
“fpls-04-00388” — 2013/9/27 — 17:17 — page 1 — #1

PERSPECTIVE ARTICLE
published: 01 October 2013

doi: 10.3389/fpls.2013.00388

A more complete picture of metal hyperaccumulation
through next-generation sequencing technologies
Nathalie Verbruggen1*, Marc Hanikenne 2,3 and Stephan Clemens 4,5

1 Plant Physiology and Molecular Genetics, Bioengineering School, Faculty of Sciences, Université Libre de Bruxelles, Brussels, Belgium
2 Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering, Department of Life Sciences, University of Liège, Liège, Belgium
3 PhytoSYSTEMS, University of Liège, Liège, Belgium
4 Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
5 Bayreuth Center for Molecular Biosciences, University of Bayreuth, Bayreuth, Germany

Edited by:

Mark G. M. Aarts, Wageningen
University, Netherlands

Reviewed by:

Sylvain Merlot, Centre National de la
Recherche Scientifique, France
Arja I. Tervahauta, University of
Eastern Finland, Finland

*Correspondence:

Nathalie Verbruggen, Plant Physiology
and molecular Genetics,
Bioengineering School, Faculty of
Sciences, Université Libre de
Bruxelles, Campus Plaine CP 242,
Boulevard du Triomphe, B-1050
Brussels, Belgium
e-mail: nverbru@ulb.ac.be

The mechanistic understanding of metal hyperaccumulation has benefitted immensely from
the use of molecular genetics tools developed for Arabidopsis thaliana. The revolution in
DNA sequencing will enable even greater strides in the near future, this time not restricted
to the family Brassicaceae. Reference genomes are within reach for many ecologically
interesting species including heterozygous outbreeders. They will allow deep RNA-seq
transcriptome studies and the re-sequencing of contrasting individuals to unravel the
genetic basis of phenotypic variation. Cell-type specific transcriptome analyses, which will
be essential for the dissection of metal translocation pathways in hyperaccumulators, can
be achieved through the combination of RNA-seq and translatome approaches. Affordable
high-resolution genotyping of many individuals enables the elucidation of quantitative trait
loci in intra- and interspecific crosses as well as through genome-wide association mapping
across large panels of accessions. Furthermore, genome-wide scans have the power
to detect loci under recent selection. Together these approaches will lead to a detailed
understanding of the evolutionary path towards the emergence of hyperaccumulation
traits.
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INTRODUCTION
To maintain concentrations of essential metals within physiolog-
ical limits and to cope with toxic non-essential metals, plants
possess a sophisticated and tightly controlled metal homeostasis
network that insures the balance between metal uptake, chelation,
distribution and storage processes. A limited number of plant
species (∼500), the so-called metal hyperaccumulators, are able
to colonize toxic soils heavily enriched or contaminated by metals,
and display extraordinary leaf metal accumulation (Verbruggen
et al., 2009; Krämer, 2010; Hanikenne and Nouet, 2011; van der
Ent et al., 2013). Metal hyperaccumulators represent an extreme
configuration of the metal homeostasis network. Understanding
hyperaccumulation offers the promise of uncovering key nodes of
the metal homeostasis network whose alterations can drastically
modify metal accumulation and tolerance in plants. This knowl-
edge could then be used to develop biotechnological tools for
biofortification and phytoremediation strategies. Further, metal
hyperaccumulators allow acquiring basic knowledge on the mech-
anisms underlying environmental adaptation and the evolution of
complex traits.

Most of the current genetic, molecular and genomic data on
metal hyperaccumulation have been obtained in Arabidopsis hal-
leri and Noccaea caerulescens (for recent reviews, see Verbruggen
et al., 2009; Krämer, 2010; Hanikenne and Nouet, 2011; Rascio and
Navari-Izzo, 2011). The success of A. halleri and N. caerulescens as
model systems essentially stems from the fact that they are close
relatives of Arabidopsis thaliana. Research with these two model

species has been greatly enhanced by taking advantage of the many
resources developed for A. thaliana, including the availability of
genetic maps, genome sequence, and commercial microarrays.
Thus, molecular knowledge about metal hyperaccumulation and
tolerance is currently limited both in terms of taxonomic diversity
(Brassicaceae) and metal specificity (mostly Zn and Cd, and Ni for
N. caerulescens).

Research on A. halleri and N. caerulescens has been following
similar trends than in A. thaliana going from a candidate gene
approach in a limited number of ecotypes to genome-wide studies
in a vast range of natural accessions. However, it still lags behind
because of the lack of reference genomes, limited potential to
isolate mutants and the relatively low efficiency of plant trans-
formation. We now have the opportunity to substantially deepen
our understanding of A. halleri and N. caerulescens. Importantly,
we can also go beyond these model species as the applications of
next-generation sequencing technologies (NGS) will allow look-
ing at a more diverse sampling of species outside the Brassicaceae
(see other contributions in this issue). Tapping into natural diver-
sity of plant phenotypes will reveal commonalities and differences
in the adaptation of the metal homeostasis networks that support
hyperaccumulation and tolerance.

In this perspective note, we will highlight what can be expected
from the use of NGS technologies to examine metal tolerance
and accumulation mechanisms in hyperaccumulators (Figure 1).
To simplify matters NGS refers here to all current and emerg-
ing high-throughput sequencing techniques. We will focus on A.
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FIGURE 1 | Approaches enabled by NGS and expected to fundamentally

advance the mechanistic understanding of metal hyperaccumulation.

Shown are different strategies (in italics) to unravel evolution, genetics and
molecular physiology of metal hyperaccumulation. The lower panel in each

box lists the main experimental techniques and resources required. The
plant in the background is an A. halleri individual growing at a heavily Zn-
and Pb-contaminated site. Image courtesy of Ricardo Stein, Romário Melo
(University of Bochum) and Stephan Höreth (University of Bayreuth).

halleri and N. caerulescens as examples, but as mentioned above,
similar approaches will become tractable for many other species
once reference genomes and transcriptomes become available.
The feasibility of assembling a genome sequence de novo with-
out prior genetic information using NGS has been demonstrated
for Thellungiella parvula (Dassanayake et al., 2011).

EVOLUTION OF THE HYPERACCUMULATION TRAIT
EVOLUTION OF HYPERACCUMULATOR SPECIES
The selective advantage procured by hyperaccumulation is notori-
ously difficult to infer a posteriori and the driving force for the spe-
ciation of hyperaccumulators remains unclear. Non-metallicolous
populations were shown to have evolved before colonization of
metalliferous sites in A. halleri (Pauwels et al., 2005). It is thus
postulated that the capacity to accumulate trace elements in the
shoots afforded evolutionary advantage to A. halleri prior adap-
tation to contaminated soils. The most common hypothesis is
the defense against herbivory and/or pathogens (see Boyd, 2007
and other contributions in this issue). Development of tools in
population genomics will allow testing hypotheses and estimat-
ing the chronology of genetic changes underlying speciation and
adaptation to metalliferous soils.

Zn hyperaccumulation and Cd hypertolerance seem to be con-
stitutive traits in A. halleri and N. caerulescens at the species level
(Verbruggen et al., 2009; Krämer, 2010; Hanikenne and Nouet,
2011). Both species present advantages as well as disadvantages

when examining the genetic basis of those traits. As A. halleri is
interfertile with A. lyrata ssp. petraea, species-specific traits have
been analysed in segregating populations of interspecific crosses
(Courbot et al., 2007; Willems et al., 2007, 2010; Frérot et al.,
2010). As a self-incompatible outbreeder species, however, genome
assembly may prove more difficult for A. halleri due to extensive
heterozygosity. On the contrary, in N. caerulescens, genetic analy-
ses are more difficult, because there is no interfertile related species
that is Zn sensitive, Cd sensitive and a Zn non-accumulator, but as
a self-pollinating species, N. caerulescens might be more amenable
to genome assembly from NGS reads.

Comparative transcriptome studies of the two model species
and related non-accumulators revealed a common set of metal
homeostasis characteristics associated with constitutive hyperac-
cumulation traits. Several genes encoding metal transporters and
enzymes involved in chelator biosynthesis are constitutively more
strongly expressed in both hyperaccumulators (reviewed in Ver-
bruggen et al., 2009; Krämer, 2010; Hanikenne and Nouet, 2011)
indicating partially convergent evolution due to constraints of the
metal homeostasis network (Hanikenne and Nouet, 2011).

Among the many highly expressed genes in A. halleri, classi-
cal genetic analysis, which provided a first view of the genetic
architecture of hyperaccumulation traits, allowed also to pinpoint
candidate genes with eventually the cloning and the validation
of HMA4, a major gene for Zn and Cd tolerance and accu-
mulation (Courbot et al., 2007; Hanikenne et al., 2008). HMA4
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encodes a Zn, Cd pump at the plasma membrane and is involved
in metal translocation and redistribution (Hussain et al., 2004;
Courbot et al., 2007; Hanikenne et al., 2008; Wong and Cobbett,
2009; Craciun et al., 2012). It represents an interesting case of con-
vergent genetic evolution (Stern and Orgogozo, 2009). While A.
halleri and N. caerulescens diverged at least 40 MY ago, HMA4 is
overexpressed in both species compared to non-hyperaccumulator
species, due to gene tandem duplication and deregulated expres-
sion (Hanikenne et al., 2008; Ó Lochlainn et al., 2011; Craciun
et al., 2012). Interestingly, Bayesian inference suggested that speci-
ation between A. halleri and A. lyrata, which diverged much more
recently than A. halleri and N. caerulescens, closely coincided with
HMA4 duplication (Roux et al., 2011).

Nevertheless, convergent phenotypic evolution, like hyperac-
cumulation, may not be associated with (completely) convergent
genotypic evolution in plant genomes. Thurber et al. (2013) have
for example shown that weedy (or red) rice has been selected
for weed-adaptive traits through shared but also different genetic
mechanisms. It is therefore interesting to investigate whether
HMA4 is also a hotspot gene in the adaptation of other Brassi-
caceae than A. halleri and N. caerulescens and of non-Brassicaceae
Zn or Cd hyperaccumulators. More generally speaking, it will be
important to determine to what extent the other differentially reg-
ulated metal homeostasis factors, e.g., MTP1 (Dräger et al., 2004;
Shahzad et al., 2010), ZIP or NAS genes (Krämer et al., 2007), are
universally part of the apparent hyperaccumulation syndrome. In
other words, this may shed light on the functional constraints in
the metal homeostasis network.

So far, hyperaccumulation has been assumed to rely essentially
on an alteration of normal metal homeostasis but not on novel
functions. The postulate is that genes involved in hyperaccumu-
lation and hypertolerance are not species-specific or novel, but
rather differently regulated, compared to non-hyperaccumulator
species. This hypothesis will be verified when reference genomes
are available, which will allow discovering species-specific genes
and open the way for their functional characterization.

INTRASPECIFIC VARIATION
The analysis of intraspecific natural variation in wild species has
begun to elucidate the molecular bases of phenotypic differences in
relation to local plant adaptation to distinct natural environments,
and to determine the ecological and evolutionary processes that
maintain this variation (Mitchell-Olds et al., 2007; Alonso-Blanco
et al., 2009; Prasad et al., 2012).

While Zn hyperaccumulation and Cd hypertolerance seem
to be constitutive in A. halleri and N. caerulescens, extensive
intraspecific variation is observed for both traits (Verbruggen et al.,
2009; Krämer, 2010; Hanikenne and Nouet, 2011). This applies
even more to the non-constitutive hyperaccumulation characters
(Cd, Ni). This pronounced intraspecific variation of metal toler-
ance and accumulation is associated with either different edaphic
origins, in particular between metalliferous (i.e., metal contam-
inated) and non-metalliferous (i.e., non-contaminated) sites, or
with phylogeographic patterns (Pauwels et al., 2005, 2012). In
A. halleri, recent adaptations to anthropogenic metallic excess
may have independently occurred within distinct phylogeographic
units, which potentially have involved the evolution of a variety

of genetic mechanisms (Pauwels et al., 2012). In this context, link-
ing contrasting phenotypes to specific genetic changes should help
identifying genes underlying variation and determining how the
tolerance and hyperaccumulation traits evolved. Functional poly-
morphisms are known to appear in all types of genes and gene
regions, and they may have multiple mutational causes: changes
in coding or regulatory regions, epigenetics (see below). Environ-
mental interactions (e.g., with microorganisms in the rhizosphere)
may also account for part of the phenotypic variation (Rajkumar
et al., 2009; Farinati et al., 2011).

A few genes have already been shown to potentially explain part
of the differences between populations of N. caerulescens. Exam-
ples include HMA3, a tonoplastic pump involved in vacuolar metal
sequestration (Ueno et al., 2011) and HMA4 (Ó Lochlainn et al.,
2011; Craciun et al., 2012). In both cases differences in expres-
sion levels between populations were related to differences in
gene copy number. Thus, genes assumed to be involved in the
evolution of the trait at the species level may also be account-
ing for intraspecific variation. Again, reference genome-enabled
RNA-seq-based transcriptome studies of individuals with con-
trasting hyperaccumulation and/or hypertolerance will greatly
facilitate the dissection of intraspecific variation and help deter-
mine whether this early conclusion can be generalized. NGS
technologies also allow (i) direct comparison of inter-individual
differences through the re-sequencing of genomes, and (ii) to
accelerate genetic approaches as well as to increase their power.

While the time and expense required for the collection of geno-
type data were critical considerations in the past, the increasing
availability of inexpensive DNA genotyping-by-sequencing meth-
ods (for instance, Elshire et al., 2011; Kumar et al., 2012) make
genome-wide association (GWA) mapping of metal tolerance
and accumulation a realistic method. GWA mapping using 349
A. thaliana accessions recently allowed identification of HMA3
polymorphism as the main cause of natural variation in Cd leaf
accumulation (Chao et al., 2012). Collections of A. halleri and N.
caerulesens have been identified and partly already physiologically
characterized (Reeves and Brooks, 1983; Meerts and Van Isacker,
1997; Escarré et al., 2000; Lombi et al., 2000; Bert et al., 2002;
Assunção et al., 2003; Roosens et al., 2003). The number of individ-
uals was however not sufficient for GWA studies. Ongoing efforts
to establish larger genotype collections of A. halleri (U. Krämer
and S. Clemens, unpublished results) and of N. caerulescens (M.
Aarts, unpublished results) will provide a basis for GWA map-
ping and constitute invaluable material to address the evolution of
hyperaccumulation.

Limitations of GWA studies can come from (i) population
structure, that is, not all investigated individuals being equally
distantly related to each other; (ii) allelic heterogeneity, that is,
alleles at a single locus with similar effects on gene function hav-
ing arisen repeatedly; or (iii) complex genetic architecture, where
many different genes affect the same trait (Weigel, 2012). Sta-
tistical methods to control for population structure have been
developed to reduce the inflation of false positive associations
but an alternative is the complementary use of traditional linkage
mapping in controlled crosses (Brachi et al., 2010 and references
therein). Another possible limitation is that the extent of link-
age disequilibrium is unknown for hyperaccumulators. It will be
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important to select germplasm that maximizes allelic diversity and
the power to dissect hyperaccumulation traits. This will reveal
the variation in the genetic architecture of the metal tolerance or
accumulation traits and the existence of other cases of conver-
gent evolution. NGS methods will in addition greatly facilitate
genotyping (see Egan et al., 2012) and allow high genome cover-
age of accessions or progeny from intraspecific crosses, thereby
improve the detection and molecular elucidation of QTLs. Cur-
rently Illumina HiSeq is the most widely used NGS platform but
the read lengths are still relatively short (up to 150 bp). Other
platforms have higher mean read length (for example Pacific Bio-
sciences, Roche/454 GS FLX or Ion Torrent; Egan et al., 2012;
Quail et al., 2012), which facilitate subsequent bioinformatics
analysis.

DETECTION OF LOCI UNDER SELECTION
In a genome-scan using a limited set of AFLP markers, Meyer et al.
(2009) examined patterns of polymorphisms across metallicolous
and non-metallicolous populations of A. halleri and identified
loci under divergent selection that are linked either to the con-
stitutive tolerance of the species or to the recent colonization of
metalliferous sites. Linking allele frequencies across the genome
with environmental conditions should allow identifying the spe-
cific alleles that were targets of selection, and selective forces that
shaped the hyperaccumulator genomes during evolution. Such
approaches will soon be greatly empowered when very large sets
of single nucleotide polymorphisms (SNPs, for a recent review
on SNP discovery through NGS see Kumar et al., 2012) become
available through re-sequencing approaches. This is exemplified
by a genome-wide FST (fixation index which estimates genetic
differentiation among populations) scan based on whole genome
re-sequencing of pooled A. lyrata individuals from distinct popu-
lations which allowed the identification of loci associated with the
adaptation to serpentine soils (Turner et al., 2010).

Detailed analyses of nucleotide sequence diversity of (candi-
date) genes involved in metal tolerance and accumulation across
hyperaccumulator populations may as well reveal whether selec-
tion acted on these genes. For example, a population genetics
analysis of nucleotide polymorphism patterns of HMA4 in A. hal-
leri provided evidence for (i) positive selection on cis-regulatory
sequences and/or copy number expansion resulting in a selec-
tive sweep and (ii) ectopic gene conversion in coding sequences of
HMA4, together substantiating selection for increased gene dosage
(Hanikenne et al., 2013).

HIGHER RESOLUTION TRANSCRIPTOME ANALYSIS
For A. halleri and N. caerulescens, transcriptomic studies using
Arabidopsis DNA chips have revealed the importance of metal
transport and detoxification processes in hyperaccumulation (see
above, Krämer et al., 2007). The application of NGS to RNA-seq
provides much deeper and more precise expression analysis. At
least 20% of plant genes undergo alternative splicing, in which a
single pre-mRNA can be processed into diverse transcripts, often
encoding protein isoforms with distinct or even antagonistic func-
tions (Egan et al., 2012). NGS RNA-seq enables to study splicing
on a whole genome scale and assess how splicing may differ in
hyperaccumulators and non-hyperaccumulators.

Read mapping to the A. thaliana (for A. halleri and N.
caerulescens) or A. lyrata (for A. halleri) genomes and de novo
transcriptome assemblies will provide very valuable resources.
Moreover, the A. halleri and N. caerulescens genomes will
soon become available enabling even more powerful analyses.
Cross-species comparison of gene expression using RNA-seq,
allowing to compare mechanisms of adaptation, is more chal-
lenging than within-species analyses. The availability of reference
genomes/transcriptomes for each species combined with a clear
picture of orthology relationships between genes should allow this
using standard normalization procedures.

However, global transcriptomic approaches fail to provide
a picture of the tissue-specific complexity. Metal accumulation
is expected to vary between tissues and hence analysis at the
organ level may mask contrasted expression levels or the role
of specialized cell types. Organ-level analysis of transcriptomes
is thus insufficient to dissect the network of metal chelator and
transporter activities that mediates high fluxes and efficient hyper-
accumulation of certain metals while maintaining homeostasis of
other metals such as Fe, Cu, or Mn, whose trafficking pathways
are at least partly shared with those of the hyperaccumulated met-
als. The importance of cell-type specific analysis is immediately
evident also from the fact that metals are differentially accumu-
lated in different cell types, e.g., mesophyll vs. epidermis cells in
leaves of hyperaccumulators (White and Broadley, 2011). Further-
more, work in A. thaliana has clearly demonstrated the existence of
cell type-specific transcriptional stress responses (Dinneny et al.,
2008). For instance, transcriptome analysis with cellular resolu-
tion suggested a central role of genes expressed in the pericycle
in controlling Fe deficiency responses, some of which are directly
dependent on metal hyperaccumulation candidate genes such as
FRD3 and NAS4 (Long et al., 2010).

With the exception of labor-intensive laser capture microdis-
section, current methods for cell type-specific analysis require
stable transformation (Long, 2011). They are all based on the
use of promoters driving gene expression specifically in distinct
cell types. Fluorescence-activated cell sorting (FACS) uses spe-
cific labeling of cell types through the expression of fluorescent
proteins (Birnbaum et al., 2003). Targeted affinity-purification of
nuclei is enabled by the expression of a biotinylated nuclear enve-
lope protein (INTACT) and allows mRNA and chromatin analysis
(Deal and Henikoff, 2011; Bailey-Serres, 2013). The latter method,
as well as the isolation of polysomal RNA via the expression of a
tagged ribosomal protein (TRAP; Mustroph et al., 2009) to analyze
the translatome, i.e., the actively translated mRNAs, circumvent
the problems associated with protoplasting prior to isolation.
On the other hand, unlike FACS these methods do not permit
downstream analyses of cellular proteomes or metabolomes.

Stable transformation of hyperaccumulators has to date been
successfully developed and applied only in A. halleri (Hanikenne
et al., 2008; Deinlein et al., 2012). Provided gains in transformation
efficiency are achieved the methods developed for A. thaliana can
be directly adopted including the use of A. thaliana promoters
since they are very likely to work in a similar fashion in the relative
A. halleri. Application of these methods for hyperaccumulator
species phylogenetically distant from A. thaliana will additionally
require the isolation of suitable promoters.
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Finally, it is evident that transcriptomics data need to be vali-
dated at the protein level. It is well known from studies in model
organisms like S. cerevisiae that expression of the transcriptome
and proteome are poorly correlated (Gygi et al., 1999; Beyer et al.,
2004). Correlations between transcript or protein abundance and
the trait (metal tolerance and/or abundance) eventually need to
be validated by functional studies as for HMA4 (Hanikenne et al.,
2008) and NAS2 (Deinlein et al., 2012) in A. halleri.

EPIGENOME
Eukaryotic DNA is associated with proteins to form chromatin
whose modification affects transcription. The epigenome cor-
responds to modified DNA and chromatin states that do not
affect the DNA sequence. This includes DNA methylation, his-
tone modification and nucleosome density (Cedar and Bergman,
2009; Hamilton and Robin Buell, 2012). Changes of epigenet-
ics marks integrate both developmental and environmental cues,
which regulate gene expression and ultimately create cell-specific
or stimulus-specific expression patterns.

Genome-wide assessment of the cytosine methylation status
can be achieved by treating genomic DNA with sodium bisul-
fite (BS) that converts unmethylated cytosine residues into uracils
(Cokus et al., 2008; Lister et al., 2008, 2009; Becker et al., 2011).
The BS-treated DNA with unchanged methylated cytosines can
be deep-sequenced and the reads mapped on a reference genome
(Chen and Pellegrini, 2012). Histone modifications can be ana-
lyzed by chromatin immunoprecipitation coupled to sequencing
(ChIP-Seq; Furey, 2012). The relatively low cost of sequencing
coupled with the ability for assembly of the (epi)genome and the
transcriptome as well as quantification of transcript abundances
allows now to investigate, for example, whether environmental
exposure to metals alters the epigenome and how epigenetic status
determines gene expression. A growing body of evidence indi-
cates that environmental factors alter epigenetic marks, which
in turn changes gene expression and results in new phenotypes
(for reviews, see Brower, 2011; Herceg and Vaissière, 2011; Feil
and Fraga, 2012). For example, transcriptomic heat response in A.
thaliana is controlled by an alternative histone (Kumar and Wigge,

2010). Although it has been poorly examined so far, alteration
of epigenetic gene regulation might thus represent an important
source of phenotypic plasticity in plant stress responses (Mirouze
and Paszkowski, 2011), in particular in response to environmental
exposure to toxic metal concentrations.

CONCLUSIONS
Using combined genomics, population genetics and quantitative
genetics approaches (Figure 1) allow deepening our understand-
ing of several essential biological and evolutionary questions that
have been addressed in this note:

(i) Do functional constraints limit the adaptation of metal
homeostasis networks in metal hyperaccumulators and what
is the extent of convergent evolution? Does looking at a
more diverse set of taxa will allow discovering alternative
evolutionary paths?

(ii) Does the evolution of hyperaccumulation require novel gene
functions?

(iii) What is the extent of interference and independence of
pathways for the different metals in hyperaccumulators?

(iv) Is ecological adaptation to toxic soils at the onset of specia-
tion?

(v) What are the mechanisms underlying intraspecific variation
of tolerance and accumulation in hyperaccumulators?

(vi) What is the cellular specificity of gene expression and how
does it correlate with protein abundance?
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