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Globally, forests store ∼45% of car-
bon sequestered terrestrially, contribute
more to the terrestrial sink per area
than any other land cover type, and
assimilate an important portion of
anthropogenic emissions (Bonan, 2008).
Forests exert strong biophysical control
on climate via surface energy balance
(Bonan, 2008; Rotenberg and Yakir, 2010;
Houspanossian et al., 2013), and the
hydrological cycle (Zhang et al., 2001;
Brown et al., 2005). Widespread for-
est mortality in response to drought,
increased temperatures, and infestation
of tree pests has been observed globally,
potentially threatening forests’ regula-
tion of climate (Kurz et al., 2008; Adams
et al., 2010; Allen et al., 2010; Anderegg
et al., 2013a). This threat has prompted
great interest in understanding and pre-
dicting tree mortality due to climate
variability and change, especially drought.
Initial tests of hydraulic failure (mortal-
ity caused by irreversible loss of xylem
conductivity from air embolism), carbon
starvation (mortality due to carbohy-
drate limitation), insect attacks, wildfire,
and their interdependence (Allen, 2007;
McDowell et al., 2008, 2011, 2013a), sug-
gest proximal causes of mortality are likely
complex, co-occurring, interrelated, and
variable with tree species (supported by
Adams et al., 2009, 2013; Sala et al.,
2010; Piper, 2011; Zeppel et al., 2011;
Anderegg et al., 2012a, 2013b; Adams
et al., 2013; Anderegg and Anderegg, 2013;
Galvez et al., 2013; Gaylord et al., 2013;
Hartmann et al., 2013a,b; Mitchell et al.,
2013; Quirk et al., 2013; Williams et al.,
in review). While the interdependent roles
of carbon and water in plant mortality

are consistently observed, this work is
continuously prompting new questions
(Sala et al., 2010; McDowell et al., 2013b;
O’Grady et al., 2013).

The justification for physiological
research on drought-induced tree mortal-
ity is often stated as a need to improve the
predictive capability of vegetation mod-
els through incorporation of mortality
mechanisms (Fisher et al., 2010; McDowell
et al., 2011, 2013a; Powell et al., 2013). Yet
if mortality is particularly complicated
and associated with failure of multiple
physiological processes (Manion, 1981;
McDowell et al., 2011; Anderegg et al.,
2012b), then a key question emerges: is a
mechanistic approach necessary for accu-
rate prediction of future mortality? The
answer to this question ultimately depends
on the application and goal of the model.

At issue is whether increasing model
complexity will improve prediction, which
is influenced in part by the modeling
approach employed. Two endpoints on
a theoretical continuum of approach
to mechanism are process-based and
empirical model types. The process-
based approach focuses on simulating
detailed physical or biological processes
that explicitly describe system behav-
ior, while the empirical approach relies
on correlative relationships in line with
mechanistic understanding, but with-
out fully describing system behaviors
and interactions (Korzukhin et al., 1996;
Table 1). Process-based models can be
more comprehensive and incorporate
mechanism explicitly, while the empir-
ical approach is typically simpler, with
mechanism implicit. These approaches
are not exclusive model classifications;

All process-based models include some
empirical information (e.g., in the choice
of relevant mechanisms), and the correl-
ative relationships of empirical models
assume a link to process (Korzukhin et al.,
1996; Makela et al., 2000). Realistically,
many models use a hybrid approach,
combining process-based and empirical
representation of relationships.

The advantages and disadvantages of
both approaches have been well acknowl-
edged in ecology (Korzukhin et al., 1996;
Levin et al., 1997; Makela et al., 2000;
Green et al., 2005; Van Nes and Scheffer,
2005). Uncertainty in process-based model
outputs could be higher than for the
empirical approach due to greater model
parameters and data inputs to represent
the many processes in the system (Table 1).
In the empirical approach, model uncer-
tainty may be reduced, yet significant bias
can result from exclusion of important
system components by extrapolation of
correlative relationships beyond observed
variability. Process-based models can bet-
ter include novel or no-analog responses,
those which may occur with future con-
ditions but are not well quantified in
past observations (Williams and Jackson,
2007). Ensembles of multiple models are
often implemented in climate prediction
(Jones, 2013), and can be used to reduce
uncertainty in biological responses to cli-
mate change (Asseng et al., 2013). An
ensemble approach for forest mortality
should include models from across the
spectrum of empirical to process-based
types (e.g., McDowell et al., 2013a). In
previous decades, process-based modeling
was often limited by computing power, but
improvement is now frequently limited
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Table 1 | Relative differences in the characteristics of process-based and empirical modeling

approaches.

Process-based Empirical

Relationship type Causal Correlative

Relative comprehensiveness More comprehensive Less comprehensive

Incorporation of mechanism Explicit Implicit

Primary source of error Unknown parameters and processes Extrapolation

Model uncertainty Higher Lower

Data requirements Higher Lower

Spatial scale for calibration Smaller Smaller to larger

Spatial scaling of prediction Smaller to Larger Best at scale of calibration

by availability of data needed to initialize,
parameterize, and evaluate models (Hall,
1988; Onstad, 1988; Levin et al., 1997;
McDowell et al., 2011).

The decision between using relatively
process-based or empirical approaches
also depends on the scale of spatial and
temporal inference. For example, to quan-
tify the feedback of vegetation impacts
upon future climate, reliable predictions of
forest mortality at the global scale should
be simulated. However, most field studies
have focused on small scales. Therefore,
techniques to extend small-scale under-
standing to large-scale models are crit-
ically needed (McDowell et al., 2013a).
Models developed at the plot scale often
have data input requirements that are not
available at larger scales. This is a particu-
larly important problem for more process-
based models, which typically require
more data inputs (Table 1). In contrast,
because the mechanisms leading to mor-
tality could differ among regions and
species, relatively empirical models devel-
oped for one location/region or species
may not be applicable to another, neces-
sitating development for each region or
species. Process-based models are more
robust for scaling across regions and
species due to the coupled representa-
tion of multiple basic processes; however,
model simplification may be necessary in
order to make the large-scale simulation
feasible in respect to computational cost
and data requirements.

Both process- and empirically-based
models suffer from two large data-gaps.
First, most mortality studies have focused
on a few species, but for a global sim-
ulation, comprehensive representation of
many species across different regions is

required. This has been achieved by
grouping species into functional types
(Woodward and Cramer, 1996), but future
research should refine these groups based
on empirically determined links between
species drought strategies and mecha-
nisms of mortality. Second, to evaluate
models at different scales, it is impor-
tant that we have comprehensive mortal-
ity benchmarking datasets across different
regions and functional types. Currently,
few such datasets are available, substan-
tially limiting mortality model progress at
large scales (Allen et al., 2010).

The challenge of bridging mechanism
and scales is arguably greatest at the
global scale, where finer scale processes
(e.g., photosynthesis) must be simulated
across the Earth. Dynamic global vege-
tation models (DGVMs) coupled with
general circulation models are a common
tool for simulating vegetation response
to climate change (Sitch et al., 2008;
Jiang et al., 2013). Early DGVMs that
specifically included forest mortality rep-
resented mortality simply, with routines
representing the stem exclusion phase
(intra-species competition) of forest stand
development and/or dependent on min-
imum productivity thresholds for tree
survival (Bugmann, 2001; Cox, 2001;
Sitch et al., 2003, 2008; see also Box 1
in McDowell et al., 2011). There has
been increased effort toward represent-
ing forest mortality in DGVMs with more
detail using process-based approaches. In
a recent version of the Community Land
Model with dynamic vegetation enabled
(CLM4-CNDV), which is based on the
Lund-Potsdam-Jena model (Sitch et al.,
2003), vegetation represented by plant
functional types is established and changes

according to biogeography rules based on
temperature thresholds and a minimum
precipitation requirement (Levis et al.,
2004; Oleson et al., 2010). Annual mor-
tality can occur in the model due to light,
competition, fire, growth efficiency, and
heat-stress tolerance (Levis et al., 2004;
Jiang et al., 2013; Figure 1). The Ecosystem
Demography model (Moorcroft et al.,
2001) has been updated with algorithms
for tree carbon resources and xylem cav-
itation to represent carbon starvation
and hydraulic failure mechanisms (Fisher
et al., 2010; McDowell et al., 2013a).
Other process-based models not linked
to DGVMs have been developed to predict
tree mortality at stand to regional scales.
These include TREES, which simulates
mortality from gas exchange, soil-plant
hydraulics, and carbohydrate dynamics
(Loranty et al., 2010; Mackay et al., 2012;
McDowell et al., 2013a), and LANDIS-
II, a forest succession model extended to
predict mortality from drought duration
and intensity (Gustafson and Sturtevant,
2013). Epidemiological models that incor-
porate tree stress and insect population
dynamics have also used a relatively
process-based approach (Powell and
Bentz, 2009).

In contrast to process-based
approaches for tree mortality simula-
tion, simpler, more empirical methods
could offer valid and rapid alternatives
for projection of climate change effects
on forests. Manion’s (1981) pre-disposing
factor framework has been used to pre-
dict tree vigor decline that leads to death
at the level of individual trees (Güneralp
and Gertner, 2007) and vulnerability to
insect attack at the stand level (Coops
et al., 2009). Xylem resin anatomy, which
integrates tree stress and defense against
bark beetles, was an effective predictor of
individual tree mortality (Kane and Kolb,
2010), and may be a productive avenue for
model development using simple climate-
xylem resin anatomy relationships from
tree-rings. Bioclimatic envelope models
are an example of a primarily empirical
approach often used to predict tree species
response to future climate (e.g., Iverson
et al., 1998, 2008; Rehfeldt et al., 2012).
In these models the relationship between
the current climate at species’ range limits
are used to predict future distributions
by moving these species’ range limits
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FIGURE 1 | A comparison of tree mortality projections for the southwest USA from a more

process-based Dynamic Global Vegetation Model, and a less process-based, empirical index

that could be applied in a mortality model. (A) Projected heat-induced decline in relative conifer
forest cover using the Community Land Model with dynamic vegetation enabled (CLM4-CNDV;
Jiang et al., 2013), with the ability to account for the impact of declining forest population on
mortality rate. Shading bounds eight projections assuming unique model-projected scenarios of
global sea surface temperatures. Black line: ensemble mean. (B) Forest Drought Severity Index
(FDSI) predicted through 2100 by applying an empirical growth-climate relationship to modeled
projections of precipitation and vapor-pressure deficit (Williams et al., 2013). More negative values
indicate intensified forest stress. Shading bounds the inner quartiles of CMIP3 model projections.
Brown shading represents FDSI values more severe than the estimated regional mortality threshold
(−1.41, average FDSI of the most severe 50% of years during the 1573–1587 megadrought). Black
line: ensemble mean. Note the inflection point in the decline of forest cover in (A) corresponds with
FDSI crossing the regional mortality threshold (2030–2060) in (B). Both imply similar predictions for
mortality, and each model incorporates information that the other could benefit from.

to match the location of these climate
envelopes under future conditions (see
Table 1 in Araújo and Peterson, 2012).
When appropriately used, this approach
projects potential tree species habitat,
not actual future distributions (Iverson
et al., 2008; Araújo and Peterson, 2012),
although similar relationships are used
for survival thresholds in Lund-Potsdam-
Jena and other DGVMs (Sitch et al.,
2003; Jiang et al., 2013). Development of
mortality-specific envelopes or empirical
indices with climatic and environmental
(e.g., soil moisture) thresholds for tree
survival that have been directly tested or
observed would improve predictions based
on these relationships.

There can be different levels of com-
plexity in such empirical approaches. For
example, the forest drought stress index
(FDSI), derived from tree-ring records
and predictable from regional climate,
is highly correlated with forest mortal-
ity in the southwest USA (Williams et al.,
2013, Figure 1). Williams et al. infer FDSI
through AD 2100 from climate projec-
tions and empirically predict that by mid-
century the southwest USA will be less
suitable for forests than in at least 1000
years due to increasing atmospheric mois-

ture demand. The timing of mortality
implied by the FDSI projection coincides
with the period of rapid forest loss pre-
dicted in recent simulations using the
Community Land Model coupled with
nitrogen and vegetation dynamics (CLM4-
CNDV; Jiang et al., 2013). The CLM4-
CNDV uses an empirical approach of
mortality, including thresholds of growth
rate and heat stress, and moisture lim-
itations, but relies on explicit process
simulation including photosynthetic sim-
ulation for vegetation growth (Jiang et al.,
2013; Figure 1). The relationship between
FDSI and recent tree mortality rates (see
Figure 2 in Williams et al., 2013) suggests
a potentially simpler empirical application
for this stress index in a mortality model.
The FDSI approach requires development
of empirical climate-tree stress and mor-
tality relationships for a specific region,
while the dynamic vegetation approach
of Jiang et al. (2013) simulates universal
forest interactions with climate. Although
the DGVM is much more complex than
the empirical relationships in an FDSI
approach, results from both are similar
for the southwest USA (Figure 1). Thus,
the empirical approaches like FDSI are
simple but powerful, and regionally based

empirical results may inform DGVMs
regarding climatic threshold effects on
vegetation.

With an imperfect understanding of the
physiological processes involved, we cur-
rently cannot discern the causes of tree
mortality from the symptoms of dying.
For example, it is not known whether the
carbohydrate depletion observed as some
trees die from drought may be a resultant
symptom of mortality by hydraulic failure,
or a directly contributing cause of mortal-
ity (McDowell et al., 2011; Adams et al.,
2013). Due to these limitations, earth sys-
tem models should take greater advantage
of empirical relationships between climate
and forest mortality to bridge knowledge
gaps in mechanistic understanding, as
global climate projections that incorporate
biophysical feedbacks from forest loss are
urgently needed for policy decisions. We
encourage use of hybrid models and model
ensembles that span the empirical to
process-based continuum of approaches.
Relatively empirical approaches, such as
models based on FDSI-mortality correla-
tions, could provide for rapid model devel-
opment in tree mortality prediction.

Nevertheless, we do not advocate ceas-
ing process-based model development.
Inclusion of process-based representation
for tree mortality mechanism has the
potential to deliver more accurate pro-
jections if causal relationships are better
understood. Moreover, even if parameteri-
zation for global process-based models is
not possible in the near future, process-
based models at fine scales may inform
development of broader-scale empirical
models through their ability to account
for drought-driven changes in forest com-
position and distribution. We suggest
several steps towards development of
process-based, mechanistic models: (1)
improved experimentation to distinguish
physiological causes from symptoms, (2)
continued model development based on
existing knowledge and emerging dis-
covery, (3) improved model validation
against both experimental results and
regional-scale mortality observations, and
(4) high-resolution measurement of for-
est composition at large scales. While
ecologists studying tree mortality have
favored investigating physiological mecha-
nism, measuring species composition and
mortality at high resolution across regions
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is crucial for providing baseline obser-
vations to constrain model predictions.
Without improved input on current forest
conditions, even accurate models of forest
mortality cannot generate useful predic-
tions of change.
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