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Plant ionomes and soil nutrients are commonly diagnosed in agronomy using
concentration and nutrient ratio ranges. However, both diagnoses are biased by
redundancy of information, subcompositional incoherence and non-normal distribution
inherent to compositional data, potentially leading to conflicting results and wrong
inferences. Our objective was to present an unbiased statistical approach of plant
nutrient diagnosis using a balance concept and mango (Mangifera indica) as test
crop. We collected foliar samples at flowering stage in 175 mango orchards. The
ionomes comprised 11 nutrients (S, N, P, K, Ca, Mg, B, Cu, Zn, Mn, Fe). Traditional
multivariate methods were found to be biased. Ionomes were thus represented by
unbiased balances computed as isometric log ratios (ilr ). Soil fertility attributes (pH
and bioavailable nutrients) were transformed into balances to conduct discriminant
analysis. The orchards differed more from genotype than soil nutrient signatures. A
customized receiver operating characteristic (ROC) iterative procedure was developed to
classify tissue ionomes between balanced/misbalanced and high/low-yielders. The ROC
partitioning procedure showed that the critical Mahalanobis distance of 4.08 separating
balanced from imbalanced specimens about yield cut-off of 128.5 kg fruit tree−1 proved
to be a fairly informative test (area under curve = 0.84–0.92). The [P |N,S] and [Mn
|Cu,Zn] balances were found to be potential sources of misbalance in the less productive
orchards, and should thus be further investigated in field experiments. We propose using
a coherent pan balance diagnostic method with median ilr values of top yielders centered
at fulcrums of a mobile and the critical Mahalanobis distance as a guide for global nutrient
balance. Nutrient concentrations in weighing pans assisted appreciating nutrients as
relative shortage, adequacy or excess in balances.
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GRAPHICAL ABSTRACT
A mobile setup comprises D-1 balances from D components.
Nutrients in plant tissues are diagnosed in the unbiased balance
domain while their corresponding concentrations are appreciated
as relative shortage, sufficiency or excess of nutrients.

Abbreviations: Acc., accuracy; CND, Compositional Nutrient Diagnosis; DRIS,
Diagnosis and Recommendation Integrated System; FN, false negative; FP, false
positive; NPV, negative predictive value; PPV, positive predictive value; ROC,
receiving operating characteristic; TN, true negative; TP, true positive.

HIGHLIGHTS
• Statistics on concentration data or dual ratios are biased
• Isometric log ratios (ilr) avoid biases due to redundancy of

information, incoherence and non-normal distribution
• Foliar ionomes informatively classified orchard productivity

using a novel binary classification technique based on a receiver
operating characteristic technique

• The [P |N,S] and [Mn |Cu,Zn] foliar balances appeared to limit
mango yields in Brazil

• The balance concept could be further developed using prior
knowledge and multivariate analysis of ionomes in future
studies.

INTRODUCTION
The ionome is “the mineral nutrient and trace element com-
position of an organism” (Lahner et al., 2003). Nutrient
concentrations included in the definition of an ionome are
strictly positive data constrained between zero and the unit
of measurement: they belong to the compositional data class.
Consequently, each nutrient can only be analyzed relatively
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to the other nutrients of the ionome. Ignoring the impor-
tant properties of compositional data leads to biases in
their analysis due to redundancy of information, subcomposi-
tional incoherence and non-normal distribution (Bacon-Shone,
2011).

The ionome of agricultural crops is typically diagnosed
using critical nutrient concentration ranges (CNCR) (Benton
et al., 1991) or dual ratios possibly integrated into func-
tions and indices by the Diagnosis and Recommendation
Integrated System (DRIS) (Walworth and Sumner, 1987).
The CNCR, inherited from Sprengel’s “Law of minimum”
stated in 1828, classifies crop nutrient as deficiency, suffi-
ciency, luxury consumption, or excess (Epstein and Bloom,
2005). Obviously, textbooks in plant nutrition (Bergmann, 1988;
Benton et al., 1991; Epstein and Bloom, 2005; Malavolta, 2006;
Marschner, 2011) disregard the fundamental properties of com-
positional data, that have important consequences in statisti-
cal analyses.

DRIS is an empirical model (without well documented
mathematical or statistical theory behind it) that computes D×
(D − 1)/2 dual ratios and their associated ratio functions, then
integrates functions into D indexes. The CNCR and DRIS are
usually conducted separately, and then compared to each other to
identify the most limiting nutrients (Wadt and Silva, 2010). Both
CNCR and DRIS are biased and may lead to conflicting results
when conducted separately (Parent et al., 2012), e.g., (Da Silva
et al., 2004; Blanco–Macías et al., 2009; Huang et al., 2012; Wairegi
and van Asten, 2012).

Compositional data require an appropriate transformation
to avoid biases in their statistical analysis (Bacon-Shone, 2011).
Aitchison (1986) proposed using the additive log ratio (alr) or
the centered log ratio (clr) transformation to properly handle
compositional data. The clr transformation was used by Parent
and Dafir (1992) to rectify the DRIS by a mathematically sound
model. Because a composition has rank D-1 (Aitchison and
Greenacre, 2002), the clr technique, that generates D variables,
produce a singular matrix in multivariate analysis, forcing ana-
lysts to sacrifice one clr variate in order to avoid singularities.
Egozcue et al. (2003) proposed the isometric log-ratio transfor-
mation (ilr), which structures D components into D-1 orthogonal
log contrasts of components amenable to multivariate analy-
ses. In plant nutrition, these log contrasts can be defined as
ad-hoc nutrient balances. In a functional perspective, nutrient
concentrations interact (Wilkinson, 2000) within a structured
system that can be partitioned into subsystems (Marschner,
2011). Such balances map the ionomes of plant species and vari-
eties in a dimensionally reduced space (Parent et al., 2013b).
Also, nutrient imbalance indexes have been computed for diag-
nostic purposes as a distance between an observation and the
center of a reference group of balanced specimens (Parent et al.,
2012).

Our objectives were (1) to present the theory of ilr balances for
application in plant nutrition, (2) to elaborate a binary classifi-
cation statistical technique to delineate a reference group and (3)
to design a pan balance representation of the ionome for nutrient
diagnosis using mango as test plant and (4) to demonstrate biases
in traditional concentration and ratio methods used to diagnose
ionomes in agronomy.

THEORY
COMPOSITIONAL DATA
Compositional data, such as nutrient concentrations, are parts of
some whole, bounded between 0 and the unit of measurement,
i.e., 1, 100%, 1000 g kg−1, or 106 mg kg−1. The scale of measure-
ment is generally the dry matter mass basis (kg), but could also
be the fresh matter mass basis (kg) or the sap liquid basis (L).
The constrained nature of compositional data implies important
properties, as follows:

• Redundancy of information: Where the composition is closed
to one, the amount of one component can be calculated by
difference between one and the sum of the others. Hence, there
are D-1 degrees of freedom in a D-parts composition, i.e.,
the data set matrix has rank D-1 (Aitchison and Greenacre,
2002). Because any of the D× (D − 1)/2 dual ratios derivable
from a D-parts composition can be computed from other ratios
(Parent et al., 2012), they also convey redundant informa-
tion that generates myriads of spurious correlations in linear
statistical analysis (Chayes, 1960; Pearson, 1897).

• Subcompositional incoherence: The results of statistical tests
differ depending on the unit to which a composition
is closed, generating spurious correlations (Tanner, 1949).
Indeed, the addition of a component such as water to the
composition just provides an additional dimension to that
space (e.g., a balance between water and other components).
This new component should not alter the results of statistical
analyses on the dry matter sub-system.

• Non-normal distribution: Normally distributed data are
mapped in a real space, which is not the case for compo-
sitional data, which are mapped in a closed space. Statistics
like confidence intervals should not be allowed to range
outside the limit of the compositional space (e.g., ≤0 or
≥100%). Rather, compositional data follow logistic-normal
distributions (Bacon-Shone, 2011).

Those three properties result from closing the compositional
space, as follows (Aitchison, 1986):

SD = C (c1, c2, . . . , cD)

=
(

c1κ∑D
i = 1 ci

,
c2κ∑D
i = 1 ci

, . . . ,
cDκ∑D
i = 1 ci

)
(1)

where SD is the simplex (compositional vector mapped in the
compositional space), κ is the unit of measurement and ci is the
ith part of a composition containing D parts. When conducting
a plant nutrient diagnosis, it is convenient to include a filling
value (Fv) computed by difference between κ and the sum of
all nutrients. Its inclusion allows back-transforming the ilr val-
ues into concentrations with familiar units of measurement. The
main components of the filling value are C, O, and H, as found
in products of photosynthesis. Lagatu and Maume (1934) were
the first to apply closure to foliar nutrient data using an N-P-K
ternary diagram.
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CONVENTIONAL APPROACHES
Nutrient concentration ranges
The CNCRs has been illustrated by the so-called Liebig’s barrel
filled with water, where nutrient concentrations are represented
by staves of unequal length, the shortest stave being attributed
to the most limiting nutrient. The rise of water in the bar-
rel, a metaphor for plant growth, is controlled by the shortest
stave. Diagnosticians who use this approach interpret concen-
trations as nutrient deficiency, sufficiency, luxury consumption
or excess. However, such approach does not account for nutri-
ent interactions. Concentration data are often log transformed
to improve data distribution. However, the log transformation is
not a panacea (Filzmoser et al., 2009), because there are still D
variables for matrix rank of D-1, subcompositional incoherence
is maintained, and data are constrained to the positive space.

Nutrient ratio ranges
Nutrient ratios have a long tradition in agronomy, aiming to cap-
ture the notion of nutrient interactions (Walworth and Sumner,
1987). Useful ratios are generally examined by data-mining, look-
ing for high correlations with a performance index such as crop
yield. However, since Pearson (1897), many statisticians (Tanner,
1949; Chayes, 1960; Aitchison, 1986) warned that the use of
unstructured, correlation driven, dual ratios generate spurious
correlations.

Nutrient stoichiometric rules
Ingestad (1987) suggested an optimum N:P:K:Ca:Mg stoichio-
metric rule for regulating the growth of tree seedlings, leading
to ratios of all nutrients against a standard such as N, i.e., (P/N,
K/N, Ca/N, and Mg/N). This approach structures ratios in a
way that avoids redundancy of information and subcomposi-
tional incoherence (as long as the reference component remains
in the subcomposition), but still could lead to wrong interpre-
tations, namely due to non-normal distributions. The stoichio-
metric ratios could be normalized using the alr transformation
introduced by Aitchison (1986).

Diagnosis and Recommendation Integrated System (DRIS)
The DRIS is a method to synthesize several dual ratios into nutri-
ent indices. Dual ratios in a given ionome are first compared
to DRIS dual ratio norms (ratio means and coefficients of vari-
ation obtained from high-performing specimens) to compute
DRIS functions (Walworth and Sumner, 1987). The DRIS func-
tions common to a nutrient are then added up to DRIS indices
with the sign of DRIS functions depending on the position of
the indexed nutrient in the ratio. Although appealing to plant
diagnosticians, DRIS has poor mathematical background. Parent
and Dafir (1992) rectified DRIS for plant diagnosis using the clr
transformation introduced by Aitchison (1986).

COMPOSITIONAL APPROACHES
The additive and centered log ratios (alr)
The alr representation of compositional data is computed as
follows (Aitchison, 1986):

alri = ln

(
ci

ccommon

)
(2)

where ci is the ith component at numerator, i = [1 . . . D]\icommon

and ccommon is the common denominator to all components,
resulting in D − 1 alr values, because the component at denom-
inator is sacrificed. Log-ratios are more tractable than ordinary
ratios (Aitchison, 2003), because the inverse of a log-ratio is a
trivial sign change. The alrs are appropriate to conduct multivari-
ate analysis, but are not orthogonal to each other, making them
difficult to interpret. The additive log ratio is a log-ratio formula-
tion of stoichiometric rules. It should be noted that, due to their
oblique geometry, distance-based statistics across additive log-
ratios should be handled with care (van den Boogaart et al., 2013).

The centered log ratios (clr)
The clr representation of compositional data is computed as
follows (Aitchison, 1986):

clri = ln

(
ci

g (c)

)
(3)

where ci is the ith component at numerator, i = [1 . . . D], and
g(c) is the geometric mean of all components, resulting in D clr
values, i.e., there is one extra degree of freedom for a matrix of
rank of D − 1 (the clr variates add up to 0). One clr value must be
sacrificed (e.g., that of the filling value) in many multivariate anal-
yses, hence returning the adequate D-1 degrees of freedom, but an
inappropriate geometry. Because outliers may affect considerably
log ratios (Filzmoser and Gschwandtner, 2013), the diagnostic
power of CND-clr is also decreased by large variations in nutri-
ent levels (e.g., leaf Cu, Zn, Mn contamination by fungicides).
The clrs are also subcompositionally incoherent. Indeed, because
each component is ratioed by the geometric mean of the whole
composition in Equation (3), the choice of adding or not a com-
ponent (such as carbon or water content) affects the whole clr
vector. Nevertheless, the clr transformation is useful to conduct
exploratory biplot analyses on compositional data (Egozcue and
Pawlowsky-Glahn, 2011a).

The isometric log ratio (ilr)
The ilr technique (Egozcue et al., 2003) allows projecting the
simplex SD of compositional data into a Euclidean space of D-1
non-overlapping orthogonal log contrasts, also called orthonor-
mal balances or geometric “coordinates” (not to be confounded
with spatial coordinates). A system of balances can be designed
into a sequential binary partition (SBP). A SBP is a (D − 1) ×
D matrix, in which parts labeled “+1” (group numerator) are
contrasted with parts labeled “−1” (group denominator) in each
ordered row (see Table 1 for an example). A part labeled “0”
is excluded from the balance. The composition is partitioned
sequentially at every ordered row into two contrasts until the
(+1) and (−1) subsets each contain a single part. Balances are
computed as follows (Egozcue and Pawlowsky-Glahn, 2005):

ilri =
√

n+
i n−

i

n+
i + n−

i

ln
g
(
c+

i

)
g
(
c−

i

) (4)

Where, in the ith row of the SBP, ni+ and ni− are the numbers
of components in the plus (+) or group and the minus (−) or
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Table 1 | Sequential orthogonal partition of eleven nutrients of plant ionome and the filling value to compute 11 ilr orthonormal coordinates

from concentration values and orthogonal coefficients.

ILR ID S N P K Ca Mg B Cu Zn Mn Fe Fv Notation

1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 −1 [Fv |S,N,P,K,Ca,Mg,B,Cu,Zn,Mn,Fe]

2 +1 +1 +1 +1 +1 +1 +1 −1 −1 −1 −1 0 [Cu,Zn,Mn,Fe |S,N,P,K,Ca,Mg,B]

3 +1 +1 +1 +1 +1 +1 −1 0 0 0 0 0 [B |S,N,P,K,Ca,Mg]

4 +1 +1 +1 −1 −1 −1 0 0 0 0 0 0 [K,Ca,Mg |S,N,P]

5 +1 +1 −1 0 0 0 0 0 0 0 0 0 [P |S,N]

6 +1 −1 0 0 0 0 0 0 0 0 0 0 [N |S]

7 0 0 0 +1 −1 −1 0 0 0 0 0 0 [Ca,Mg |K]

8 0 0 0 0 +1 −1 0 0 0 0 0 0 [Mg |Ca]

9 0 0 0 0 0 0 0 +1 +1 +1 −1 0 [Fe |Cu,Zn,Mn]

10 0 0 0 0 0 0 0 +1 +1 −1 0 0 [Mn |Cu,Zn]

11 0 0 0 0 0 0 0 +1 −1 0 0 0 [Zn |Cu]

group, respectively, g(ci+) is the geometric mean of components
in the + group and g(ci−) is the geometric mean of components
in the—group. The natural log of the ratio of geometric means

is a log contrast; the associated co-efficient,
√

n+
in

−
i /
(
n+

i +n−
i

)
,

is an orthogonal co-efficient. The ilr transformation is the most
appropriate for robust multivariate analysis of compositional data
(Filzmoser and Hron, 2011).

In this paper, we noted balances as “[−1 or denominator group
|+1 or numerator group],” because in algebra, negative num-
bers are located on the left. If the minus (−1) group loads more
than the plus (+1), the value of the balance is negative (i.e., leans
toward the components on the left side of the vertical bar), and
vice-versa.

Designing sequential binary partitions (SBP)
There are D! × (D-1)!/2D−1 possible different SBPs for a D-parts
composition. In fact, the design of the SBP does not influence
results in multivariate linear statistics: switching from a SBP to
another is just a rotation of orthogonal axes from the origin of
the coordinates of a scatter. Because information provided by
an experiment depends on the prior assumption (Egozcue and
Pawlowsky-Glahn, 2011b), balances can be designed as inter-
pretable variables using prior and expert knowledge (Parent
et al., 2012, 2013a,b; Aslam et al., 2013), exploratory biplot
analysis of clr variates (Aitchison and Greenacre, 2002) and
principal balances analysis (Pawlowsky-Glahn et al., 2011). In
this paper, we designed balances using prior and expert knowl-
edge only, because biplot analysis and principal balances anal-
ysis (still under development) would require exploring several
datasets for nutrient relationships, which is beyond the scope of
this paper.

Wilkinson (2000) listed several dual and higher-order nutri-
ent interactions in plants in much larger numbers than the
D-1 balances allowable from a D-parts composition (Aitchison
and Greenacre, 2002). We thus designed a sound SBP for
plant ionomes using prior knowledge on nutrient interactions
(Table 1). Nutrients were first contrasted with the filling value
computed by difference between unit of measurement and the
sum on nutrient concentrations. Macro-nutrients and B were
separated from cationic micronutrients. Macro-nutrients and

B were connected, because B interacts with macronutrients
(Malavolta, 2006). Macro-nutrient anions (S, N, P) were con-
trasted with macro-nutrient cations (K, Ca, Mg) to reflect charge
balance in plant cells. Macro-nutrient anions were further sub-
divided according to protein synthesis (N, S) and energy (P);
the [P |S,N] balance thus reflects the protein/energy relation-
ship in plants similarly to the Redfield N/P ratio (Loladze and
Elser, 2011). Macro-nutrient cations were contrasted as mono-
valent vs. divalent ions whereby K, Ca and Mg are competing
nutrients (Marschner, 2011). Fungicides that protect agricultural
plants against diseases often contain Cu, Zn, and Mn in their
active molecules. The Cu and Zn were thus assumed to be mainly
affected by fungicide sprays; Mn may originate from soil or fungi-
cide sprays while soil can be assumed to be a large reservoir of
Mn and Fe; the [Fe |Cu,Zn,Cu] balance is intended to reflect the
effect of fungicide sprays over soil supply of cationic micronutri-
ents. Of course, if this study had a different objective, we could,
for example, have designed a SBP providing more focus on Fe:S
clusters in proteins (Couturier et al., 2013).

The soil compositional data were orthogonally arranged in a
SBP for the only purpose of discriminant analysis between mango
genotypes.

Dissimilarity between two compositions
The Mahalanobis distance (M) across selected ilr coordinates of
ionomes is computed as follows:

M =
√

(x − x)TCOV−1 (x−x) (5)

where x is the barycenter of a reference population and COV is the
covariance matrix of the reference population. The Mahalanobis
distance across ilr balances [values of x in Equation (5)] is a
measure of the multivariate distance between a diagnosed and a
reference composition [values of x in Equation (5)].

The Mahalanobis distance was preferred over the Euclidean
distance, widely used when variables are dimensionally homoge-
neous and orthogonal. The Mahalanobis distance, thanks to the
covariance matrix included in its definition, can account for the
usual inclined hyper-ellipsoidal shape of plant ionome scatters
(Parent et al., 2012; Marchand et al., 2013).
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BINARY CLASSIFICATION METHOD
For diagnostic purposes, there is a need to split the crops into
low- and high-productivity groups. A predictor index should
allow separating balanced from misbalanced nutrient signatures.
Four quadrants are partitioned in system diagnosis (Swets, 1988),
where each quadrant delineates a response class (Table 2) accord-
ing to response and predictor delimiters. The Mahalanobis dis-
tance is computed from the center and the co-variance of the
reference population. To define an optimal predictor delimiter,
Nelson and Anderson (1977) proposed to maximize the “Class
sum of squares” between two groups clustered by the predictor
delimiter for a given response delimiter.

In the Receiver Operating Characteristic (ROC) method, com-
monly used to measure the performance of clinical tests (Swets,
1988), the selected predictor delimiter corresponds to the best
compromise between sensitivity and specificity, i.e., the maximal

Youden’s J index (sensitivity + specificity – 1) (Youden, 1950).
The area under the sensitivity vs. specificity curve (AUC) can be
used as an accuracy index for the classification (Swets, 1988).

Because crop yield (response) is a continuous variable rather
than a binary variable as is the case in most clinical tests, a
procedure is needed to optimize the response delimiter, as devel-
oped in the Material and methods section. In survey datasets,
true negative (TN) specimens represent the reference popula-
tion. Because the Mahalanobis distance from TNs (MTN) is used
as predictor, an iterative procedure is needed, as follows. For a
given response (crop yield) delimiter, the predictor is initiated
using high-yielders as reference specimens for computing MHY.
Thereafter, a predictor delimiter is selected and its barycenter and
co-variance are computed among newly delineated TN specimens
in order to compute MTN. The MTN is iterated until two
iterations classifies observations identically.

Table 2 | Term definitions in binary classifications.

Negative predictive value 

(NPV): probability that a 

balance diagnosis returns 

high performance, as

TN/(TN+FN)

Positive predictive value 

(PPV): probability that an 

imbalance diagnosis returns 

low performance, as

TP/(TP+FP)

Accuracy  (Acc.): 

probability that an 

observation is correctly 

identified as balanced or 

imbalanced, as

(TN+TP)/(TN+FN+TP+FP)

True negative  (TN): high 

performance crops 

correctly identified as 

balanced (below predictor 

critical index). The nutrient 

status is adequate.

Flase negative  (FN: type II 

error): low performance 

crops incorrectly identified 

as balanced (below 

predictor critical index). FN 

observations indicate the 

impact of other limiting 

factors on crop 

performance.

True positive  (TP): low 

performance crops 

correctly identified as 

imbalanced (above 

predictor critical index). At 

least one nutrient causes 

imbalance.

False positive  (FP: type I 

error): high performance 

crops incorrectly identified 

as imbalanced (above 

predictor critical index). FP 

observations indicate luxury 

consumption of nutrients by 

the plant or exceptionally 

high nutrient use efficiency.

Specificity : probability that 

a high performance 

observation is balanced, as

TN/(TN+FP)

Sensitivity : probability 

that a low performance 

observation is 

imbalanced, as

TP/(TP+FN)

Predictor delimiter

R
es

p
o

n
se

 d
el

im
it

er
R

es
p

o
n

se
 (

p
er

fo
rm

an
ce

 in
d

ex
)

Predictor (nutrient balance index)
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MATERIALS AND METHODS
DATA SET
We collected data in 93 “Palmer.” 63 “Tommy,” 14 “Espada,” and
5 “Haden” mango orchards planted between 1983 and 2005 on
Oxisols and Ultisols near Jabotocabal in the state of São Paulo,
Brazil, for a total of 175 orchards. At the end of July during flow-
ering, leaves were collected from the middle tier of annual growth.
Foliar N was determined by micro-Kjeldahl. The S, P, K, Ca, Mg,
Zn, Cu, Mn, Fe, and B foliar concentrations were determined
by IPC-OES after digestion in a mixture of nitric and perchloric
acids (Jones and Case, 1990). Fruits were harvested from five trees
randomly selected in each orchard, and averaged as kg tree−1.

Phenotypic plasticity of plant ionome may be driven by nutri-
ent supply of soils and fertilization practices. Fertilization prac-
tices were assumed to be standard across orchards and only soil
properties were measured. Soils were sampled after harvest at
four locations per tree in the 0–20 cm layers, then composited per
5-tree experimental unit. Soil samples were air dried and analyzed
for pH in 0.01 M CaCl2, organic matter content, P, K, Ca, Mg and
(H + Al), and micro-nutrients using official Brazilian methods
(Raij et al., 1987). Exchangeable acidity (H + Al) was determined
by the SMP pH buffer method and the equation of (Quaggio et al.,
1997) to convert buffer pH to mmolc (H + Al) dm−3 as follows:

(H + Al) = 10exp
(
7.76 + 1.053pHSMP

)
, R2 = 0.98 (6)

CLASSIFICATION OF NUTRIENT BALANCES
The Mahalanobis distance from the median of the TN speci-
mens was used as predictor. The response (productivity criteria)
delimiter returning the largest area under ROC curve (AUC) was
selected. For statistical validity, the delimiters associated to max-
imum AUC should also include sufficient data classified in the
reference population (TN). Because the amount of data was rela-
tively small, we retained a minimum of 20 observations in the TN
quadrant.

STATISTICAL ANALYSIS
Statistical computations were conducted in the R statistical envi-
ronment (R Development Core Team, 2013) using the R “compo-
sitions” package (van den Boogaart et al., 2013). Outliers among
ilrs were discarded at the 0.01 level using the R “mvoutlier”
package (Filzmoser and Gschwandtner, 2013). We compared ilr
coordinates of ionomes using Tukey’s test at a 0.05 significance
level. Variances of balances were compared using Bartlett’s test
and their mean were compared using analysis of variance (p =
0.05). Because tests are multivariate and plant data sets contain
extreme values, a robust method based on the median is needed
to compute multivariate distances (Filzmoser et al., 2009). The
Moore-Penrose pseudo-inversion was used to avoid singularities
in the inversion of the covariance matrix needed for computations
of Mahalanobis distances (Prekopcsák and Lemire, 2012).

RESULTS
VARIETAL IONOMES
Bartlett test showed that the variance of 3 of the 11 balances dif-
fered among varieties, i.e., [Fv |nutrients], [B |S,N,P,K,Ca,Mg]
and [N |S]. Analysis of variance showed that 8 of the 11
balance means differed among varieties, with the exception

of [B |S,N,P,K,Ca,Mg] (barely interpretable due to heteroge-
neous variance), [Mn |Cu,Zn] and [Zn |Cu]. The discriminant
scores mapped the differences between ionomes of “Palmer,”
“Tommy,” “Espada,” and “Haden” (Figure 1). The plant and soil
DA maps showed that ionomes differed significantly between
varieties. However, the swarms of foliar ionomes did not over-
lap among varieties while the swarms of soil nutrients in
“Palmer” and “Haden” orchards, on the one hand, and “Tommy”
and “Espada,” on the other, overlapped, therefore indicating
genotypic dominance over soil nutrient supply. Nevertheless,
because the amount of data was limited, the ROC partition-
ing was performed across varieties to provide a numerical
example.

BINARY CLASSIFICATION
The area under the ROC curve (AUC), computed by summing
rectangles under the step curve, reached a peak at 0.84
(Figure 2B), a value comparable to the AUC for fairly infor-
mative tests (0.80–0.98) in medical sciences (Swets, 1988). The
ROC curve did not show a monotonic decrease of sensitivity
as specificity increased, as usually observed in ROC diagnoses
due to the re-sampling of the TN specimens (see methodol-
ogy section), which is generally not needed in conventional
clinical studies. The AUC computed across the fitted binormal
model (Hanley, 1988) returned a value of 0.89, ranging between
0.84 and 0.92, with a confidence level of 95% (Figure 2B).
The response delimiter corresponding to the AUC peak was
128.5 kg fresh fruit tree−1 (Figure 2A). The optimal compro-
mise between specificity and sensitivity for the optimal response
delimiter was found at a specificity of 0.95 and a sensitivity
of 0.92, corresponding to a predictor threshold (Mahalanobis
distance) of 4.08 (Figure 2B). Results of the binary classifica-
tion are presented in Figure 3, where the two optimal delim-
iters classified 20 observations in the TN quadrants. The semi-
transparent ellipse enclosed 95% of the theoretical distribution
of all observations. The TN group was essentially constituted
of “Tommy” (6) and “Palmer” (14) orchards. All “Espada”
and “Haden” orchards were classified as TP. The large major-
ity (accuracy = 92%) of specimens were correctly diagnosed
by the Mahalanobis distance predictor. Almost all specimens
declared imbalanced yielded less than cut-off yield value (PPV
= 99%). On the other hand, nearly two thirds (NPV = 65%)
of balanced specimens yielded more than cut-off yield value.
Median ilr values of TN specimens as well as the covariance
matrix used to measure Mahalanobis distances are presented in
Tables 3 and 4.

NUTRIENT BALANCE COMPARISONS BETWEEN TN AND TP
SPECIMENS
Tukey’s test allowed detecting in which balance significant differ-
ences occurred between TN and TP specimens (Figure 4A). The
most significantly different balance was [Mn |Cu,Zn] (p < 0.01).
A negative (TP–TN) value means that TN’s balance was higher
than TP’s. For the [Mn |Cu,Zn] balance, the TN specimens tended
to be characterized by greater load in the plus (+) group than
the minus (−) group compared to TP. In this case, Cu and Zn
loaded more than Mn in the TN ionomes. There was a signifi-
cant trend for TN specimens to accumulate more Cu relatively
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FIGURE 1 | (A) Discriminant analysis of the ionomes of four varieties and
(B) their soil properties (right) in mango orchards in the state of São Paulo,
Brazil: “Palmer” (93 obs.), “Tommy” (63 obs.), “Espada” (14 obs.) and
Haden (5 obs.). Large semitransparent ellipses that enclose swarms of data
points represent regions that include 95% of the theoretical distribution of
canonical scores for each species. Smaller plain white ellipses represent
confidence regions about means of canonical scores at 95% confidence
level.

to Zn, as shown by the negative [Zn |Cu] balance difference
(TP–TN) (p < 0.01). However, the [P |N,S] balance was the most
discriminant balance between TN and TP specimens (Figure 4B):
compared to TP specimens, TN specimens accumulated signif-
icantly more S and N than P (i.e., TN had a higher [P |N,S]
balance) (p < 0.05). There was no significant difference between
other balances.

FIGURE 2 | (A) area under the ROC curve versus cut-off yield and (B) ROC
curve for yield cut-off of 128.5 kg fruit tree−1.

PAN BALANCE DIAGRAM
Balances can be represented metaphorically using a stand-alone
mobile diagram with fulcrums and weighing pans, where nutrient
concentrations in buckets impact directly on nutrient balances
at fulcrums upon change. Figure 5 presents a balance dendro-
gram derived from SBP with overall average ilr values at fulcrums,
and 0.05 univariate confidence intervals for TN specimens, TP
specimens, and each variety.

The ilr values at fulcrums are used for diagnostic purposes,
while the ilr values back-transformed to familiar concentration
units are laid down in buckets to provide an appreciation of
balances in terms of relative shortage, adequacy, luxury con-
sumption or excess of contributing nutrients. Differences between
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TN and TP specimens can be observed in the pan balance
diagram. There were marked differences between the TNs and
TPs in Cu concentration, apparently misbalancing significantly
[Mn |Zn,Cu] and [Zn |Cu]. Although P shortage seemed to be
small in TP specimens, it contributed to misbalance [P |N,S] in
TP specimens.

The [Fe |Mn,Zn,Cu] misbalance of “Haden” specimens,
although not significant due to too few observations (5), is
attributable to a balance driven positively by relatively low
Fe and high Cu levels. The “Espada” [Fe |Mn,Zn,Cu] balance
was similar to that of “Tommy” and “Palmer.” Even though
“Espada” showed relatively low Fe, Mn, Zn and Cu levels, this
apparent shortage of nutrients was properly balanced. However,
those low concentrations were misbalanced with other nutri-
ents because the [Fe,Mn,Zn,Zn,Cu |B,Mg,Ca,K,P,N,S] fulcrum

FIGURE 3 | Binary classification of data with indexes (top). Class sum
of squares (bottom).

leaned to the right (positive side). Also, low Mg and low Ca
in “Espada” specimens misbalanced [Mg,Ca |K] while maintain-
ing [Mg |Ca] properly balanced. The [N |S] balance of “Espada”
significantly leaned to the left due to relative N excess. The
“Espada” [Fv |Nutrients] balance departed significantly from TNs
on the negative side, indicating overall relative nutrient short-
age. Although balances related to micronutrients were within
TN range, “Tommy” was largely misbalanced by relative K
shortage and somehow by relative Mg shortage and, appar-
ently, relative Ca excess. The addition of K and Mg fertilizers to
“Tommy” could likely re-establish the [Fv |Nutrients] balance.
Most balances of “Palmer” were within TN balance ranges, except
for [Mg,Ca |K], mostly due to relative K excess. This balance
could be likely re-established by adding Mg and Ca or reduc-
ing or omitting K additions, with some risk of misbalancing
other balances.

BIASES
The Mahalanobis distance from TN specimens based on the
natural log of concentrations, as well as the DRIS nutrient imbal-
ance indexes using TN specimens as standards, were compared

Table 3 | Confidence intervals of ilr values (±t0.025

√
s2/n) for true

negative (TN) specimens (n = 20) in the Brazilian mango data set (LL,

lower limit; UL, upper limit).

LL Median UL

[Fv |S,N,P,K,Ca,Mg,B,Cu,Zn,Mn,Fe] −7.153 −7.086 −7.000

[Cu,Zn,Mn,Fe |S,N,P,K,Ca,Mg,B] 5.394 5.518 5.859

[B |S,N,P,K,Ca,Mg] 4.454 4.639 4.720

[K,Ca,Mg |S,N,P] −1.312 −1.205 −1.170

[P |S,N] 1.227 1.300 1.338

[N |S] −1.652 −1.628 −1.551

[Ca,Mg |K] 0.248 0.345 0.407

[Mg |Ca] 1.563 1.598 1.682

[Fe |Cu,Zn,Mn] −0.162 −0.005 0.095

[Mn |Cu,Zn] −2.554 −2.374 −2.131

[Zn |Cu] −0.148 0.218 0.539

Table 4 | Covariance matrix (excluding outliers) of TN specimens of mango observations in the Brazilian data set used to compute the

Mahalanobis distance.

ilr1 ilr2 ilr3 ilr4 ilr5 ilr6 ilr7 ilr8 ilr9 ilr10 ilr11

ilr1 0.0267

ilr2 −0.0653 0.2467

ilr3 −0.0289 0.0403 0.0808

ilr4 0.0158 −0.0299 −0.0173 0.0233

ilr5 0.0068 −0.0344 0.0024 −0.0008 0.0140

ilr6 0.0076 −0.0233 −0.0025 0.0009 −0.0003 0.0117

ilr7 0.0053 0.0076 0.0000 0.0109 −0.0092 0.0038 0.0288

ilr8 −0.0032 0.0003 0.0132 −0.0082 0.0024 0.0039 −0.0039 0.0161

ilr9 0.0203 −0.0612 −0.0388 0.0196 0.0056 0.0024 0.0003 −0.0106 0.0757

ilr10 0.0507 −0.1155 −0.0809 0.0330 −0.0048 0.0266 0.0219 −0.0091 0.0617 0.2040

ilr11 0.0619 −0.2338 −0.0614 0.0111 0.0423 0.0156 −0.0330 −0.0254 0.0626 0.1599 0.5378
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FIGURE 4 | (A) Tukey test of ilr differences between TP and TN specimens:
where balance difference is negative, components on the left side of the
balance load more than those on the right side for TP specimens. (B)

Discriminant analysis between TP and TN specimens.

to the Mahalanobis distance from TN specimens based on unbi-
ased ilr balances in Figure 6. The bias of the approach can be
appreciated quantitatively by the importance of the departure
from the 1:1 line on the plot where concentrations are log-
transformed (R2 = 0.017) and by the importance of the residuals
where concentrations are computed as DRIS NII (R2 = 0.48).
Both approaches (log of concentrations and DRIS) produced
noisy diagnoses, possibly leading to conflicting interpretations.

DISCUSSION
MANGO IONOMES
Variation in ionomes could be interpreted only partly as geno-
typic effect because phenotypic plasticity can also be driven
by differential nutrient supplies. Phenotypic plasticity is a
phenomenon typical of domesticated species that are most often
bred for high productivity under relatively luxurious environ-
ments (Chapin III, 1980, 1988). Because mango varieties were
developed almost essentially (90%) from the germplasm of
Mangifera indica (Mukherjee, 1963), nutrient management of
mango orchards are generally thought to be related to yield poten-
tial at species rather than variety level. We found that genotypic
variation in nutrient balance could also be addressed in future
research when introducing new mango varieties in commer-
cial orchards, as shown especially by the differential ionomes of
“Espada” compared to “Tommy” despite similar nutrient supply.

There is often a large number of misclassified false negative
specimens in fruit crop survey datasets not only due to small
climatic variations and natural or pathological changes occur-
ring in trees, but also to biennal fruit bearing habits alternating
between “on-year” and “off-year” (Monselise and Goldschmidt,
1982). However, proper pruning of the mango tree presumably
limited the effect of alternate bearing on fruit yield in the surveyed
orchards.

BIASES
The positive shift of the Mahalanobis distances based on nat-
ural log transformations from the one based on ilr balances
(Figure 6) is due to the general overestimation of distances com-
puted across untransformed or log-transformed compositions
(Lovell et al., 2011). Filzmoser et al. (2009) argued that a log
ratio transformation is similar to a log transformation only
when a large filling value is used as denominator, because
lim

xfv→1
(alr(x) − ln(x)) = 0. We showed that, for mango ionomes,

biases using log-transformed concentration data distorted the
multivariate diagnosis despite large filling values. This result
indicates that log ratio transformations are preferable to log trans-
formations to avoid biases when handling plant nutrient data that
physiologically interact with each other.

NUTRIENT REBALANCING
When using ratios for diagnostic purposes, it is impossible to
figure out whether a nutrient level is too high, adequate or too
low: this appeared to be a definite weakness for nutrient ratio
interpretation (Walworth and Sumner, 1987; Wilkinson, 2000;
Marschner, 2011). However, the pan balance approach connects
nutrient balances and concentrations within a physiologically
sound, coherent, and statistically unbiased model, where concen-
trations can assist in appreciating the results of statistical analyses
performed on isometric log ratios. Using ilrs at fulcrums for
unbiased diagnosis and nutrient concentrations in buckets to
provide an appreciation of the results as relative shortage, ade-
quacy or excess compared to TN barycentres, plant diagnosticians
are informed at a glance on how concentration levels impact
on nutrient balances. We thus suggest a paradigm shift from
the traditionally combined and potentially conflicting CNCR-
DRIS diagnoses of nutrient status to the stand-alone pan balance
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FIGURE 5 | Pan balance design illustrating nutrient equilibrium in foliar tissues of mango varieties. Concentrations in weighing pans are
back-transformed ilr means. TN, true negative specimens; TP, true positive specimens.

FIGURE 6 | Bias measured by discrepancy between the Mahalanobis

distance from the TN population across the isometric log ratios

(x-axis) and (top) the Mahalanobis distance from the TN population

across the natural log of concentrations and (bottom) the DRIS

nutrient imbalance index.

metaphor illustrated by a mobile-and fulcrums setup with buck-
ets loaded with nutrient concentrations.

The analyst should keep in mind that nutrient deficiency, suffi-
ciency or excess of any nutrient can only be diagnosed in relation
to other nutrients. Only balances can be tested statistically with-
out bias. The weighing pans facilitate interpreting the balances

correctly. For example, the lower the [Mg |Ca] balance in TN
specimens can be appreciated as a combination of lower Ca and
higher Mg concentrations compared to TP specimens and this is
ascertained looking at concentration values associated with the
corresponding TN nutrient loads in weighing pans. Corrective
measures involving one element may impact on all balances con-
nected to it. This is why the effect of corrective measures on such
complex system should be confirmed by experimentation and
monitoring in many cases.

The primary misbalance in mango orchards appeared to be
[P |N,S] and [Mn |Cu,Zn]. The [P |N,S] is related to the bal-
ance between energy and protein synthesis (Loladze and Elser,
2011), while the [Mn |Cu,Zn] balance depends on soil properties
and fungicide applications. There was a narrow range of balances
for [P |N,S], indicating that fertilization should be conducted
carefully to avoid nutrient misbalance. The relations between
N, P, and S, as well as Mn, Cu, and Zn, could be appreciated
in the concentration domain to identify the buckets that are
under- (relative deficiency) or over-loaded (relative excess) with
nutrients.

CONCLUSION
Using a Brazilian mango data set of crop productivity and plant
and soil compositions, we addressed two typical problems when
diagnosing the mineral nutrition of fruit crops: (1) genotype
effect versus phenotypic plasticity and (2) double-biased diagno-
sis with CNCR and DRIS conducted separately versus a coher-
ent stand-alone balance-concentration setup. Because ionomes
are made of compositional data, former diagnostic tools devel-
oped according to the “Law of minimum” and illustrated by
Liebig’s barrel in agronomic studies should obviously be replaced
by more modern theories and numerical tools. The pan bal-
ance metaphoric representation of ilr variables is a novel model
that integrates statistical diagnosis of balances and qualitative
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evaluation of nutrient concentrations into a unified and coher-
ent diagnosis that avoids conflicting interpretation of nutrient
concentrations and ratios when diagnosed separately.

In the mobile device, the way the SBP is designed impacts on
the diagnosis, because confidence ranges of the reference group
(TN) are not multivariate, but a collection of interpretable uni-
variate ranges. However, the Mahalanobis distance, being inde-
pendent of the SBP, is a robust indicator of nutrient balance.
Future research should focus on fertilizer trials moving imbal-
anced nutrient profiles below the critical Mahalanobis distance
from a reference group. The choice of balances in this paper was
based on prior knowledge that could be ascertained by multi-
variate analysis of large and diverse data sets. This would require
analyzing metafiles across several species, genotypes, soil types,
irrigated or rainfed production systems and sampling periods.
The ROC procedure developed in this paper could be instrumen-
tal in comparing the performance of tissue and soil testing as tools
of nutrient management in cropping systems.
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