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Recent data indicate that nucleotides are released into the extracellular matrix during plant
cell growth, and that these extracellular nucleotides induce signaling changes that can,
in a dose-dependent manner, increase or decrease the cell growth. After activation of a
presumed receptor, the earliest signaling change induced by extracellular nucleotides is
an increase in the concentration of cytosolic Ca2+, but rapidly following this change is an
increase in the cellular level of nitric oxide (NO). In Arabidopsis, mutants deficient in nitrate
reductase activity (nia1nia2) have drastically reduced nitric oxide production and cannot
transduce the effects of applied nucleotides into growth changes. Both increased levels
of extracellular nucleotides and increased NO production inhibit auxin transport and inhibit
growth, and these effects are potentially due to disruption of the localization and/or function
of auxin transport facilitators. However, because NO- and auxin-induced signaling pathways
can intersect at multiple points, there may be diverse ways by which the induction of NO
by extracellular ATP could modulate auxin signaling and thus influence growth.This review
will discuss these optional mechanisms and suggest possible regulatory routes based on
current experimental data and predictive computational analyses.
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INTRODUCTION
For over 40 years scientists have known that the main energy
currency of the cell, ATP, is sometimes released by cells into
their extracellular matrix (ECM). In the ECM, ATP functions
not primarily to drive energy-dependent reactions, but primar-
ily to bind to receptors and activate signaling changes (Khakh
and Burnstock, 2009). The data on this topic have come almost
exclusively from studies on animals. However, during the last
10 years an increasing number of reports have demonstrated
that signaling changes induced by extracellular ATP (eATP) and
other nucleoside triphosphates and diphosphates are a com-
mon phenomenon also in plants (Tanaka et al., 2010; Clark and
Roux, 2011). In animals, these signaling changes are known
to begin with the activation of well-characterized receptors,
termed purinoceptors, which fall into two main categories: P2X,
which are ion-channel linked, and P2Y, which are G-protein
linked. In plants, too, there is strong indirect evidence that
there may be at least two kinds of plasma-membrane-localized
receptors for extracellular nucleotides (Demidchik et al., 2009,
2011), but their primary structures are clearly different from
the animal purinoceptors, and as yet their identity is unknown
(Clark and Roux, 2011).

The processes that release ATP and other nucleotides into the
ECM are similar in plants and animals and include secretion,
active transport, and wound or pathogen events that break the
plasma membrane or make it leaky (Roux and Steinebrunner,
2007). Animals and plants also use similar enzymes to limit the

build-up of eATP, primarily ecto-nucleoside triphosphate diphos-
phohydrolases (ecto-NTPDases) or ectoapyrases, which remove
the terminal phosphate from nucleoside triphosphate diphospho-
hydrolases (NTPs) and nucleoside diphosphohydrolases (NDPs;
Knowles, 2011).

Although the search to identify plant purinoceptors has not
yet yielded definitive results, the signaling changes induced
by extracellular nucleotides in animals and plants are already
known to be remarkably similar. They begin with a rapid
increase in the concentration of free cytosolic calcium ([Ca2+]cyt;
Demidchik et al., 2003, 2009, 2011; Jeter et al., 2004; Burn-
stock et al., 2010). Afterward, early downstream changes include
increased production of superoxide and NO (D’Andrea et al., 2008;
Clark and Roux, 2009; Harada, 2010; Tanaka et al., 2010). Sueldo
et al. (2010) reported that eATP-induced NO production is down-
stream of phosphatidic acid production in suspension cultured
tomato cells. In plants, mutants that are suppressed in their abil-
ity to make either superoxide or nitric oxide are insensitive to the
effects of applied nucleotides on cell growth (Clark et al., 2010)
and stomatal aperture (Clark et al., 2011; Hao et al., 2012), which
suggest these signaling intermediates are needed to convert eATP
receptor activation to physiological changes in cells.

This review focuses on the requirement for NO production to
transduce extracellular nucleotide signals into growth and other
physiological changes in plants. Because there is strong evidence
linking extracellular nucleotide effects to changes in auxin trans-
port (Tang et al., 2003; Liu et al., 2012), the question of how
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eATP-induced changes in NO production could alter auxin trans-
port becomes especially relevant. As noted by Liu et al. (2012),
current evidence favors post-transcriptional events as being key to
changing the molecular activities that drive auxin transport, so this
review will especially highlight the role of NO in protein modifica-
tions that could rapidly alter either the transport or concentration
of auxin in cells.

KINETICS OF SIGNALING RESPONSES INDUCED BY
EXTRACELLULAR NUCLEOTIDES
Two of the better-documented occasions of ATP release by plant
cells are wounding (Song et al., 2006) and cell expansion (Kim
et al., 2006; Wu et al., 2007; Clark et al., 2011). Wounding, of
course, breaks the plasma membrane and allows the leakage of
cytoplasmic ATP (concentration ∼mM; Gout et al., 1992) into
the ECM. Cell expansion is thought to require the delivery of
secretory vesicles to the plasma membrane, and, based on the ani-
mal literature, these vesicles can carry up to mM ATP and release
it into the ECM upon their fusion with the plasma membrane
(Lazarowski et al., 2003). Alternatively, plant cells also release ATP
when their membranes are stretched or mechanically stimulated
(Jeter et al., 2004; Weerasinghe et al., 2009), and membranes are
certainly stretched when plant cells expand. Both wounding and
cell expansion would release ATP quickly, and once in the ECM,
ATP, and ADP can induce calcium transport changes and thus ini-
tiate signal transduction in less than 30 s (Demidchik et al., 2009,
2011).

Downstream of the increase in [Ca2+]cyt induced by extracel-
lular nucleotides are increases in the production of both reactive
oxygen species (ROS; e.g., superoxide and H2O2; Kim et al.,
2006; Song et al., 2006; Tonon et al., 2010; Sun et al., 2012) and
nitric oxide (Foresi et al., 2007; Wu and Wu, 2008; Reichler et al.,
2009; Clark et al., 2010, 2011). Mutant analyses indicate that
both of these changes are needed for the growth and other cel-
lular changes induced by extracellular nucleotides (Clark et al.,
2010, 2011). Mutants null for the D/F subunit of NADPH oxi-
dase, which catalyzes superoxide production, or nia1nia2 double
knockouts, which are null for two genes encoding the nitrate
reductase enzyme that accounts for significant fraction of the
NO production in root hairs (Clark et al., 2010), do not show
growth or stomatal aperture responses to applied nucleotides
(Reichler et al., 2009; Clark et al., 2010, 2011). Two recently
described signaling mechanisms that might link the eATP-induced
increase in [Ca2+]cyt and the activation of NADPH oxidase activ-
ity should be evaluated; a calmodulin-domain protein kinase
(CDPK), which can activate NADPH oxidase by phosphoryla-
tion (Yoshioka et al., 2011), and the NO-mediated regulation of
NADOH oxidase by S-nitrosylation (Yoshioka et al., 2011; Yun
et al., 2011). The link between increased [Ca2+]cyt and activa-
tion of nitrate reductase is not as well documented, although
this enzyme activity may also be regulated by phosphorylation
(Lea et al., 2004). Wu and Wu (2008) found that eATPγS must
induce an increase [Ca2+]cyt in hairy roots in order to stimulate
NO production. Of course, there are other sources of NO pro-
duction in plants in addition to nitrate reductase, and there is
evidence for cross-talk between these enzymes and Ca2+ signaling
(Besson-Bard et al., 2008).

Given the rapidity of eATP release by cells and the need for
NO production to transduce the eATP signal into cellular changes,
it is surprising that until now the earliest detection of NO pro-
duction is 10 min or more after applied nucleotide treatment
(Reichler et al., 2009; Clark et al., 2010). This delayed detection
may reflect limitations of the assay methods more than actual
delay in NO production. Nonetheless, knowing more precisely the
kinetics of nucleotide-induced NO production will be important
for determining whether NO plays a primary or secondary role
in mediating the broad effects of eATP on plant cell growth and
physiology, and specifically on auxin transport.

NITRIC OXIDE-DEPENDENT PROTEIN MODIFICATIONS
Two widely studied post-translational modifications (PTMs) that
result from an increase in NO are nitration of tyrosine residues
generating modified 3-nitrotyrosines, and nitrosylation of cysteine
residues (S-nitrosylation). Thorough reviews of the proteomic
approaches used in plants to identify NO signaling factors (Bykova
and Rampitsch, 2013; Jacques et al., 2013; Kovacs and Lindermayr,
2013) and reviews of the various signaling pathways in plants that
employ NO-dependent PTM (Astier and Lindermayr, 2012; Cor-
pas et al., 2013) were recently published, so we will not attempt
to replicate these. We will focus on what mechanisms link NO-
mediated modifications to eATP effects on plant growth generally
and auxin transport specifically.

To understand this regulation it will be important to confi-
dently identify which proteins are S-nitrosylated or Tyr-nitrated,
and then evaluate if these modifications play a central role in
growth control. A standard method for detecting S-nitrosylation
of proteins, called the biotin-switch method, relies on NO donor
treatment of samples prior to identification of modified proteins
(Jaffrey et al., 2001). S-nitrosylation of Arabidopsis proteins was
detected by this method after NO-donor treatment in cell sus-
pension culture extracts and leaf tissue (Lindermayr et al., 2005).
More recently, a modification of this method that does not rely
on application of an NO donor was used to identify endogenously
S-nitrosylated Arabidopsis proteins, again from cell culture (Fares
et al., 2011). Detailed analysis of specific plant proteins modified
by S-nitrosylation demonstrates that this modification can reg-
ulate protein activity (Astier and Lindermayr, 2012; Feng et al.,
2013).

The nitrotyrosine PTM has been experimentally detected in
proteins of only a few plant systems to date, including 2-week-old
Arabidopsis whole seedlings (Lozano-Juste et al., 2011), hypocotyls
of 9-day-old sunflowers (Chaki et al., 2009), and pea plants at sev-
eral different stages of development (Begara-Morales et al., 2013).
Each of these studies has demonstrated a regulatory role for the
Tyr-nitration observed in at least one protein, as well as identified
numerous other targets for this PTM.

Several Arabidopsis proteins that have been experimentally
shown to be S-nitrosylated or Tyr-nitrated (Lindermayr et al.,
2005; Fares et al., 2011; Lozano-Juste et al., 2011) may play a role in
eATP signaling pathways because they function in auxin transport
or signaling, in ROS signaling, or in wall extensibility. Included in
the small number of plant proteins whose regulation by NO has
been experimentally validated is the auxin receptor TIR1 (Terrile
et al., 2012). This finding indicates that the regulation of growth
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and development by auxin includes, in at least one case, NO-
dependent PTM of a key protein in auxin signaling, and supports
the need to evaluate additional players in this signaling pathway as
targets for these regulatory modifications.

There is growing evidence for cross-talk between NO and
auxin signaling pathways in root growth and morphology and
in responses to iron deficiency (Simontacchi et al., 2013). For
example, auxin and NO are both implicated in heavy metal
stress responses (Peto et al., 2011; Xu et al., 2011; Kolbert et al.,
2012) and in the formation of both adventitious and lateral roots
(Pagnussat et al., 2003, 2004; Correa-Aragunde et al., 2004; Lanteri
et al., 2006, 2008; Guo et al., 2008; Liao et al., 2011; Yadav et al.,
2011; Li and Jia,2013). Increasing NO levels in Arabidopsis primary
roots results in a decrease of the polar auxin transport mediated
by PIN-FORMED 1 (PIN1), and consequent growth inhibition
(Fernandez-Marcos et al., 2011). More recently, auxin was sug-
gested to control root morphology by inducing S-denitrosylation
of an ascorbate peroxidase enzyme involved in redox regulation
(Correa-Aragunde et al., 2013). Nitric oxide also plays a role in

auxin-induced stomatal opening (She and Song, 2006). Spec-
ulatively, this auxin–NO connection could apply also to effects
mediated by extracellular nucleotides, as both eATP and apyrase
expression influence auxin transport (Tang et al., 2003; Liu et al.,
2012), and both regulate stomatal aperture (Clark et al., 2011) and
cell growth (Clark et al., 2010) in an NO-dependent manner.

SPECULATION ON POSSIBLE ROLES FOR NITRIC-OXIDE
BASED POST-TRANSLATIONAL REGULATION IN eATP
RESPONSES
Unraveling the specific steps of any signaling pathway is a compli-
cated task, because signaling typically occurs in a feedback process
wherein well-characterized steps such as increased [Ca2+]cyt and
protein phosphorylation are the most commonly observed. While
studies have shown that both NO-mediated PTMs mentioned
above are reversible and can induce physical changes to proteins
that regulate their activity (Lindermayr et al., 2005; Lozano-Juste
et al., 2011), another interesting possibility that remains to be stud-
ied is an indirect regulatory role for these modifications. Bykova

Table 1 | Computationally predicted NO mediated modifications of proteins implicated in eATP signaling (Xue et al., 2010; Liu et al., 2011). Only

predictions included in the “high” threshold category are included here (10% FDR).

Gene name AGI code S-nitrosylation Tyr-nitration

Position Peptide Position Peptide

PLD1, Phospholipase D α 1 AT3G15730 739 LDPSSLECIEKVNRI 77 EPKNPKWYESFHIYC

618 LEEDPRNYLTFFCLG

803 ILGTKSDYLPPILTT

PLD2, Phospholipase D α 2 AT1G52570 211 KNYEPHRCWEDIFDA 15 GRLHATIYEVDHLHA

739 LDPSSQECIQKVNRV 618 EGEDPRDYLTFFCLG

PLC, Phospholipase C AT5G58670 11 SFKVCFCCVRNFKVK 254 STKPPKEYLQTQISK

226 FGGSLFQCTDETTEC

GPA1, G-protein α Subunit 1 AT2G26300 5 MGLLCSRSRHHT 74 DEGELKSYVPVIHAN

106 NETDSAKYMLSSESI

AGG1, G-protein γ subunit 1 AT3G63420 54 TDIVSTVCEELLSVI None predicted

AGG2, G-protein γ subunit 2 AT3G22942 56 MDNASASCKEFLDSV None predicted

Apyrase 1 At3g04080 322 SGASLDECRRVAINA None predicated

Apyrase 2 At5g18280 None predicted 8 MLNIVGSYPSPAIVT

410 PLEGEDSYVREMYLK

Apyrase 3 At1g14240 None predicted 473 VVTPNSDYNGKSRKY

480 YNGKSRKYLGF

Apyrase 4 At1g14230 54 IIFVIVACVTIALGL 11 SGSDEGVYAWVVANH

342 AAGNFSECRSAAFAM 303 DLSNVAKYKI

Apyrase 5 At1g14250 334 AAGDFTKCRSATLAM None predicted

Apyrase 6 At2g02970 352 AGGNYSQCRSAALTI 40 APSSSSTYTLTKPNS

349 SFQAGGNYSQCRSAA

549 YDLEKGRYIVTRIR

Apyrase 7 At4g19180 None predicted 67 SLQDFSSYHGFDPEE

Proteins AGB1 and GCR1 are not included because neither modification was predicated at any residue.
The position of the cysteine or tyrosine amino acid predicted to be modified is given and indicated in bold.
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and Rampitsch (2013) suggest that these NO-dependent changes
might serve to reversibly occupy an amino acid that could be oth-
erwise modified in a way that would lead to a different activity
change (i.e., phosphorylation, carbonylation, or disulfide bond
formation).

Predictive, sequence-specific models have been developed to
identify sites of cysteine–nitrosylation (Xue et al., 2010) and tyro-
sine nitration (Liu et al., 2011). These algorithms were developed
from K-means clustering methods, and can be used with different
thresholds of reliability, high/medium/low, based on the false dis-
covery rate (FDR; 10%/15%/20%). Like efforts to experimentally
identify the protein modifications directly, these predictive models
are new and still being optimized, but they can be used to identify
potential targets of study for these regulatory modifications.

Apyrase proteins serve to regulate extracellular ATP concen-
tration in animal cells (Plesner, 1995; Gaddie and Kirley, 2010),
and a similar role may exist for these proteins in plant cells.
The Arabidopsis nucleoside triphosphate–diphosphohydrolases
termed apyrase 1 and 2 have been implicated in e-ATP signaling
(Clark et al., 2011; Liu et al., 2012), although they may do so from
a Golgi locale (Chiu et al., 2012; Schiller et al., 2012) rather than

from a plasma membrane site. When ecto-apyrase activity is inhib-
ited by antibodies raised to APY1 and APY2, the [eATP] of media
in which pollen tubes are growing rises several fold and pollen tube
growth is inhibited (Wu et al., 2007). Similarly, when APY1/APY2
expression is suppressed by RNAi in R2-4A mutants, this raises
the [eATP] of the media and inhibits seedling growth (Salmi, Kim
and Roux, unpublished). Although the expression/and or activ-
ity of APY1 and 2 appear to influence [eATP], and sites of [eATP]
release in roots coincide with sites of increased expression of APY1
and APY2 (Roux et al., 2008), it is of course possible that the Golgi
function of APY1 and APY2 could regulate growth independent
of their influence on [eATP]. Theoretically, other members of
the apyrase family could also help regulate [eATP]. At least one
Tyr-nitration or S-nitrosylation site is predicted in the proteins
encoded by each of the seven members of the Arabidopsis thaliana
family of apyrase genes (Table 1; Yang et al., 2013), and these
predictions should be experimentally evaluated.

Nitric oxide production is necessary for the cellular response
to extracellular nucleotides (Clark et al., 2010, 2011). Similarly,
respiratory burst oxidases also play a critical role in mediating plant
responses to eATP (Suzuki et al., 2011). Moreover, the timing of

Table 2 | Computationally predicted NO mediated modifications of known auxin transport proteins (Xue et al., 2010; Liu et al., 2011). Only

predictions included in the “high” threshold category are included here (10% FDR).

Gene name AGI code S-nitrosylation Tyr-nitration

Position Peptide Position Peptide

AUX 1 AT2G38120 467 LFAKCYQCKPAAAAA None predicted

LAX 1 AT5G01240 216 MHHTKSLCLRALVRL None predicted

LAX 2 AT2G21050 None predicted 16 ETVVVGNYVEMEKDG

LAX 3 AT1G77690 None predicted 14 ETVVAGNYLEMEREE

PIN 1 AT1G73590 None predicted 18 MTAMVPLYVAMILAY

480 LIRNPNSYSSLFGIT

PIN 2 AT5G57090 None predicted 18 LAAMVPLYVAMILAY

335 RSMSGELYNNNSVPS

505 LIRNPNTYSSLFGLA

PIN 3 AT1G70940 553 LQPKLIACGNSVATF 498 LIRNPNTYSSLIGLI

PIN 4 AT2G01420 525 LQPKIIACGNSVATF 18 LTAVVPLYVAMILAY

470 LIRNPNTYSSLIGLI

PIN 7 AT1G23080 425 NGLHKLRCNSTAELN None predicted

ABCB 1 AT2G36910 1062 ALVGPSGCGKSSVIS 743 MIKQIDKYCYLLIGL

908 EAKIVRLYTANLEPP

1155 LPEGYKTYVGERGVQ

1256 KNHPDGIYARMIQLQ

ABCB 4 AT2G47000 918 IRTVASFCAEDKVMN 277 NKHLVTAYKAGVIEG

1208 QEALDQACSGRTSIV

ABCB 19 AT3G28860 98 VYLGLVVCFSSYAEI 240 QVRTVYSYVGESKAL

1215 STIRGVDCIGVIQDG 595 LIAKSGAYASLIRFQ

TIR1 AT3G62980 516 RSLWMSSCSVSFGAC 450 LTDKVFEYIGTYAKK

551 PDSRPESCPVERVFI

The position of the cysteine or tyrosine amino acid predicted to be modified is given and indicated in bold.
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e-ATP-induced production of NO and ROS is similar (both within
∼30–45 min; Clark et al., 2010, 2011). To the extent that NO and
ROS are induced at about the same time and are both needed for
plants to respond to eATP, these results suggest the possibility that
peroxynitirite could serve to induce Tyr-nitration and thus serve
as an important regulator of its own production in a feedback
mechanism.

Peroxynitrite (ONOO−) is a potent oxidant and nitrating
species that can be formed by the reaction of NO and O−

2 when
both of these signaling molecules are present at the same time
in the same cell. Plant biologists are just beginning to assay the
role of peroxynitrite in plant growth and development (Leitner
et al., 2009; Arasimowicz-Jelonek and Floryszak-Wieczorek, 2011;
Vandelle and Delledonne, 2011), and thus far it is implicated in
hypersensitive defense responses (Saito et al., 2006; Leitner et al.,
2009; Gaupels et al., 2011; Bellin et al., 2013) and root development
and senescence (Gaupels et al., 2011; Begara-Morales et al., 2013).
Peroxynitrite can oxidize proteins and membrane lipids causing
cellular damage, and its formation is most likely controlled by the
local production of superoxide (Vandelle and Delledonne, 2011).
Through this peroxynitrite mechanism, oxidation of lipids may
play a role in plant lipid signaling pathways (Sanchez-Calvo et al.,
2013).

Could peroxynitrite help mediate some eATP effects? Chivasa
et al. (2005) have proposed a role for eATP in programmed cell
death, and there is evidence that peroxynitrite may help medi-
ate programmed cell death in plant cells (Serrano et al., 2012a,b).
eATP has also been implicated in plant pathogen responses
(Chivasa et al., 2009), and a signaling role for ONOO− in these
responses has been documented (Saito et al., 2006; Gaupels et al.,
2011). More interesting is the potential role for ONOO− in plant
growth responses to applied eATP. A growth-inhibiting concen-
tration of eATP produces high levels of NO and ROS, while lower,
growth-promoting concentrations of eATP induce low levels of
NO and ROS (Clark et al., 2010). Both situations may lead to
the production of peroxynitrite, which could mediate the growth
regulatory effects of eATP.

Another important target for peroxynitrite-mediated nitra-
tion in animal cells is the second messenger cyclic guanosine
monophosphate (cGMP; Akaike et al., 2010; Sawa et al., 2013).

Recently, a role of nitrated cGMP (8-nitro-cGMP) in Abscisic
acid (ABA)-induced stomatal closing was discovered (Joudoi et al.,
2013). Because ABA-induced stomatal closure can be partially
blocked by mammalian purinoceptor antagonists (Clark et al.,
2011), and treating Arabidopsis leaves with high levels of eATP
induces both NO and ROS, it will be important to determine if
eATP treatment causes nitration of cGMP in guard cells. Recently,
cGMP was shown to promote lateral root formation in Arabidop-
sis by regulating polar auxin transport (Li and Jia, 2013). Thus, a
plausible speculation is that nitration of cGMP might also play an
important role in regulating auxin transport.

The effects of exogenously applied ATP and ATP analogs are
pronounced in root development (Lew and Dearnaley, 2000; Tang
et al., 2003; Wu and Wu, 2008; Wu et al., 2008). Proper localiza-
tion of auxin is necessary for normal root development. In the
apyrase mutants described by Liu et al. (2012) localization of sev-
eral auxin transporters and the abundance of transcripts encoding
these transporters were not altered in plants with inhibited auxin
transport and stunted and altered root anatomy. One mechanism
for this could be regulation of the transporter activity, and NO-
mediated PTMs are likely candidates for this regulation. Several
proteins known to be involved in polar auxin transport have pre-
dicted S-nitrosylation and Tyr-nitration sites (Table 2), and these
predictions should be experimentally evaluated.

CONCLUSION AND FUTURE DIRECTIONS
There is increasing evidence to support a role for NO-mediated
PTMs of proteins in the regulation of plant cellular processes by
eATP. Although numerous plant proteins have been predicted to
undergo these changes and experimentally shown to have them in
various conditions, the regulatory role of these PTMs remains to
be demonstrated in all but a few cases. Given the central role of
auxin in plant growth control, it is likely that the dramatic effects
of extracellular nucleotides on auxin transport account for many
of their effects on plant growth. Thus, a more complete under-
standing of how NO regulates auxin transport, whether by PTM
of auxin transporters or by other mechanisms, will be key to clar-
ifying why eATP-induced NO production is a necessary step in
transducing extracellular nucleotide effects on plant growth and
development.
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