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Over the past two decades a growing body of empirical research has shown that many
ecological processes are mediated by a complex array of indirect interactions occurring
between rhizosphere-inhabiting organisms and those found on aboveground plant parts.
Aboveground–belowground studies have thus far focused on elucidating processes and
underlying mechanisms that mediate the behavior and performance of invertebrates in
opposite ecosystem compartments. Less is known about genetic variation in plant traits
such as defense as that may be driven by above- and belowground trophic interactions.
For instance, although our understanding of genetic variation in aboveground plant traits
and its effects on community-level interactions is well developed, little is known about
the importance of aboveground–belowground interactions in driving this variation. Plant
traits may have evolved in response to selection pressures from above- and below-
ground interactions from antagonists and mutualists. Here, we discuss gaps in our
understanding of genetic variation in plant-related traits as they relate to aboveground and
belowground multitrophic interactions. When metabolic resources are limiting, multiple
attacks by antagonists in both domains may lead to trade-offs. In nature, these trade-
offs may critically depend upon their effects on plant fitness. Natural enemies of
herbivores may also influence selection for different traits via top–down control. At larger
scales these interactions may generate evolutionary “hotspots” where the expression
of various plant traits is the result of strong reciprocal selection via direct and indirect
interactions. The role of abiotic factors in driving genetic variation in plant traits is also
discussed.
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INTRODUCTION
Of the many traits possessed by plants that are closely tied with
their growth, survival and fitness, those relating to defence have
been especially well studied over many years (see reviews by Kar-
ban and Baldwin, 1997; Schoonhoven et al., 2005). Defences in
plants are often divided into direct and indirect defenses. Direct
defenses are aimed directly at the attackers, such as herbivores,
and include morphological (e.g., trichomes or sticky glands)
and chemical (toxic secondary compounds) traits that interfere
with colonization, feeding, and development of the herbivore.
For example, toxic secondary compounds can act as feeding
deterrents or negatively alter the performance of a herbivore
through increased mortality, slower growth rates, or reduced fit-
ness (Schoonhoven et al., 2005). Indirect defenses are aimed at
promoting the efficiency of natural enemies, such as predators
or parasitic wasps (parasitoids) that kill the herbivores and thus
reduce their damage to the plant. Indirect defenses may also be

morphological (e.g., domatia) or chemical (e.g., the production
of attractive volatiles, energy sources). Both direct and indirect
defenses are expressed constitutively in many plants, meaning
that they are always expressed whereas in others they are often
inducible, meaning that initial levels are low but increase after
attack (Karban and Baldwin, 1997). These traits are often species-
(or even genotype) specific, and are assumed to depend on the pre-
dictability of attacks from antagonists and susceptibility of plants
to these attacks.

Unlike most terrestrial biota, the vast majority of plants occupy
two connected “compartments” – the open air and soil – that
differ in many biotic and abiotic properties. Aboveground plant
structures include stems, branches, leaves, shoots, flowers, and
seeds, whereas the soil is dominated by the root system. These
differing plant structures facilitate interactions between biotic
communities that rarely come into direct physical contact with
one another (Soler et al., 2008). In both the soil and aboveground
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compartments many organisms are associated with the plants,
ranging from vertebrates and arthropods to micro-organisms.
These organisms may have beneficial, neutral, or negative effects
on plant fitness. Plants have evolved a range of strategies to opti-
mize associations with beneficial organisms and/or to prevent
or reduce the negative effect of attack from their antagonists.
Roots may harbor many antagonists and therefore it is impor-
tant that plants do not only defend themselves in the shoots but
in their roots as well (Bezemer and van Dam, 2005; Van Dam,
2009). In a seminal paper, Ehrlich and Raven (1964) argued that
plants and insects are involved in a sequential co-evolutionary
arms race in which insect herbivores evolve strategies to deal
with plant defences which are countered by new or stronger
defences by the plant over evolutionary time. However, at the
time their paper was written, the importance of this arms race
was restricted to interactions between plants and insects in an
aboveground framework. As we will explain here, this “arms
race” can also involve interactions between roots and root her-
bivores as well as indirect interactions involving root and shoot
tissues and herbivores feeding on plant structures in opposite
compartments.

In this paper we discuss studies investigating the processes
and underlying mechanisms that underpin multitrophic interac-
tions with plants in the above- and belowground compartments
(hereafter AG and BG). In particular, we broach a topic that has
thus far received little attention in the empirical literature: fac-
tors generating and maintaining intraspecific variation in plant
defense-related traits that are mediated through AG and BG
trophic interactions. Plant defense traits often have a genetic basis.
The effects of genetic variation in these plant traits on interactions
with higher trophic level organisms have primarily been studied
for AG plant parts (Crutsinger et al., 2006; Johnson, 2008; Newton
et al., 2009a; Utsumi et al., 2011). In the last decade, complex-
ity and ecological realism in experimental designs has increased.
This also includes genetic variation in the interacting AG and BG
compartments and its effect on interactions with associated organ-
isms (Rasmann et al., 2009; Vandegehuchte et al., 2011). With this
paper we make a plea for a more holistic approach with respect
to genetic variation and AG–BG interactions. First we give a brief
overview of the literature on plant-mediated multitrophic inter-
actions in the AG and BG compartments and the hypotheses and
underlying mechanisms that emerged from these studies. We then
discuss the role of genetic variation in plant traits in shaping inter-
actions with associated organisms. As an example, we give an
overview of current knowledge on inter- and intraspecific AG–
BG variation in plant defense traits and their consequences for
interactions between insects and plant species in the large family
Brassicaceae. We explore how different selection pressures at the
species level may lead to the expression of variation in defense
traits in roots and shoots using wild cabbage (Brassica oleracea)
as our model species. We provide new data on root chemical
defenses, show how this compares with better-studied AG defenses
in this species, and highlight the importance of studying genetic
variation in plant traits that play a role in AG and BG interac-
tions with associated organisms in natural systems in order to
explain the evolution and maintenance of variation among these
traits.

PLANT MEDIATED ABOVE- AND BELOWGROUND INTERACTIONS:
PATTERNS AND HYPOTHESES
Most studies involving plants and their defense traits in a bi- or
multitrophic framework have focused on the AG compartment
(reviewed by Price et al., 1980; Karban and Baldwin, 1997; Dicke,
1999; Harvey, 2005; Schoonhoven et al., 2005; Ode, 2006; Hopkins
et al., 2009). These studies have provided a wealth of data showing
that direct and indirect plant defenses can profoundly influence
mechanisms governing species-level interactions and the structure
of food webs up to (and perhaps even beyond) the fourth trophic
level (Harvey et al., 2004, 2007; Bukovinszky et al., 2008). However,
it is important to stress that plant-related traits, including defense,
can also strongly influence biotic interactions BG (see reviews by
Van der Putten et al., 2001; Van Dam et al., 2003; Bezemer and van
Dam, 2005; Van Dam, 2009; Van Dam and Heil, 2011; Soler et al.,
2012).

Given that plants may have to respond to variable stres-
sors in both the AG and BG compartments, it is somewhat
surprising that the importance and significance of interactions
between these compartments has only emerged in the past 20 years
or so. For example, studies by Gange and Brown (1989) and
Masters and Brown (1992) showed that root herbivory by a
root chewing insect was positively correlated with the pupal
weight of a leaf mining insect. Masters (1995) found that leaf
mining AG significantly decreased the performance of chafer lar-
vae feeding BG, but at the same time root herbivory increased
the pupal weight of the leaf miner. This positive influence
of root feeding can also influence higher trophic levels. For
instance, the abundance of a seed predator and two of its para-
sitoids were highest on thistle plants subjected to root herbivory
(Masters et al., 2001).

It is now known that organisms in both compartments can
indirectly influence each other through changes in the biomass,
nutritional quality (primary metabolites) and chemical defense
(secondary metabolites) of plants (Bezemer and van Dam, 2005;
Van Ruijven et al., 2005). Recently, Kostenko et al. (2012) reported
that in ragwort (Jacobaea vulgaris) herbivory by AG- and BG-
feeding herbivores affects the soil fungal community, which in
turn affects plant defense, biomass, and multitrophic interac-
tions in ragwort plants in successive generations in different
years. In many plant taxa secondary plant compounds are pro-
duced in the roots and then transported to AG plant structures
(Karban and Baldwin, 1997). Besides defense compounds, levels
of nutritional metabolites, such as amino acids and carbohy-
drates, are often also affected by damage (Bezemer and van
Dam, 2005). The capacity of roots to absorb nutrients and the
chemical composition of the soil are strongly affected by soil
organisms. This affects the growth rate of plants, which is impor-
tant in structuring plant communities and associated organisms
(Van Dam and Heil, 2011).

Differences in physical characteristics of the AG and BG com-
partments may have profound effects on the spatial and temporal
processes and scales that shape interactions between plants and
associated organisms across several trophic levels. It is generally
far easier for plant antagonists and mutualists to disperse in the
AG than in the BG domain, since movement is clearly much
more limited BG as a result of the simple physical difference
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between air and soil. For example, in the AG compartment,
herbivores generally have easy access to plant parts, such as shoots
and flowers, possibly resulting in intense short-term selection
for defense-related (or in the case of pollinators, attraction-
based) traits (Zangerl and Berenbaum, 1993; Majetic et al., 2009;
Parachnowitsch et al., 2012). As a result of these differences in
the scale of AG–BG interactions, plants may have evolved variable
responses to organisms in each compartment based on time differ-
entials in the temporal sequences (and/or accumulative effects) of
these antagonists. This temporal differential may lead many plants
to evolve strong AG defenses whereas they have evolved to “toler-
ate” their BG antagonists until some critical threshold is reached
whereby a plant population is forced to relocate to a new habitat
(the “above-ground selection, below-ground dispersal hypothe-
sis”; Van der Putten et al., 2001; Bezemer et al., 2005). The release
and perception of chemical cues, such as herbivore-induced plant
volatiles (HIPVs), may also reflect differences between the AG and
BG compartments. The rate and extent of transport of these cues
are likely to be reduced BG. Furthermore concentrations of unspe-
cialized and more specialized compounds may also differ between
AG and BG plant tissues, and the dependency of chemical com-
munication on water-soluble compounds is likely to be greater BG
(Van der Putten et al., 2001).

Interactions between consumers in the AG and BG compart-
ments have been very well studied in recent years (Wurst, 2010;
Anderson et al., 2011; Soler et al., 2012, 2013). Many of these stud-
ies have focused on elucidating mechanisms involving AG and
BG organisms sharing the same plant (Erb et al., 2008). These
interactions may vary in terms of complexity and may involve
organisms from several trophic levels and functional groups or
feeding guilds. Moreover, different genotypes of one plant species
can differ in their response to BG or AG organisms (Wurst et al.,
2008; Harvey et al., 2011), and BG and AG organisms themselves
can respond differentially to plant genotypes (Crutsinger et al.,
2006; Johnson, 2008; Kabouw et al., 2011; Utsumi et al., 2011).
The variable responses both in the plant and the herbivore make it
difficult to predict the outcome of AG–BG plant-mediated interac-
tions. For example, although plant genotype correlated positively
with AG and BG invertebrate colonization, correlations between
the AG and BG invertebrate groups themselves were negative, sug-
gesting that the two groups selected plant genotype differentially
(Vandegehuchte et al., 2011).

The importance of higher trophic levels on herbivore-plant
interactions was recognized first by Price et al. (1980). Since
AG–BG interactions may occur between organisms across several
different feeding guilds and species, it is not surprising to find that
the outcomes of these interactions may vary substantially from one
association to another. Most AG–BG interaction experiments to
date have focused on the effect of BG organisms on AG organisms,
but there are also some studies that have looked at the effect of AG
on BG (or both; for a more in-depth discussion, see reviews by
Soler et al., 2012, 2013). Plant-mediated AG–BG interactions may
be decidedly non-linear, whereby small scale interactions between
a plant and one type of organism can affect entire AG and BG
food webs and communities associated with that plant (Bardgett
and Wardle, 2003; Wardle et al., 2004, 2005; De Deyn et al., 2007;
Gerber et al., 2007; Heil, 2011).

Several hypotheses have been proposed on the underlying
mechanisms determining plant-mediated AG–BG interactions.
The stress response hypothesis states that the removal of root
biomass by root feeding organisms causes a similar response as
drought stress (Masters et al., 1993). This results in an accu-
mulation of soluble nitrogen and carbon in aboveground plant
parts, thus increasing the nutritional quality of the plant for
AG herbivores (Masters and Brown, 1997). By contrast, the
defense induction hypothesis posits that herbivores in the opposite
compartments negatively influence each other through induc-
tion of toxic secondary plant compounds (Bezemer et al., 2003;
Bezemer and van Dam, 2005). Because these compounds are
often stored in the cells, phloem feeders will be less exposed to
inducible toxic compounds, perhaps explaining why root feed-
ers often negatively influence the performance of leaf chewers but
not that of aphids. On the other hand, AG herbivores may neg-
atively affect the growth and development of BG herbivores by
reducing the availability of carbohydrates in the roots (Van der
Putten et al., 2001). Using cotton plants, Bezemer et al. (2003)
found no effect of previous feeding by a leaf chewing caterpillar
Spodoptera exigua on the performance of root feeding Agriotes lin-
eatus larvae. On the other hand, they found that root feeding by
wireworms negatively affected the performance of S. exigua. Wurst
et al. (2006) looked at the effect of two soil organisms on primary
and secondary metabolites in cabbage and found that foliar con-
centrations of glucosinolates, secondary metabolites characteristic
for brassicaceous plants, were affected by these organisms. Earth-
worms decreased the concentration of glucoiberin in the plant
shoots and interactions between earthworms and root-knot nema-
todes in turn affected concentrations of glucoraphanin. This may
have an influence on AG herbivores, since glucoiberin can act as
a feeding and oviposition stimulant, providing support for the
defense induction hypothesis (Wurst et al., 2006). Another study
also found a negative impact of root feeding on the oviposition
and feeding behavior of an aboveground herbivore (Anderson
et al., 2011). More studies showed that root herbivory, through
reduced plant quality, negatively affected the performance of AG
herbivores, parasitoids and even hyperparasitoids (Van Dam et al.,
2004a; Soler et al., 2005). AG herbivory by caterpillars of the large
cabbage white butterfly, Pieris brassicae, negatively affected per-
formance of a root feeding herbivore, the cabbage root fly, Delia
radicum, and its endoparasitoid, Trybliographa rapae (Soler et al.,
2007a). Infestation of pepper plants with whiteflies elicited a BG
defense response, resulting in reduced infection when exposed
to AG and BG bacterial pathogens, whilst positively affecting
the association of plant roots with beneficial micro-organisms
(Yang et al., 2011).

Not only are plant-mediated AG–BG interactions modified by
the feeding activity of arthropods, but also by the composition of
the soil micro-fauna. A meta-analysis of studies investigating the
effect of mycorrhizal fungi on the performance of insect herbi-
vores showed that the mycorrhizal status of host plants is often
ignored in studies, despite the fact that mycorrhizal fungi can
induce morphological, physiological, and biochemical changes
and thus may influence plant quality for herbivores (Koricheva
et al., 2009). In general, mycorrhizal fungi provide plants with
nutrients and water and in return receive carbohydrates from the
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plant. The meta-analysis also revealed that phloem feeders ben-
efited from mycorrhiza, whereas mesophyll feeders did not. The
effect of dietary specialization in combination with feeding mode
was only significant for the chewing and not for sucking suck-
ing herbivores: specialist chewing herbivores performed better on
plants colonized by mycorrhiza, whereas generalist chewing her-
bivores performed more poorly. In addition, mycorrhiza affected
chewing herbivores negatively when these herbivores were feeding
on the roots (Koricheva et al., 2009).

Bezemer et al. (2005) showed that the soil community com-
position can influence AG multitrophic interactions by affecting
plant nutritional quality. Inoculation with nematodes negatively
affected aphid offspring production, and aphid population size
was lowest in microcosms with both nematodes and microor-
ganism. The reverse was found for the aphid parasitoids which
performed best in microcosms with both nematodes and microor-
ganisms (Bezemer et al., 2005). These examples clearly illustrate
that there are many different outcomes that may be generated by
AG–BG interactions.

DEFINING DIFFERENT TYPES OF GENETIC VARIATION
Genetic variation can be studied at various levels of organization,
from the expression of genes at the molecular level to varia-
tion in traits at the organismal level. Here, we have focused on
genetic variation at the level of the individual plant. According
to Whitham et al. (2003), in order to better understand interac-
tions between species and communities, genetic variation should
be divided in three classes: (1) genetic variation within single
populations of the same species, (2) genetic variation between
different populations of the same species, and (3) genetic vari-
ation among different species. Genetic variation is known to be
expressed in many different plant traits, including morphology,
phenology, primary and secondary chemistry. The expression of
specific secondary metabolites is often taxonomically constrained
(Schoonhoven et al., 2005). For example, different plant fam-
ilies are often characterized by their own classes of secondary
metabolites, e.g., alkaloids in the Solaneceae, benzoxazinoids in
the Poaceae, and glucosinolates in the Brassicaceae.

Intra-specific genetic variation in plant AG defense traits and
its effects on the behavior and/or development of herbivores
and their natural enemies in both lab and field studies has been
well studied. In particular, much is known about this field of
research in cultivated and wild plant species in the Brassicales,
which includes cabbages, mustards, and related crops and their
wild relatives. This includes Arabidopsis thaliana (Bidart-Bouzat
and Kliebenstein, 2008; Wentzell and Kliebenstein, 2008), Bras-
sica nigra (Lankau and Strauss, 2007, 2008), B. rapa (Pilson,
1996, 2000), Raphanus raphanistrum (Agrawal et al., 2002), and
both wild (Harvey et al., 2007, 2011; Gols et al., 2008a,b; New-
ton et al., 2009a,b) and cultivated (Poelman et al., 2008; Kos et al.,
2011) B. oleracea. These studies and others with different plant
taxa have generated a wealth of mechanistic data showing the
reciprocal effects of genetic variation in AG plant defense traits
on consumers up the food chain, as well as both biotic and
abiotic factors that may be driving this variation (Crutsinger
et al., 2006; Johnson, 2008; Newton et al., 2009a; Utsumi et al.,
2011).

Genetic variation is usually based on trade-offs involving the
costs and benefits of retaining certain traits when metabolic
resources are limiting (Stearns, 1992). For example, trade-offs
may occur in resource allocation between defense traits and
growth (e.g., competitive ability). This has been reported in a
number of invasive plants when released from their co-evolved
native enemies (e.g., pathogens and herbivores) in their new
ranges. In this situation, plants quickly reallocate metabolic
resources from defense to growth, meaning that they are able to
out-compete native vegetation (Wolfe et al., 2004; Zangerl and
Berenbaum, 2005). This rapid switch from defense to growth
supports the predictions of the “enemy-release” and “evolu-
tion of increased competitive ability” hypotheses (Maron and
Vila, 2001; Keane and Crawley, 2002; Colautti et al., 2004;
Joshi and Vrieling, 2005). Within the group of plant defense
traits, there are also numerous trade-offs. The different defense
traits of plants may conflict because of their energy demand
(Van der Putten et al., 2001).

Storing valuable resources in the roots can make a plant less
attractive for AG herbivores, but it will make the roots more
attractive to BG herbivores. Re-allocating resources from roots to
shoots and leaves may affect resistance to AG herbivory, but also
means limited capacity of the roots to establish/maintain mutu-
alisms with BG microorganisms (Heil, 2011). Among populations,
different plant traits can be selected for, depending on the local
conditions. The resulting local adaptation means that individual
plants have a higher fitness at their home site compared to other
sites inhabited by the same species (Kalske et al., 2012). Trade-offs
in local adaptation can be caused by limited resources, alloca-
tion costs, or ecological or genetic constraints (Kalske et al., 2012).
Thus far, trade-offs in various defense related traits in plants in
response to combined AG and BG biotic interactions has received
little attention, and therefore is a fertile area for future research
(but see Vandegehuchte et al., 2011). It is important to keep in
mind that various plant traits are not necessarily costly to main-
tain or, conversely, only have weak (or no) effects on plant fitness,
in which case it is unlikely that adaptation will occur.

GENETIC VARIATION IN DEFENSE AND OTHER TRAITS IN PLANTS
Evolution can only take place when natural selection acts on
genetic variation in heritable traits that affect fitness (Whitham
et al., 2003; Hughes et al., 2008). Without heritable phenotypic
variation, there is no adaptive evolution possible. It is there-
fore important to determine what factors generate and main-
tain genetic variation within and between different populations
(Siepielski and Benkman, 2009). Important sources for genetic
variation in plants are introgression, mutation, and recombina-
tion at the gene level (Siepielski and Benkman, 2009), and also
gene flow and genetic drift at the population level. The fact that
there is heritable trait variation does not automatically mean that
different levels of genetic diversity have predictable ecological con-
sequences, because other factors (e.g., the environment) also play
an important role (Hughes et al., 2008).

Genetic variation in plant defense traits is driven by a number of
biotic and abiotic factors that may well be synergized (see discus-
sion below with wild cabbage to get a better perspective). Much
attention has been paid to trophic interactions between plants
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and their antagonists such as pathogens and herbivores, often
in a co-evolutionary framework. Indeed, co-evolutionary the-
ory underpins our understanding of intimate consumer-resource
interactions in nature (Pimentel, 1961; Ehrlich and Raven, 1964;
Rosenzweig, 1973; Abrams, 1986; Marrow and Cannings, 1993;
Bonte et al., 2010; de la Peña et al., 2011). Many of the classi-
cal studies on co-evolutionary arms races and adaptive radiation
have explored interactions between insect herbivores and their
food plants (Ehrlich and Raven, 1964; Benson et al., 1975; Beren-
baum and Zangerl, 1992; Hamrick and Godt, 1996; Pilson,
1996, 2000; Janz and Nylin, 1998; Lankau, 2007; Lankau and
Strauss, 2007; Becerra et al., 2009; Cogni and Futuyma, 2009; Car-
mona et al., 2011; Bode and Kessler, 2012; Holeski et al., 2012;
Bernhardsson et al., 2013). More recently it has been argued
that selection for certain traits occurring in a pair-wise fash-
ion are often generated at local or small landscape scales, and
the term evolutionary “hotspots” has been invoked to describe
this phenomenon (Thompson, 2005a). In this situation localized
populations of closely interacting species interact intensively in
small, often isolated patches and thus evolve unique traits that
reflect adaptations to one another: one (the consumer) to exploit
and one (the resource) to resist. Given that selection intensity
can vary depending upon local conditions, evolutionary hotspots
may be distributed over space and time as “geographic mosaics”
(Thompson, 2005a). Thus far, however, discussion of selection
pressures generated in hotspots has focused on the AG domain,
with little effort to determine if and to what extent selection
can occur from combined AG–BG interactions. To study this
it is necessary to measure genetic variation in the expression
of AG–BG plants traits and to determine if they are correlated
(see e.g., Kaplan et al., 2008). Moreover, field studies are needed
to identify and measure qualitative and quantitative differences
in AG and BG communities associated with a plant at differ-
ent spatial and temporal scales. In addition, selection on certain
plants may be characterized by diffuse selection (Strauss and
Irwin, 2004; Vandegehuchte et al., 2011). Alternatively, herbivores
may respond to variation in defense traits without exerting any
selection pressures themselves.

As described above a plethora of studies have examined the
biotic factors driving selection for AG defense traits in plants,
and in particular allelochemistry (Coley et al., 1985; Schoonhoven
et al., 2005). For example, Zangerl and Berenbaum explored
whether herbivores can select for rapid increases in secondary
metabolites (xanthotoxins) in plants, using wild parsnip and its
main herbivore, the parsnip webworm, Depressaria pastinacella
as a model system. This plant species harbors few herbivores in
nature, aside from D. pastinacella, whose larvae attack seeds and
thus may greatly affect plant fitness (Zangerl and Berenbaum,
1993). Wild parsnip has been introduced into various parts of
the world where it has become an invasive pest in some areas
(Berenbaum et al., 1986). In some regions where it has been
introduced, webworms have also been released as a means of
biological control, although in many habitats where the plant is
established these herbivores are still absent. The main secondary
metabolites in P. sativa are furanocoumarins, toxic compounds
found primarily in species of the Apiaceae and Rutacea. Zangerl
et al. (2008) showed that in areas where webworms are absent,

parsnips rapidly responded by reducing investment in chemical
defenses, suggesting that they are costly to maintain (see also
Berenbaum and Zangerl, 2006). However, when webworms were
introduced into regions where parsnips had been established for
some years, the plants rapidly responded by reallocating metabolic
resources to the production of furanocoumarins, showing that
rapid evolutionary responses to chemical defenses are possible
(Berenbaum and Zangerl, 1998).

The role of higher trophic levels, such as predators and par-
asitoids, in driving selection of plant-related traits has received
less attention, although it has been amply demonstrated that
natural enemies can significantly reduce herbivore abundance in
agricultural landscapes (Luck et al., 1988; DeBach and Rosen,
1991). Cropping systems are often characterized by monocul-
tures of plants whose direct chemical defenses have been greatly
reduced as a result of artificial selection via domestication (Gols
and Harvey, 2009). Natural systems are generally much more
complex than agro-ecosystems chemically and structurally. How
important trophic cascades involving insects are, has been the
subject of debate (Hairston et al., 1960; Huntly, 1991; Schmitz
et al., 2000). Evidence is coming to light that investment in costly
plant secondary metabolites can be significantly influenced by the
presence or absence of parasitoids, and that these effects gener-
ate phenotypic mosaics at the landscape-scale. Once again, the
best studied system in which this area has been explored is the
P. sativa–D. pastinacella association. Work by Berenbaum, Ode
and colleagues has found that one parasitoid species, the encyrtid
wasp Copidosoma sosares, devastates D. pastinacella populations
where both species along with the food plant are native in west-
ern and central Europe (Ode et al., 2004; Berenbaum and Zangerl,
2006; Ode, 2006; Lampert et al., 2008). Where all three species
are common in the native range, P. sativa plants are appar-
ently less toxic than in areas of the invasive range where only
the plant and herbivore have been established (Berenbaum and
Zangerl, 2006). However, when plants and herbivores in the inva-
sive range have been reunited with C. sosares, the plants quickly
lower investment into the production of furanocoumarins, pre-
sumably because the parasitoids are again greatly reducing levels
of herbivory (Berenbaum and Zangerl, 2006). Future studies
comparing defense traits in populations of native and invasive
plants in a multitrophic framework incorporating natural ene-
mies offer much promise in better understanding rapid shifts in
traits, such as from defense to growth. More importantly, future
studies need to explore this combining AG and BG compart-
ments, given what we already know about the importance of this
linkage.

Where herbivores might select for high chemical defense lev-
els, competition between plants might select for other plant traits
although some of these may also involve phytotoxins (e.g., in the
case of allelopathy). This is a complex matter, since plants com-
pete not only with other plant species but also with conspecifics.
For example, sinigrin produced by B. nigra is allelopathic and
retards the germination and growth of wild oat and wild barley
(Tawaha and Turk, 2003; Turk and Tawaha, 2003). Lankau and
Strauss (2008) stated that, due to the costs of trait maintenance, a
trait that improves interspecific competition will at the same time
reduce intraspecific competition. Sinigrin is costly to produce and
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functions not only in competition with other plants but also as a
defense compound against herbivores and pathogens.

In B. nigra there is a negative genetic trade-off between inter-
and intraspecific competitive ability (Lankau and Strauss, 2008).
When competing with different plant species, genotypes that pro-
duced high concentrations of sinigrin were strong competitors.
However, in competition with conspecifics, these genotypes did
poorly because there were no benefits to be gained from producing
high concentrations of sinigrin (Lankau and Strauss, 2008; Lankau
et al., 2011). While interspecific competition is primarily influ-
enced by the allelopathic and antimycorrhizal effects of sinigrin,
intraspecific competition is based on resource capture (Lankau
and Strauss, 2007). Lankau and Strauss (2008) also found that the
assembly of plant and herbivore species present in a community
influence selection pressures acting on the production of sinigrin.
Importantly, the identity of the competing plants affected selection
for sinigrin production in the presence of herbivores more than
the number of neighboring plants. Thus, the associated plant and
herbivore community acts as an important and variable selection
pressure on sinigrin in black mustard.

Johnson et al. (2008) studied the effect of plant genotype on
intra-specific competition between evening primrose (Oenothera
biennis) plants. This plant species exhibits heritable variation
in above- and belowground growth and different genotypes
responded differently to competition. Although evening primrose
affected other plants through competition in the greenhouse, it
was found that soil fertility had a much stronger effect and that in
the field, there was no genotypic effect on neighboring plants. They
concluded that in this case environmental variation was a stronger
determinant of competition than plant genotype (Johnson et al.,
2008).

Although this area has been little studied, we argue that interac-
tions between plants and AG and BG organisms may influence the
evolution of traits such as defense against herbivores, attraction
of pollinators, as well as competition between plants for access to
water, nutrients and light. The way these interactions are played
out in natural communities can affect plant fitness. For example,
Poveda et al. (2003) looked at the separate and combined effects
of root and leaf herbivory on plant fitness in charlock mustard,
Sinapis arvensis. Root herbivory marginally increased the flower-
ing period and number of fruits produced when compared with
combined root and leaf herbivory. It was also correlated with a
higher per capita number of flower visits by pollinators (Poveda
et al., 2003). These finding are in contrast with other studies where
a negative effect of root herbivory on plant growth (Gange and
Brown, 1989) or reproduction (Masters et al., 2001) was found,
although in the Poveda et al. (2003) study this may have been
caused by the low number of root herbivores per plant.

Barber et al. (2011) examined the effect of AG and BG herbivory
on the performance of cucumber plants and found that, although
root herbivory positively affected flower visitation by honey bees,
root herbivory had a stronger negative effect on plant reproduc-
tion than leaf herbivory. Moreover, plant growth was reduced by
both leaf and root feeding, whereas flower production was nega-
tively affected by root herbivory resulting in less female flowers.
Maron (1998) studied the effects of AG and BG insect herbivores
on bush lupine and found that they had the potential to impose

strong selection on the plant in several ways: via the suppression
of AG herbivores that increased seed production and via the sup-
pression of BG herbivores that also increased seed production but
which additionally decreased plant mortality. The results of these
experiments shed some light on the complexity of AG–BG inter-
actions and plant fitness and suggest that in terms of selection
regimes the effects may not only be association-specific but also
vary in different populations at the landscape scale.

Not only do herbivores exert selection pressures on plants, but
it also works the other way around. Because plants and special-
ist herbivores are often involved in a co-evolutionary arms race,
anti-herbivore defenses of plants may select for herbivore geno-
types that are best able to deal with those defenses and vice versa
(Kant et al., 2008). For example, spider mites dealing with jas-
monic acid in tomato plants developed three different genotypes
that differentiated in their induction of and resistance to jas-
monic acid-induced defenses (Kant et al., 2008). Some populations
of a perennial herb had associated herbivores that were locally
adapted to their genotype, but in other populations the plants
were adapted to the herbivores (Kalske et al., 2012). It remains to
be determined at larger spatial (=geographical) scales if differ-
ences in combined AG–BG selection pressures can drive genetic
variation in plant responses at the species and population level,
as reflected in the measurement of different traits such as growth
and defense. Moreover, how AG and BG plant responses in com-
bination can drive reciprocal selection in herbivores and perhaps
even their natural enemies is largely unknown (but see Bonte et al.,
2010; Vandegehuchte et al., 2011). Although this infers the expres-
sion of some immensely complex processes that span several to
many links, there is no reason that such effects do not occur in
habitats where there are strong frequency-dependent AG and BG
interactions.

DEFENSE CHEMISTRY IN WILD CABBAGE, Brassica oleracea, AND
RELATED SPECIES
Plant species in the Brassicaceae are well studied with respect to
(genetic) variation in secondary plant chemistry (Halkier and Ger-
shenzon, 2006; Agerbirk and Olsen, 2012) and their interactions
with AG and BG insect herbivores, but also with species in the
third and even the fourth trophic level (Harvey et al., 2003; Soler
et al., 2005, 2007b; Gols and Harvey, 2009; Hopkins et al., 2009).
Secondary metabolites characteristic for plants in this family are
the glucosinolates (hereafter GS). They are sulphur- and nitrogen-
containing plant secondary metabolites that can be divided in
three different classes based on their amino acid origin: aliphatic,
indolyl and aromatic GS (Halkier and Gershenzon, 2006). When
plant tissues are disrupted by for example insect feeding, myrosi-
nase enzymes come into contact with the intact GS, and hydrolyze
them into various hydrolysis products. Especially these GS break-
down products play a role in defenses against various attackers
such as generalist insect herbivores and pathogens (Mithen, 2001).
However, as specialist insect herbivores have evolved efficient
mechanisms to excrete, detoxify or sequester GS (Bridges et al.,
2002; Ratzka et al., 2002; Wittstock et al., 2004; Müller, 2009a),
they may use GS and their breakdown products as stimuli to rec-
ognize host plants for oviposition and feeding (Renwick, 2002;
Renwick et al., 2006; Bidart-Bouzat and Kliebenstein, 2008). Plant
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quality for specialist herbivores is determined by more general
plant characteristics such as levels of primary metabolites and
mechanical traits (Travers-Martin and Müller, 2008).

Various species of Brassicas differ in their GS profiles, both in
AG and BG tissues (Figures 1 and 2). For example, the relative GS
concentrations in AG and BG tissues differ dramatically, with root
concentrations being much higher than shoot concentrations in
Bunias orientalis, these being lower in B. nigra and similar in S.
arvensis (Figure 1B). Usually, levels of GS are lower in BG than in
AG tissues (Van Dam, 2009). Across species, variation in defense
chemistry has been demonstrated to affect the performance of
associated insects (Francis et al., 2001; Müller et al., 2002; Renwick,
2002; Harvey et al., 2003, 2010; Gols et al., 2008c). These dramatic
differences in plant secondary chemistry at the species level may
have implications for the interactions with other organisms in
nature.

Although GS have been shown to play an important role in
protecting plants against generalist insect herbivores (Blau et al.,
1978; Gols et al., 2008a), other studies have shown that this is not
always the case. For example sinalbin, the dominant GS in both AB
and BG tissues in B. orientalis (Figure 1B) appears not to be effec-
tive against feeding by the generalist herbivore Mamestra brassicae
(Harvey and Gols, 2011). Moreover, the high GS concentrations
in BG tissues in this invasive species may play a role in its com-
petitive abilities with other plant species or soil organisms that
negatively affect growth and development of this plant and may
explain its invasion success, but this needs to be tested empiri-
cally (Müller, 2009b). Remarkably, B. orientalis, which is readily
accepted for oviposition, is a poor food plant for all studied spe-
cialist herbivores (Harvey et al., 2010). This result suggests that
other chemicals in B. orientalis render these plants unsuitable for
development of specialist herbivores.

Brassica oleracea is native to the coastlines, especially calcare-
ous cliffs, of Western Europe and is considered the progenitor of
cultivated cabbage (Mitchell and Richards, 1979). In the UK, the
largest populations are on the south-west coast in the counties
Cornwall, Devon, and Dorset (Wichmann et al., 2008). The dis-
tribution of the wild cabbage populations along the Dorset coast
has been very constant over the past 70 years (Wichmann et al.,
2008). These populations have also been the subject in a number
of studies investigating the variation in GS metabolites, as well as
the factors that maintain this variation considering that these pop-
ulations grown often less than 15 km apart. The differences in GS
profiles are most likely caused by divergent abiotic and biotic selec-
tion at the different sites (Mithen et al., 1995; Moyes et al., 2000;
Moyes and Raybould, 2001; Newton et al., 2009a, 2010), although
random processes such as founder effects and genetic drift may
have played a role here as well.

Variation in the expression of GS is not only expressed across,
but also within species. Population of wild cabbage differ consider-
ably in their GS profiles (Figure 2) with concomitant consequences
for the performance of insects in the second and third trophic level
(Gols et al., 2008a; Harvey et al., 2011). Moreover, GS concentra-
tions change in response to herbivory or simulated herbivory (see
also Van Dam et al., 2004b) and population related differences
in induction, although not found here (Figure 2B), have been
reported for the wild cabbage populations when induced by a

FIGURE 1 | Continued
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FIGURE 1 | Continued

(A) Sinapis arvensis (a), Bunias orientalis (b), and Brassica nigra (c).
(B) Mean (n = 10) shoot and root (negative values) glucosinolate levels in
undamaged greenhouse-grown Sinapis arvensis, Bunias orientalis, Brassica
nigra originating from natural growing populations in the Netherlands
(Glucosinolates were classified according to their amino acid origin into
indole, aromatic and aliphatic GS. The dominant GS in S. arvensis and B.
orientalis was the aromatic GS sinalbin, whereas the dominant GS in B.
nigra was the aliphatic GS sinigrin. The root tissues of B. orientalis also
contained relatively high levels of an unknown GS. (see Van Dam et al.,
2004b for analysis methods).

different herbivore Pieris brassicae (Harvey et al., 2011). The vari-
ation in GS concentration appears to be more pronounced in AG
than in BG tissues (Figure 2B). For example, indole GS dominate
the profile in leaf tissues of the Kimmeridge (KIM) population,
whereas leaves sampled from Winspit (WIN) plants contain high
alkenyl GS concentrations. In the roots of the three populations
all GS classes are represented and levels are relative little affected
by induction compared to induction of foliar tissues.

Mithen et al. (1995) suggested that herbivores could act as an
important selective force driving GS variation in the wild cab-
bage populations. However, Moyes et al. (2000) argued that for
herbivores to act as a selection force, the herbivores need to select
individual plants based on their GS profiles. They showed that
there was a potential for host plant selection based on differ-
ences in the GS profiles of neighboring plants in the population
on a small scale, but found no correlation between herbivore
preference and GS profile except for one specialist herbivore
species. They made the point that although laboratory experi-
ments showed that GS influence the performance of herbivores,
there was little evidence that this was also the case in nature
(Moyes et al., 2000). In contrast, Newton et al. (2009a) reported
significant differences in the response of herbivores to aliphatic
GS, both within and between plant populations in the field.
Based on their findings, they concluded that variation in GS
can structure the associated herbivore community (i.e., herbivore
mediated differential selection, Newton et al., 2009a). However,
to demonstrate herbivore-mediated differential selection conclu-
sively, further evidence is required showing that variable attacks
by herbivores in the field have consequences for plant fitness
(Newton et al., 2009a).

The populations along the Atlantic coast of England are known
to be exposed to different abiotic conditions, despite their rela-
tive close proximity to each other. While some populations are
located on high cliffs and thus are fully exposed to the prevailing
wind, others are located in sheltered valleys. This may affect the
colonization of plants by herbivores and their natural enemies,
with populations on the cliffs experiencing low and population in
the valleys experiencing high insect pressures. Soil characteristics
such as clay and water content, soil texture, and nutrient levels
have been reported to differ among the wild cabbage sites (Mithen
et al., 1995; Wichmann et al., 2008). Little is known about the
biotic selection pressures BG that may explain the relative lower
variation in root GS chemistry of the wild cabbage populations.
We currently investigate variation in associated soil communities
at several of the wild cabbage sites in Dorset in order to reveal the
degree of biotic BG variation.

FIGURE 2 | (A) Brassica oleracea. (B) Shoot and root glucosinolate levels
(mean + SE of mean total, n = 4 or 5) of Brassica oleracea plants
originating in Dorset, England from three wild populations located at sites
called Kimmeridge (KIM), Old Harry (OH), and Winspit (WIN), respectively.
Glucosinolates were classified according to their amino acid origin into
indole, aromatic and aliphatic GS. The latter group was further divided into

(Continued)
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FIGURE 2 | Continued

methylsulfinyl, alkenyl, and hydroxyl (=OH) GS. The plants were either
untreated controls (CON), induced with 9 second instar Plutella xylostella
(PLUT) larvae divided over three leaves, induced with 500 μg jasmonic acid
either applied to the roots (RJA) or to the shoots (SJA). Jasmonic acid was
used to simulate herbivory by chewing herbivores (Van Dam et al., 2004b).
Roots and shoot tissues were harvested for GS analysis 7 days after the
induction treatments. Different letter over the bars indicate significant
differences (p < 0.05) in total glucosinolate level between the bars within
each panel (Tukey HSD multiple comparisons among means). Please note
the difference in scaling of the Y-axes. Both population and induction
treatment had a significant effect on total GS levels in wild B. oleracea
(MANOVA, treatment F 6,82 = 5.77, p < 0.001; population F 4,82 = 18.7,
p < 0.001). All classes of GS, as well as total GS concentrations, differed
with population origin in both the roots and the shoots (p < 0.05 for all
analyses). In the shoots, indole GS (F 3,42 = 23.9, p < 0.001) increased in
response to the three induction treatments. Aromatic GS were also affected
by induction treatment (F 3,42 = 3.34, p = 0.03). Only WIN shoots contained
small amounts of aromatic GS and these decreased with shoot induction, P.
xylostella feeding and JA treatment, but increased with root JA application.
In the roots, only indole GS responded significantly to induction treatment
(F 3,42 = 7.57, p < 0.001); JA applied to the roots increased indole GS levels
in these tissues.

The “Geographic Mosaic of Co-Evolution Theory” predicts
that the intensity of selection pressure exerted by herbivores
on plants may vary geographically (Thompson, 2005b). Local
differences in selection pressure may thus result in population-
related variation in the expression of certain traits. The ultimate
question with respect to the wild cabbage populations is what
processes maintain this high level of variation in secondary chem-
istry and potentially other traits and whether this variation is
the consequence of strong selection pressures exerted locally.
In addition, selection pressures may differ with respect to the
AG and BG compartment. In other words, spatial heterogene-
ity in defense traits may be expressed differentially in AG and
BG tissues as a result of differences in selection pressures in the
two compartments. Moreover, the third trophic level as a selec-
tion force BG should be included as well (Price et al., 1980). In
agricultural fields, cabbage root flies (Delia radicum) cause con-
siderable damage to cabbage crops and they are also known to
be attacked by various parasitoids species. Foraging behavior of
parasitoids of Delia radicum has been reported to be affected by
caterpillar feeding AG (Pierre et al., 2011). These results suggest
the importance of a holistic approach of AG–BG multitrophic
interactions.

CONCLUSION AND FUTURE DIRECTIONS
The study of AG–BG multitrophic interactions is now a major
area of research in ecology. Over the past two decades a signifi-
cant amount of empirical data has demonstrated the importance
of AG–BG interactions in terms of mechanisms relating to the
behavior and development of insects and other invertebrates, as
well as effects on community structure and food webs. As the field
continues to blossom, it is hoped that links between AG and BG
compartments can be used to explain important applications in
ecology, such as the production and delivery of important provi-
sioning ecological services, e.g., the maintenance of soil fertility,
nutrient cycling, pollination, and even regional climate control.
There is little doubt that a more intensive multi-disciplinary

approach to the study of AG and BG ecology will yield many
insights into the functioning of ecological systems and their role
in sustaining human civilization.

At present, however, there are still some significant gaps in
our knowledge of important mechanisms and processes, such
as in the spatio-temporal variation in AG–BG interactions and
in how they may drive selection for different plant-related traits
such as defense and competitive ability. Furthermore, we are only
beginning to scratch the surface in our understanding and appreci-
ation of the role played by natural enemies in generating variation
in various plant traits. Given the potential importance of trade-offs
between tolerance (growth) and defense in plants, the influence
of natural enemies such as parasitoids in driving selection may
be vastly underappreciated. If we incorporate natural enemies of
plant antagonists in the soil, and then link these with three or even
four trophic level interactions AG, there is a potential wealth of
outcomes that remains to be explored. Moreover, given what we
now know about evolutionary hotspots where selection is played
out intensively, it would be interesting to search for these hotspots
in a plant species within and between habitats, and to try and
match phenotypes with strong AG, BG, and combined (AG and
BG) selection regimes. Furthermore, given that plants can also
potentially drive genetic variation in their associated consumers
over several trophic levels and via multiple linkages, it would be
interesting to explore how this may be played out combining AG
and BG interactions.

We suggest several areas for future investigations:

(1) Studies working with different genotypes of wild plants and
determining how these affect the behavior and performance
of AG and BG insect herbivores and their natural enemies
associated with them both independently and in combination;

(2) Analyzing various plant traits in roots and shoots in the
same plant species both within and between populations
along a geographical transect where abiotic and biotic selec-
tion pressures may vary. Furthermore, working to determine
how differences in these traits are correlated with selection
pressures from antagonists in the roots and shoots;

(3) Searching for geographical “hot-spots” in which selection for
AG and BG responses are rigidly enforced and the interactions
with the various consumers are identified;

(4) Comparing AG and BG interactions in geographically
widespread plants both in the native and invasive ranges, and
determining how release from their co-evolved natural ene-
mies AG, BG (or both) may have led to a relaxation in selection
for defense-related traits. Studies with invasive plants have
generally ignored links between AG and BG trophic interac-
tions, which may be a major omission in understanding why
a small percentage of exotics become invasive pests.

In summary, we argue that the field of AG–BG multi-
trophic interactions needs to explore a wider range of biotic
and abiotic selection pressures in explaining genetic variation
in plant-related traits (and also reciprocally in their consumers
up the food chain). In doing so it will be possible to develop a
more thorough appreciation of the questions underpinning the
immense variation in traits expressed in plants at various spatial
scales.
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