation, predominantly
a nuclear event, can also modulate activities of transcription fac-
tors, co-repressors such as the TPL family, and DNA-modifying
components such as histones (Gill, 2005). Interestingly, a muta-
tion in Arabidopsis SIZ1, which encodes an E3 SUMO ligase,
induces constitutive salicylic acid (SA)-mediated defenses and
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confers enhanced resistance toward P. syringae DC3000 (Lee et al.,
2007). Key proteins associated with innate immunity such as
PAD4, EDS1, SAG101, and NPR1 contain putative SUMOylation
motifs (Lee et al., 2007). Whether these proteins are real substrates
for SUMO-modifications and whether the SUMOylation machin-
ery is recruited in ETI remains to be determined. Multiple effectors
from Xanthomonas campestris pv. vesicatoria such as XopD and
AvrXv4 either possess de-sumoylation activities or cause a global
decrease in the host SUMOylation profile (Hotson and Mudgett,
2004; Roden et al., 2004). This strongly suggests that SUMOylation
regulates aspects of nuclear ETI signaling.

CHROMATIN CHANGES AT IMMUNE-RELATED GENES
Post-translational modifications on core histones include methyla-
tion, acetylation, and phosphorylation (Fuchs et al., 2006; Pfluger
and Wagner, 2007). The chromosomal environments these modi-
fications create for ETI-responsive genes may determine the speed
and amplitude of defense responses. Indeed, several chromatin-
related proteins are often identified in plant defenses (Ma et al.,
2011). Typical post-translational modifications mark nucleosome
assemblies of defense regulators (Alvarez et al., 2010). Immune-
responsive genes such as WRKY genes and PR1 are maintained
in a “ready” state via the extent of methylation status (tri-, in
contrast to mono- or di-methylation) on histone H3 at lysine4
position (H3K4me3; Santos-Rosa et al., 2002). Although primed,

actual transcription of these genes is regulated by specialized
activators and repressors. For example, ARABIDOPSIS TRITHO-
RAX1 (ATX1) encodes a histone methyltransferase that directly
affects the H3K4 methylation intensity of several WRKY promot-
ers and governs the expression of several TCP transcription factor
and NBS-LRR genes, including CSA1 and SNC1 (Alvarez-Venegas
et al., 2006, 2007). Interestingly, ATX1 is mostly cytoplasmic
in un-elicited cells, suggesting that directed transcriptional re-
programming during ETI may involve coordinated recruitment
of specific histone methyltransferases and nuclear transcription
factors. SET (Su(var)3-9, E(z) and trithoraxconserved) DOMAIN
GROUP8 (SDG8), another histone methyltransferase, was recently
reported to affect the H3K4me3 status-dependent expression of an
RPS4-like resistance gene (Palma et al., 2010).

Histone acetylation and deacetylation modulate transcrip-
tional efficiencies through activation and repression, respectively
(Wang et al., 2010; Shakespear et al., 2011). A histone deacety-
lase (HDAC),REDUCED POTASSIUM DEPENDENCY3/HDAC1
from maize, confers resistance to the fungus Cochliobolus
(Helminthosporium) carbonum through an unknown mechanism
(Johal and Briggs, 1992). Arabidopsis AtHDAC19 has been iden-
tified to interact with several WRKYs and co-repressors (Zhou
et al., 2005; Kim et al., 2008; Zhu et al., 2010). More recently,
the Arabidopsis Elongator complex subunit 2 (ELP2), an active
histone acetylase, was reported to influence the expression kinetics

FIGURE 1 | Schematic diagram of possible cytoplasmic and nuclear

routes to transcriptome reprogramming by an activated resistance

protein. Detection of avirulence effector (Avr) presence or activities by a
cognate resistance protein (R) may drive nuclear-directed signaling through
multiple processes. (A) The cytoplasmic events may include, (1) direct
nuclear translocation of effector-modified virulence targets or of the
activated resistance protein itself, or (2) nuclear enrichment of a
transcription-modulating protein sequestered in an organelle (O) or
tethered to a membrane (e.g., ER). (B) Nuclear-targeted effector

activities that trigger ETI may include, (3) promoting the stability of
the sensing R protein itself or of a transcriptional activator, or (4) enabling
an activated R protein either to sequester a negative regulator from or to
recruit a positive regulator of defense to its target genes, or (5) altering
chromatin by Avr- or R-mediated recruitment of chromatin remodeling
components that further facilitate access by transcription factors.
The strength and success of an effective ETI likely is determined by a tight
co-ordination and possible synergism between some or all of the above
processes.
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of EDS1, PAD4, and PR1, likely through the histone acetyla-
tion/methylation status (Wang et al., 2013). Further implication of
histone acetylation in immune responses can also be extrapolated
from the PopP2 acetyltransferase activity in RRS1-R elicitation
(Tasset et al., 2010). Although this activity of PopP2, which
may include histones as substrates, would likely aim to suppress
defense, stabilized RRS1 as a result of the effector presence may
hijack the mechanism to induce resistance-associated genes.

CONCLUSION
An increasing amount of experimental evidence suggests a dif-
ference primarily in amplitude between PTI and ETI responses.
To date, most identified modulators of transcription affect both
branches of immunity, thereby clouding the interpretation of PTI-
versus ETI-specific effects. Because in many cases effector activity
and not simply the effector presence itself is the primary stim-
ulus of ETI, an inherent deficiency of the routinely used yeast
two-hybrid approach to identify resistance-associated proteins is
the failure to incorporate this effector function. We have high-
lighted several potential areas where the function of an effector
modulates the function of a host protein (Figure 1). Perhaps a
more refined and directed approach is necessary in our search
for transcriptional components. Stable lines expressing chemical-
inducible effectors in susceptible and resistant hosts may provide
one such PTI-independent system for proteomic approaches
to identify differentially regulated nuclear proteins. In addi-
tion, genome-wide chromatin immunoprecipitation-sequencing

(ChIP-seq)-based determination of transcriptional associations of
activated NB-LRRs can be undertaken with this system. In parallel,
precise biochemical functions of effectors need to be elucidated to
understand host protein modifications. The vast interconnected
ETI signaling web is clearly complex. Furthermore, any effec-
tor likely targets multiple host proteins. Whether robust and
rapid ETI-associated transcriptome changes require synergistic
signaling from different sectors or whether specific perturbations
are direct transcriptional triggers needs to be elucidated. Tran-
scriptional alterations require the coordinated actions of multiple
DNA remodeling components, including specific transcription-
associated proteins. Unraveling how nuclear signaling is achieved
post-effector sensing and how this signal impinges on chro-
matin components is therefore necessary to understand and apply
sustained resistance-developing technologies.
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