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The value of Agrobacterium tumefaciens for plant molecular biologists cannot be
appreciated enough. This soil-borne pathogen has the unique capability to transfer DNA
(T-DNA) into plant systems. Gene transfer involves both bacterial and host factors, and
it is the orchestration of these factors that determines the success of transformation.
Some plant species readily accept integration of foreign DNA, while others are recalcitrant.
The timing and intensity of the microbially activated host defense repertoire sets the
switch to “yes” or “no.” This repertoire is comprised of the specific induction of
mitogen-activated protein kinases (MAPKs), defense gene expression, production of
reactive oxygen species (ROS) and hormonal adjustments. Agrobacterium tumefaciens
abuses components of the host immunity system it mimics plant protein functions and
manipulates hormone levels to bypass or override plant defenses. A better understanding
of the ongoing molecular battle between agrobacteria and attacked hosts paves the way
toward developing transformation protocols for recalcitrant plant species. This review
highlights recent findings in agrobacterial transformation research conducted in diverse
plant species. Efficiency-limiting factors, both of plant and bacterial origin, are summarized
and discussed in a thought-provoking manner.
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INTRODUCTION
In their natural habitats, plants live in close contact with
a myriad microorganisms. Plant-microbe associations can be
mutually beneficial, such as the root nodule symbiosis with
nitrogen-fixing bacteria or the more wide-spread association
of plant roots with arbuscular mycorrhizal fungi (reviewed
in Parniske, 2008; Markmann and Parniske, 2009). In con-
trast, pathogenic fungi or bacteria impair plant development
and cause various disease symptoms in their hosts. The gram-
negative Agrobacterium tumefaciens of the family Rhizobeaceae
is a “special case.” It is a biotroph pathogen, which markedly
alters the physiology and morphology of infected host plants.
What makes Agrobacterium so special is its capability for interk-
ingdom gene transfer. In nature, wild type A. tumefaciens (as
well as A. rhizogenes and A. vitis) causes “crown gall disease,”
characterized by the growth of tumor-like structures (calli)
on host species. The genetic information for this anatomical
reprogramming is encoded on the tumor-inducing (Ti) plas-
mid. The transfer DNA (T-DNA) derived from the Ti plasmid
is imported into the host cell’s cytoplasm and subsequently
into the nucleus (Gelvin, 2003, 2005; Dafny-Yelin et al., 2008;
Pitzschke and Hirt, 2010b). T-DNA transport is mediated by
agrobacterial virulence factors, and—involuntarily—supported
by proteins of the attacked host. Over the last decade, microbiol-
ogists and plant scientists have disclosed an impressive portfolio
of agrobacterial infection strategies, some of which resemble
those in other pathogen-host interactions. Plant defense mech-
anisms counteracting these strategies are equally diverse and
impressive.

PRINCIPAL STEPS
The principal steps and factors involved in Agrobacterium-
mediated plant transformation are comparatively
well-understood, and reviews can be found in e.g., (Gelvin,
2009, 2010a,b; Pitzschke and Hirt, 2010b). Briefly, agrobacteria
sense phenolic substances that are secreted by wounded plant
tissue. Reception of these signals drives the expression of bacterial
virulence (vir) genes. Subsequently, Vir proteins are produced,
and single-stranded T-DNA molecules are synthesized from the
Ti plasmid. The T-complex, i.e., T-DNA associated with certain
Vir proteins, is injected into the host cytoplasm. A sophisticated
network of bacterial and plant factors mediates translocation of
the T-DNA to its final destination, the host cell’s nucleus.

Agrobacterium inserts substrates (T-DNA and virulence pro-
teins including VirD2, VirE2, VirE3, VirD5, and VirF) into
the host cell by a type IV secretion system (Cascales and
Christie, 2003). This strategy is also employed for the deliv-
ery of microbial factors by other plant pathogens, including
Xanthomonas campestris (Thieme et al., 2005) and Burkholderia
(Engledow et al., 2004). Likewise, mammalian pathogens includ-
ing Bordetella pertussis, Legionella pneumophila, Brucella spp.,
and Helicobacter pylori, use type IV machineries to export
effector proteins to the extracellular milieu or the cell cytosol
(Christie and Vogel, 2000). Remarkably, under laboratory condi-
tions, agrobacteria can genetically transform virtually any type of
eukaryote, ranging from yeast (Bundock et al., 1995) to human
cells (Kunik et al., 2001) (reviewed in Michielse et al., 2005;
Lacroix et al., 2006). The T-complex, consisting of T-DNA,
bacterial virulence proteins (VirE2, VirD2) and the host factor
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VIP1 (VirE2-interacting protein 1) is imported into the nucleus.
Subsequently, the proteinaceous components are stripped off,
releasing the T-DNA from the T-complex. This step relies on
degradation of VirE2, VirD2, and VIP1 by the plant SCF protea-
somal machinery (see below). The bacterial F-box protein VirF,
which is contained in and confers substrate specificity to the SCF
complex, participates in this degradation. If the T-complex dis-
integrates before it is in contact with the host’s chromatin, the
delivered transgenes are expressed for only a few days. The loss
of transgene activity at later stages likely results from the T-DNA
being degraded by host nucleases (Gelvin, 2003). In contrast, if
the T-DNA is shielded until the T-complex is in contact with chro-
matin, stable transformants can be obtained. Due to its affinity
for histones, VIP1 most probably guides the T-DNA to its target
destination, the chromatin (Lacroix et al., 2008).

Since the discovery of the gene transfer mechanism (Schell and
Van Montagu, 1977; Holsters et al., 1978), Agrobacterium strains
have been converted (“disarmed”) into efficient delivery systems
for the genetic manipulation of plants. While transient expres-
sion approaches can provide rapid answers on e.g., subcellular
localization, protein-protein interaction and promoter/effector
relationships (Andrews and Curtis, 2005; Li et al., 2009; Pitzschke,
2013b), genetic engineering requires the transgene(s) to be stably
integrated in the host genome.

The so-called disarmed/non-oncogenic A. tumefaciens strains
employed are deprived of their Ti properties, and the T-DNA
region is used as a vehicle for the introduction of tailor-made
DNA sequences. Any DNA sequence placed between T-DNA
“border sequences” (Ti-plasmid-derived 25-bp direct repeats)
can be transferred (Gelvin, 2012). Disarmed strains, therefore,
facilitate transformation, but do not provoke callus growth or
other abnormalities caused by oncogenic strains. Consequently,
phenotypic abnormalities that may be exhibited by transformed
plants are primarily due to the particular transgene being
expressed. Furthermore, by using armed and disarmed strains
side-by-side, host responses that are independent of or dependent
on Ti sequences can be distinguished.

TRANSCRIPTIONAL RE-PROGRAMMING OF HOST CELLS
The advent of full genome sequencing and microarray technolo-
gies has created the opportunity to draw a complete picture
on Agrobacterium-induced changes at the transcript level. Gene
expression profiling data have been generated for various plant
species, and comprehensive databases (e.g., http://www.plexdb.

org) and bioinformatics resources even allow comparison of tran-
scriptional responses across multiple plant species (Dash et al.,
2012). One major finding from diverse microarray studies was
that agrobacteria largely modify host gene expression, particularly
that of defense-related genes.

This fact had already been recognized in the “pre-microarray
era.” cDNA-AFLP analysis of Ageratum conyzoides plant
cell cultures enabled the identification of (non-oncogenic)
Agrobacterium-induced transcripts, many of which encoded
putative defense factors (Ditt et al., 2001). In a subsequent
study the same research group observed an anti-correlation
between Agrobacterium-mediated transformation efficiency
and defense gene expression levels (Ditt et al., 2005). By the

approach of suppression subtractive hybridization and DNA
macroarrays, Veena Jiang et al. (2003) provided the first insight
into the molecular kinetics of Agrobacterium -plant interactions.
Transcriptional responses of tobacco BY-2 cell cultures to a subset
of agrobacterial strains, impaired in T-DNA and/or Vir protein
transfer, were monitored over a 36-h-period. All strains elicited
a general defense response during early stages of infection.
However, expression of defense-related genes was repressed
at later stages—exclusively by the transfer-competent strains.
More detailed expression profiling of selected genes furthermore
disclosed the “unintentional” participation of the host cellular
machinery in the transformation process (Veena Jiang et al.,
2003).

MICROBIAL ATTACK AND PLANT DEFENSE
Microbes attempting to invade their hosts betray themselves
by the presence of so-called microbe- or pathogen-associated
molecular patterns (MAMPs or PAMPs). These molecules, which
are recognized as “non-self” initiate the first line of defense,
known as PAMP-triggered immunity (PTI) (Nurnberger et al.,
2004; Sanabria et al., 2008; Boller and He, 2009) (see below).
Pathogens, in turn, aim to overcome PTI activation by inject-
ing certain effector proteins into the host cytoplasm. Perception
of these pathogen-encoded effectors by cognate intracellular
plant proteins raises the second line of defense, effector-triggered
immunity (ETI) (Bonardi and Dangl, 2012; Gassmann and
Bhattacharjee, 2012). This response is characterized by the induc-
tion of localized apoptosis (hypersensitive response, HR) and
systemic defense signaling. Plants capable of activating ETI can
thus not only restrict pathogen spread, but they can also fortify
themselves against subsequent attacks (Shah and Zeier, 2013).

MAMPs AND THEIR PERCEPTION
MAMPs are best described as molecular “signatures” typical
of whole classes of microbes (Boller and Felix, 2009). MAMP
perception through specific cell-surface-located proteins (“pat-
tern recognition receptors”) is a conserved strategy of eukary-
otic innate immune systems. Because MAMPs initiate defense
responses in many plant species, they are also referred to as
“general elicitors” (Nurnberger et al., 2004). Prominent examples
of MAMPs include oligopeptide elicitors such as those derived
from EF-Tu (elongation factor thermo unstable), flagellin, and
cryptogein (a fungal sterol-scavenging protein), as well as glycol-
conjugates, including bacterial lipopolysaccharides and peptido-
glycan, and the fungal MAMPs beta-glucan, chitin and chitosan
oligosaccharides (reviewed in Silipo et al., 2010).

The two undoubtedly best-characterized MAMP receptors
in plants, FLS2 and EFR, recognize the oligopeptides flagellin
and EF-Tu, respectively. Owing to their composite structure,
these membrane-located leucine-rich repeat-receptor-like kinases
(LRR-RLK) convert and transmit perceived “attack signals” into
the interior of cells to initiate appropriate defense responses.
On the contrary, the primary “aims” of pathogens are to claim
nutrients from and multiply to high levels in their hosts. To
avoid or block defense responses during early stages of infec-
tion, pathogens have two options: (1) evade recognition and
“sneak in” or (2) “step in self-consciously” and counteract the
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elicited warfare attack. Biotrophs, such as Pseudomonas syringae,
A. tumefaciens, Xanthomonas campestris, and Botrytis cinerea,
have developed sophisticated strategies to block defense signaling
in their hosts at several steps (Pitzschke et al., 2009c).

A total of 292 and 165 LRR-RLK genes were retrieved from the
rice and Arabidopsis genomes, respectively (Hwang et al., 2011).
These large numbers provide an idea of the versatility of LRR-
RLK applications. Specific roles have been ascribed to individual
family members. Studies in individual LRR-RLK mutants have
contributed to our understanding of pathogen perception in gen-
eral. They also demonstrate the similarity of early plant responses
to agrobacteria and other microbial pathogens.

For instance, fls2 mutants fail to recognize flagellin and are
more susceptible to infection by the pathogen Pseudomonas
syringae (Zipfel et al., 2004). Similarly, mutants deficient in EFR,
the receptor for the agrobacterial MAMP EF-Tu, are hypersen-
sitive to Agrobacterium-mediated transformation (Zipfel et al.,
2006). These examples demonstrate that “ignoring” the invader is
not advisable. Instead, perception is the first and mandatory step
to restrict bacterial invasion. FLS2 gene induction upon pathogen
exposure or flagellin treatment (Boutrot et al., 2010), as well as
EFR1 induction by EF-Tu-derived peptides (Zipfel et al., 2006)
reflect additional host mechanisms to better target the suspected
invaders.

MAPK SIGNALING
One of the early intracellular events following pathogen percep-
tion is signal transduction and amplification through mitogen-
activated protein kinases (MAPKs) (Nakagami et al., 2005;
Pitzschke et al., 2009c; Huang et al., 2012; Rasmussen et al., 2012).
MAPK cascades are conserved eukaryotic signaling modules.
Their minimal components, a MAPK kinase kinase (MAPKKK),
a MAPKK and a MAPK, represent multigene families. Exogenous
or developmental signals are perceived by a receptor which subse-
quently (directly or indirectly) initiates the MAPK cascade. Once
activated, a MAPKKK phosphorylates its downstream MAPKK
which in turn phosphorylates and thereby activates its down-
stream MAPK (Nakagami et al., 2005). MAPK-mediated phos-
phorylation of target proteins can alter their properties, such as
subcellular location, DNA-binding specificity, enzymatic activity
or stability. There is ample evidence for disturbed MAPK signal-
ing markedly affecting biotic and abiotic stress tolerance (Rohila
and Yang, 2007; Pitzschke and Hirt, 2009; Pitzschke et al., 2009a;
Rodriguez et al., 2010; Sinha et al., 2011; Persak and Pitzschke,
2013; Zhang et al., 2013b). It is very likely that such a scenario
will hold true in many plant species.

MAPK SIGNALING AND THE MULTIFUNCTIONAL PROTEIN VIP1
In the context of agrobacteria and pathogen defense, one mem-
ber of the Arabidopsis MAPK family has merited special attention:
MPK3. This protein is activated within few minutes upon treat-
ment with pathogens or bacterial elicitor-derived peptides such
as flg22 and elf18 (Djamei et al., 2007; Lu et al., 2009). MPK3 is
an important positive regulator in defense signaling (Nakagami
et al., 2005; Pitzschke et al., 2009c). From a pathogen’s point
of view, activation of MPK3 should be avoided to circumvent
repelling. Accordingly, agrobacteria have evolved strategies to

co-opt induction of this kinase. MPK3 phosphorylates the host
protein VIP1 and thereby triggers cyto-nuclear translocation of
this bZIP transcription factor (Djamei et al., 2007). VIP1, which
enters the nucleus via interaction with importin alpha (Citovsky
et al., 2004) subsequently induces expression of defense genes
such as PR1 (pathogenesis-related protein 1) (Djamei et al., 2007;
Pitzschke et al., 2009b; Pitzschke and Hirt, 2010a). Agrobacteria,
on the other hand, hijack VIP1 as a shuttle for nuclear import of
the T-complex (Citovsky et al., 2004). A number of plant species
lack putative VIP1 homologs; yet these species are transformable.
This apparent paradox was solved by the discovery and character-
ization of virulence factor VirE3. VirE3 functionally replaces the
“shuttle” function of VIP1, thus ensuring nuclear import of the
T-DNA (Lacroix et al., 2005). In contrast to VIP1, VirE3 is not a
transcription factor and is therefore unlikely to (directly) induce
defense gene expression. VirE3 may thus be an attractive target
for biotechnological approaches.

VIP1 as transcriptional regulator
A random-DNA-selection-assay (RDSA) enabled the identifica-
tion of putative VIP1 target sequences. The DNA consensus
motif recognized by VIP1 (VRE—VIP1 response element) was
found to be enriched in promoters of stress-responsive genes
(Pitzschke et al., 2009b). Notably, this motif does not resem-
ble known regulatory DNA elements. In vivo, VIP1 directly
binds to VRE sites in the promoter of MYB44 (Pitzschke et al.,
2009b), a stress-related transcription factor (Jung et al., 2008;
Persak and Pitzschke, 2013). Importantly, this binding occurs in
a stress-dependent manner that correlated with the MPK3 acti-
vation profile (Pitzschke et al., 2009b). Through binding to VRE
sites, VIP1 might directly regulate expression of another stress-
responsive gene, thioredoxin Trxh8. In protoplast cotransfection
experiments, VIP1 triggered the expression of the pathogen-
responsive PR1 gene (Djamei et al., 2007). However, this PR1
induction is likely an indirect effect. The PR1 promoter is devoid
of VRE sites; and PR1 is known as a late stress-responsive gene,
in contrast to the early and transient nature of MPK3 activa-
tion and VIP1 cyto-nuclear translocation. A very recent report
(Lacroix and Citovsky, 2013) provides a deeper insight into the
VRE-VIP1 mechanism. In agreement with the original study
(Pitzschke et al., 2009b), VIP1 bound VRE in vitro, and VIP1-
VRE binding strongly correlated with transcriptional activation
levels in vivo. Presence of the agrobacterial F-box protein VirF
did not affect VIP1-VRE binding in vitro. In contrast, coexpres-
sion of virF markedly decreased VIP1 transcriptional activation
ability in vivo. The most likely explanation for this effect is
that in vivo, VirF prevents VRE induction by triggering pro-
teasomal degradation of VIP1 (Lacroix and Citovsky, 2013).
In fact, agrobacteria have learned to control VIP1 abundance
by abusing the host proteasome machinery (see below). Being
aware of the ongoing host-pathogen arms race, it is tempting
to speculate that VIP1 may not only turn on expression of host
defense genes. Instead, agrobacteria may benefit from one or
more VIP1-induced gene products involuntarily provided by the
plant. Discovering the VIP1-targetome seems a highly rewarding
undertaking. Screening of the Arabidopsis genome for promoters
enriched in VRE and related motifs isolated by RDSA (Pitzschke
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et al., 2009b) could be a first step in that direction (Pitzschke,
unpublished).

Overexpression studies in tobacco have shown that VIP1
also promotes transformation efficiency in heterologous systems
(Tzfira et al., 2002). The cross-species functionality of VIP1 as
transcription factor was further documented in a rather non-
conventional expression system: protoplasts from red leaves of
poinsettia (Euphorbia pulcherrima). Polyethylenglycol-mediated
cotransfection experiments showed that VIP1 efficiently induces
VRE-mediated gene expression (Pitzschke and Persak, 2012). For
this transactivation to occur neither a tissue context, chloroplasts
nor external stimuli are required.

In its unquestionable key role in Agrobacterium-mediated
transformation, VIP1 presents an attractive target for manip-
ulation. It appears feasible to uncouple the T-complex-vehicle
from the defense-gene-inducer function. Experiments with a C-
terminally truncated VIP1 variant have shown that full-length
VIP1 is required for stable, but not for transient transforma-
tion (Li et al., 2005a). The transgenesis-enhancing effect most
likely derives from VIP1 acting as mediator between host nucleo-
somes and T-DNA/VirE2 complexes. Therefore, replacing critical
residues rather than deleting certain domains/peptides seems a
more purposeful approach. Indeed, mutation of Lys212, located
in the bZIP domain, rendered VIP1 fully incapable of transacti-
vating the PR1 promoter or a synthetic VRE promoter (Pitzschke
et al., 2009b).

THE SCF PROTEASOMAL MACHINERY, VirF AND VBF
Many biological processes, including host-pathogen interactions,
are controlled by SCF (Skp1-Cul1-F-box protein) ubiquitin ligase
complexes. These complexes mediate the proteasomal degrada-
tion of specific target proteins. The F-box protein contained in
SCF complexes confers substrate specificity (Lechner et al., 2006).

Although prokaryotes lack SCF complexes, F-box-encoding
genes are found in some pathogenic bacteria. The translocation
of F-box effectors appears to be a wide-spread “infection strat-
egy.” Pathogens secrete F-box proteins into their hosts to abuse
the SCF machinery, resulting in high infection rates. However, F-
box effectors are intrinsically unstable proteins which are rapidly
degraded by the host proteasome pathway (Magori and Citovsky,
2011b). The Citovsky laboratory uncovered yet another level of
agrobacterial cleverness and callousness: Destabilization of the
agrobacterial F-box protein VirF is counteracted by the bacte-
rial effector, VirD5 (Magori and Citovsky, 2011a). As if this was
not enough, agrobacteria also exploit additional host factors to
maximize infection: Diverse pathogens, including Agrobacterium,

induce expression of VBF (VIP1-binding factor), a host-encoded
F-box protein. VBF can functionally replace the agrobacterial
VirF in regulating VIP1 and VirE2 protein levels (Zaltsman
et al., 2010b). Analogous to VirF, VBF destabilizes VirE2 and
VIP1, most likely via SCF-mediated proteasomal degradation
(Zaltsman et al., 2010a). A very recent study extends on this find-
ing and highlights the importance of VBF at the final stage of
T-DNA pre-integration (Zaltsman et al., 2013). As reported ear-
lier, T-complexes can be reconstituted from ssDNA and VirE2 in
vitro (Zupan et al., 1996). Its tight packaging by VirE2 molecules
shields the ssDNA from the outside and makes it inaccessible
to degradation by exogenously added DNAse. In the presence
of extracts from wild type, but not from VBF antisense plants,
this “shielding effect” was found to be rapidly lost. Thus, VBF-
mediated uncoating of the T-complex indeed results in unmasking
of the T-DNA (Zaltsman et al., 2013).

Micro-bombardment studies in N. benthamiana leaves have
disclosed a cytoplasmic-nuclear distribution of VBF. In con-
trast, VBF/VIP1 complexes occur exclusively in the nucleus.
Based on these observations, VBF may have additional func-
tions in the cytoplasm, besides acting in T-complex disassem-
bly in the nucleus, (Zaltsman et al., 2010b). Alternatively, VBF
may re-locate upon pathogen attack (similar to VIP1). If this—
currently hypothetic—scenario was true, a straight-forward ques-
tion arises. Is VBF distribution phosphorylation-dependent; is it
controlled by MAPKs? At least in silico, such scenario appears
possible (Pitzschke, unpublished). MAPKs phosphorylate their
targets at serine or threonine residues adjacent to a proline.
A kinase interaction motif [KIM; R/K-x2-6-I/Lx(/L)], known
to be recognized by mammalian MAPKs (Tanoue and Nishida,
2003), assists MAPK binding also in substrate proteins of plant
MAPKs (Schweighofer et al., 2007). The VBF protein sequence
contains one Ser-Pro dipeptide motif as well as one KIM (posi-
tion 164-171) (Figure 1). Pathogen-activated MAPK(s), such as
MPK3, may phosphorylate residue Ser17 and thereby initiate VBF
nuclear translocation.

THE ROLE OF PLANT HORMONES IN TRANSFORMATION
AND TUMOR FORMATION
A plethora of developmental and stimulus-triggered responses
are signaled via phytohormones. Auxin is involved in essen-
tially all aspects of plant growth and development (Benjamins
and Scheres, 2008; Ljung, 2013). Ethylene controls fruit ripening
and plant senescence. It also mediates biotic stress and numer-
ous other environmental responses (Merchante et al., 2013).
Abscisic acid controls seed germination, stomatal movement

FIGURE 1 | Arabidopsis VBF protein sequence. A peptide matching the consensus motif for MAPK interaction [R/K-x2-6-I/Lx(/L)], and a putative MAPK
phosphorylation site are highlighted.
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and is tightly connected with diverse abiotic and biotic stress
responses (Nakashima and Yamaguchi-Shinozaki, 2013). Salicylic
acid (SA), jasmonate and ethylene primarily act in biotic stress
protection. There is ample evidence for the existence of substan-
tial crosstalk between plant hormone defense pathways (De Torres
Zabala et al., 2009; Robert-Seilaniantz et al., 2011a; Boatwright
and Pajerowska-Mukhtar, 2013). These reports highlighted the
importance of the plant’s need to dynamically balance absolute
and relative levels of phytohormones. A complex and compre-
hensive review on plant hormones and pathogen response was
published very recently (Denance et al., 2013).

Agrobacteria largely shift the “hormone balance” in their
infected hosts. This effect on endogenous growth regulators will
ultimately lead to agrobacterium-induced tumor formation. An
elaborate study provided an insight into Agrobacterium-induced
phytohormonal changes, and it allowed the researchers to sepa-
rate tumor-dependent and-independent host responses. Lee et al.
(2009) examined the physiological changes and adaptations dur-
ing tumor development provoked by an oncogenic strain (C58)
or a disarmed derivate (GV3101), which only lacks the T-DNA
but not the Vir factors (VirD2, VirE2, VirE3, VirF) (Holsters
et al., 1980). The oncogenic strain was found to cause much
stronger host responses than the disarmed strain. The authors
monitored the kinetics of Agrobacterium-induced concentration
changes of plant hormones, including SA, ethylene, jasmonic
acid and indole-3-acetic acid (IAA, the most important auxin).
In parallel, they assessed transcriptional changes, with a focus
on hormone biosynthesis genes. At the early stage of infection,
IAA and ethylene started to accumulate, while later, after T-DNA
integration, primarily SA levels increased.

In the subsequent sections particular attention is given to the
roles of auxin and SA in the agrobacterium/plant interaction.

AUXIN
Auxin-controlled processes are tightly linked to the intracellular
auxin gradient. As reviewed recently (Korbei and Luschnig, 2011),
this asymmetric hormone distribution arises from polar deploy-
ment and intracellular trafficking of auxin carriers. The stability
and activity of these auxin transport proteins, in turn, is con-
trolled by a number of post-translational modifications (Lofke
et al., 2013; Rahman, 2013).

Upon its perception by a small number of F-box proteins,
auxin rapidly induces the expression of two types of transcrip-
tional regulators, encoded by the aux/IAA and ARF (auxin
response factor) gene families. In fact, each physiological response
might result from the combinatorial interaction between indi-
vidual members of these two families (Kim et al., 1997). ARFs
directly induce or repress the transcription of their target genes
that contain auxin responsive elements in the promoter. By bind-
ing to their partner ARFs, aux/IAA proteins keep ARFs in an
inactive state. In the presence of auxin, this inhibition is released
by degradation of the aux/IAA protein. Recent comprehensive
reviews on these principles of auxin responses can e.g., be found
in (Korbei and Luschnig, 2011; Lofke et al., 2013; Rahman, 2013).

Several plant pathogens interfere with auxin signaling. This
interference can occur at several levels. For instance, Pseudomonas
syringae was shown to alter Arabidopsis auxin physiology via

its type III effector protein AvrRpt2 (Cui et al., 2013). In this
scenario, AvrRpt2 promotes auxin response by stimulating the
turnover of aux/IAA proteins, the key negative transcriptional
regulators in auxin signaling. Furthermore, some P. syringae
strains were found to produce auxin themselves (Glickmann et al.,
1998).

miR393 as regulator of auxin signaling and bactericide synthesis
Agrobacteria employ an impressive strategic repertoire to manip-
ulate host auxin levels and signal transduction. First, auxin is
one of the T-DNA products introduced by oncogenic A. tume-
faciens (Weiler and Schroder, 1987). Because auxin stimulates
cell growth and gall formation, T-DNA-based auxin biosynthe-
sis serves the pathogen directly in remodeling its host. Attacked
host plants, on the other hand, try to evade or at least restrict
this remodeling. They employ a gene silencing-based mechanism
involving production of a particular micro RNA. miR393 tar-
gets three major auxin receptors (F-box proteins TIR1, AFB2,
AFB3) and contributes to antibacterial resistance (Navarro et al.,
2006). Increased levels of miR393 were found in C58-infiltrated
zones, but not in areas infiltrated with the disarmed control
(Pruss et al., 2008). miR393 appears to be a versatile instru-
ment to keep pathogen invasion in check. miR393 expression is
induced by the PAMP-derived peptide flg22 (Robert-Seilaniantz
et al., 2011b). Notably, flagellin sequences from Agrobacterium
(as well as Rhizobium) are exceptionally divergent from this PTI-
triggering conserved 22-amino-acid motif (Felix et al., 1999).
Arabidopsis plants overexpressing miR393 have a higher resis-
tance to biotrophic pathogens (Robert-Seilaniantz et al., 2011b).
The authors showed that miR393/auxin-related resistance is due
to interference with another hormone pathway, SA. Generally,
auxin and SA act as negative and positive regulators of plant
defense, respectively (Denance et al., 2013). These opposing
effects are largely due to the repressive effect of auxin on SA levels
and signaling, although auxin also represses defense in an SA-
pathway-independent manner (Kazan and Manners, 2009; Mutka
et al., 2013). As proposed by (Robert-Seilaniantz et al., 2011b),
miR393 represses auxin signaling and thereby prevents auxin
from antagonizing SA signaling. Infection studies with auxin sig-
naling mutants furthermore indicated that the auxin-regulated
transcription factor ARF9 induces accumulation of camalexin,
but represses accumulation of glucosinolate (Robert-Seilaniantz
et al., 2011b). Compared to camalexin, glucosinolates are con-
sidered more effective protectants against biotrophic invaders.
Therefore, miR393-related stabilization of ARF9 in inactive com-
plexes may present a means to shift camalexin toward glucosino-
late production. Whether miR393 synthesis upon agrobacterial
attack “only” serves to repress auxin-related callus growth or
whether it has additional functions in the defense remains to be
established. As noticed recently, naturally high contents of glu-
cosinolates per se are no obstacle to transformation. Tropaeolum
majus, a glucosinolate-rich plant of the order Brassicales, is trans-
formed by agro-infiltration of leaves (GV3101, disarmed strain)
to high efficiency (Pitzschke, 2013b).

Besides camalexin and glucosinolates, plants produce vari-
ous other secondary metabolites to defend themselves against
biotrophic pathogens. Agrobacteria can defy at least one major
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group of bactericides. Several phenolic compounds are enzymat-
ically converted by the agrobacterial protein VirH; and a virH2
mutant was found to be more susceptible to growth inhibition by
these substances (Brencic et al., 2004).

One member of the bactericidal polyamines deserves special
attention, putrescine. A recent study (Kim et al., 2013) docu-
mented that putrescine accumulation is controlled by MAPK
signaling involving MPK3 and MPK6. In Arabidopsis, ADC genes,
encoding key enzymes for putrescine biosynthesis, are induced by
infection with P. syringae. adc-deficient mutants are impaired in
P. syringae-induced PR1 expression. Disease susceptibility in these
mutants can be recovered by exogenous putrescine. ADC tran-
script and putrescine levels are elevated in transgenic Arabidopsis
plants expressing a constitutively active MAPK3/6 regulatory
kinase in the wild-type background. In the mpk3 or mpk6 mutant
background, however, this effect is largely reduced. An earlier
study in tobacco had shown that plants accumulate putrescine
derivatives also to combat agrobacterial infection. Auxin likely
is involved in this response (Galis et al., 2004). It remains elu-
sive whether P. syringae- and A. tumefaciens-induced putrescine
synthesis are mediated by a common MPK3/MPK6 signaling
pathway.

SALICYLIC ACID
Plants produce SA in response to pathogen attack or microbial
elicitors. Mutants with constitutively elevated SA levels are gener-
ally more resistant toward biotrophic pathogens (Boatwright and
Pajerowska-Mukhtar, 2013). Previously, SA was shown to atten-
uate A. tumefaciens-induced tumors (Yuan et al., 2007; Anand
et al., 2008). Additional experimental data documented that the
antagonism of auxin to SA responses (see above) is reciprocal. SA
represses expression of several auxin-related genes. Moreover, by
stabilizing Aux/IAA proteins, SA inhibits auxin responses (Wang
et al., 2007). Elevated SA levels were observed in Arabidopsis stalks
during later stages (>6 dpi) of agrobacterial infection, indicat-
ing defense activation. This response was provoked by both the
oncogenic (C58) and the disarmed strain (GV3101) (Lee et al.,
2009). However, Arabidopsis stems infected with C58 contained
higher levels of SA, which further increased in 35-day-old tumors.
The authors (Lee et al., 2009) also found that high SA levels in
mutant plants (npr1, cpr5) prevented tumor development, while
low levels promoted it (nahG, eds1, pad4). One specific role of SA
in the Agrobacterium-plant interaction is its inhibitory effect on
vir gene expression, which is accomplished by shut-down of the
vir regulon (Yuan et al., 2007). What is more, SA indirectly inter-
feres with pathogen multiplication by activating the expression
of quormone-degrading enzymes (Yuan et al., 2007). In sum-
mary, SA appears to counteract agrobacterial invasion at several
levels. It represses vir regulon genes (Yuan et al., 2007; Anand
et al., 2008) and induces quormone-quenching genes (Yuan et al.,
2007). Furthermore, SA antagonises auxin responses (Wang et al.,
2007) and acts as antimicrobial agent (Gershon and Parmegiani,
1962). Interestingly, SA accumulation in Agrobacterium-infected
Arabidopsis stalks was not accompanied by the induction of SA-
responsive pathogenesis-related genes (3 h, 6 d, 35 dpi tested) (Lee
et al., 2009). This effect is different from what is known from
other plant-pathogen interactions and from pharmacological

studies. Generally, in pathogen-infected plants, elevated SA syn-
thesis triggers PR gene expression. Likewise, PR genes are induced
by exogenous application of SA or its analog BTH (Lawton et al.,
1996). Despite the lack of PR gene induction, SA does play a
role in agrobacterial infection, as evidenced by the altered tumor
size in SA-deficient/accumulating mutants (Yuan et al., 2007; Lee
et al., 2009). Apparently, A. tumefaciens cannot prevent SA accu-
mulation, but it can suppress some SA-related defense responses.
As suggested by (Lee et al., 2009), abnormally high SA levels in the
host may have overextended the agrobacterial control machinery.

A recent comprehensive survey of Arabidopsis transcriptome
profiling data (including diverse stress treatments and biotic
stress signaling mutants sid2, npr1, coi1, ein2) provided a deeper
insight into the SA/PR gene relation (Gruner et al., 2013). In
P syringae-treated Arabidopsis, PR1 expression fully depends on
(isochorismate-synthase1) ICS1-mediated SA biosynthesis and
on (non-expressor of PR1) NPR1-mediated downstream signal-
ing. PR1 is not induced by exogenous hydrogen peroxide, abscisic
acid or flg22, and it is independent of jasmonic acid and ethylene
signaling (Gruner et al., 2013).

The small set of genes induced by Agrobacterium (strain C58:
35genes; strain GV3101: 28 genes) (Lee et al., 2009) is in strik-
ing contrast to the high number (948) of elicitor-responsive
(EF-Tu-derived peptide elf26) transcripts. Agrobacteria clearly
dampen host responses (Lee et al., 2009). This dampening is
not restricted to the transcriptional level. Histological analysis
(using diaminobenzidine) revealed that agrobacteria efficiently
repressed H2O2 accumulation in wounded stalks over several
days post-infection. The agrobacterial interference with the host’s
redox-regulatory machinery is also mirrored by the differential
expression of several oxidative-stress-related genes (Ditt et al.,
2001; Veena Jiang et al., 2003; Lee et al., 2009). By repressing
H2O2 production agrobacteria may also avoid activation of ROS-
dependent defense genes. Given the known sensitivity of any
living cell to reactive oxygen species (ROS), the blocking of accu-
mulation appears an agrobacterial strategy to protect both itself
and its living food source, i.e., the host.

PLANT ATTEMPTS TO REPRESS ONCOGENE EXPRESSION
Plants exhibit an admirable perseverance in their battle against
microbial manipulation. Even after unsuccessful attempts to
escape Agrobacterium-induced genetic re-programming, the host
cell does not surrender. Instead, transformed cells employ gene
silencing mechanisms to limit the levels of T-DNA-derived tran-
scripts. Evidence for the involvement of post-transcriptional gene
silencing had been provided in a pioneering work by Dunoyer
et al. (2006). Small interfering RNAs (siRNAs) directed against T-
DNA oncogenes (tryptophan 2-monooxygenase and agropine syn-
thase) were detected in Nicotiana benthamiana leaves 3 days after
infiltration with virulent agrobacteria. Additional experiments
in Arabidopsis further stressed the importance of gene silencing
as a disease-limiting strategy. RNA interference-deficient mutant
plants (rdr6, lacking a RNA-dependent RNA polymerase) were
found to be hypersusceptible to agrobacterial infection, as evi-
denced by extensive tumor formation (Dunoyer et al., 2006). The
researchers also conducted infection studies in leaves and stems of
Nicotiana bethamiana carrying a post-transcriptionally-silenced
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reporter gene (green fluorescent protein, GFP). This approach
enabled them to show that the siRNA protection strategy against
T-DNA genes is efficient only at early stages of infection: Strong
green fluorescence, high GFP mRNA concentrations and low
siRNA concentrations were detected specifically in young tumors.
Later in the infection process, the pathogen takes command. By
specifically inhibiting siRNA synthesis, agrobacteria induce an
anti-silencing state—thereby ensuring oncogene expression and
tumor maturation (Dunoyer et al., 2006).

A more recent study furthermore documented that DNA
methylation also plays a critical role in the regulation of T-DNA
transcript levels (Gohlke et al., 2013). The authors compared
the methylation pattern of mock- and Agrobacterium-inoculated
Arabidopsis inflorescence stalks on a genome-wide level. Four-
week-old tumors, arising from inoculation with the oncogenic
A. tumefaciens strain C58 contained a globally hypermethylated
genome. Intriguingly, a specifically low degree of methylation was
observed in T-DNA-derived oncogenes (Ipt IaaH, IaaM). Data
obtained from experiments with DNA methylation mutants lead
to the conclusion that crown gall formation and oncogene expres-
sion correlate with the unmethylated state and, consequently that
hypermethylation is a strategy to inhibit plant tumor growth.

RECALCITRANCE TO AGROBACTERIUM-MEDIATED
TRANSFORMATION
Agrobacterium naturally has a wide host range in plants, primar-
ily dicot species. Driven by the demand for higher yields and
improved stress tolerance the accessibility to transformation has
become a prime issue in crop science. Despite intensive research
it is still poorly understood why some plant species can be
transformed easily, while others are recalcitrant to Agrobacterium-
mediated transformation. Transformation methods of model
plants and important crop species are frequently updated, doc-
umenting the striving for simpler, more robust and more efficient
protocols (reviewed in e.g., Pitzschke, 2013a). These protocols
primarily focus on optimizing the conditions of Agrobacterium—
explant co-incubation. Here, duration, light conditions and the
concentration of supplemented acetosyringone and plant hor-
mones are key parameters.

One central message emerges from enumerable transforma-
tion studies. The outcome of co-cultivation is primarily deter-
mined by the timing and intensity at which host defense responses
are activated. Understanding the molecular language of the
plant—Agrobacterium dialogue is therefore of substantial interest
both to basic research and agricultural science.

Studies that compare different cultivars of the same species
are particularly informative, and one such study shall be men-
tioned here. Transformation efficiencies between rice cultivars
differ greatly. The indica variety lags far behind the japonica
cultivars. A comparative study of the two cultivars in transient
and stable transformation assays revealed that the lower transfor-
mation efficiency in indica rice was mainly due to less-efficient
T-DNA integration into the host genome (Tie et al., 2012).
Microarray analyses (1, 6, 12, and 24 h post-infection) revealed
major differences in the Agrobacterium-induced changes in tran-
scriptome profiles of the two cultivars. These differences were
most pronounced at the early stages of infection (within the first

6 h). The authors observed an overall stronger response in the
indica cultivar (Zs), with several genes being repressed, and they
postulated that some of these genes may be required for the trans-
formation process. From this study, one may conclude that (1)
although T-DNA integration represents a late step in the trans-
formation process, the “decision” that leads to failure or success is
made early. This decision is made in a narrow time window, since
many Zs-specific transcripts are repressed only transiently (at the
1 OR 6 h time-point only). (2) Agrobacteria manage to actively
prevent repression of integration-assisting genes in the suscep-
tible cultivar. Among others, gene ontology (GO) annotations
“stress-responsive” and “lipid transport” are overrepresented in
the group of indica-specific transcripts. The lower T-DNA inte-
gration efficiency in the indica cultivar may also be attributable
to the specific repression of genes related to DNA damage repair.
This assumption is in good agreement with the importance of
the host DNA repair machinery in T-DNA integration reported
earlier (Li et al., 2005b; Citovsky et al., 2007).

THE ROLE OF REACTIVE OXYGEN SPECIES IN RECALCITRANCE
A promising approach for converting hitherto non-transformable
plant species is to determine the basis of this recalcitrance.
Poor transformation rates can have entirely different reasons. As
outlined above, bacterial and host factors contribute and need
to be well-balanced. In pro- and eukaryotic organisms alike,
ROS play important roles in the transmission of information.
ROS- and MAPK signaling in plants is strongly inter-connected
(Pitzschke and Hirt, 2009; Meng and Zhang, 2013). Because
high ROS levels trigger cell death, their targeted stress-dependent
production serves host organisms to restrict pathogen spread.
Inappropriate ROS concentration or distribution can therefore
be a barrier to successful transformation. For instance, recalci-
trance in Hypericum perforatum (St. John’s wart; medicinal herb),
cell cultures was found to be due to an early oxidative burst,
which killed 99% of the co-cultivated agrobacteria within 12 h of
infection. Interestingly, the oxidative burst only affected agrobac-
terial viability but did not trigger plant apopotosis (Franklin et al.,
2008). Antimicrobial factors likely also have a negative effect on
transformation efficiency and agrobacterial viability in H. perfo-
ratum. A 12-fold increase in xanthone levels was observed in H.
perforatum cells 1 day after infection. Increased xanthone levels
correlated with an elevated antimicrobial and antioxidative com-
petence. On the basis of these observations one may conclude that
the plant can divert its antioxidant capacity to prevent itself, but
not the invader, from oxidative damage.

One known agrobacterial factor determining oxidative resis-
tance levels is the ferric uptake regulator Fur. A fur-deficient
mutant was found to be hypersensitive to H2O2 and to
have reduced catalase activity (a H2O2-detoxifying enzyme).
Agrobacterial fur mutants were also compromized in tumori-
genesis on tobacco leaves (Kitphati et al., 2007). Similarly, A.
tumefaciens mutants in the RirA gene (rhizobial iron regulator;
repressor of iron uptake) exhibited a peroxide-sensitive pheno-
type and were impaired in tumor formation on tobacco. In
addition, induction of the virulence genes virB and virE was
reduced in rirA mutants (Ngok-Ngam et al., 2009). Furthermore,
A. tumefaciens mutants affected in oxidative stress tolerance
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FIGURE 2 | The molecular arms race between host and microbe in Agrobacterium-mediated plant transformation. The activities of both partners need
to be well-balanced for successful transformation. Numbers in brackets refer to the corresponding sections in the manuscript.
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have been characterized, e.g., mbfA (membrane-bound ferritin)
(Ruangkiattikul et al., 2012).

The above examples document the vital importance of ROS
balancing for both invader and invaded cell. It is tempting to
speculate that, the reduced tumor formation in the fur/tobacco
and rirA/tobacco interaction is caused by the poor viability of
agrobacteria in a ROS-rich environment of infected host cells.
Such a scenario would be in analogy to the situation in H. per-
foratum (Franklin et al., 2008), At this point, concerted efforts of
microbiologists and plant biologists are needed to systematically
define the proportion and identity of ROS-related agrobacterial
factors playing a limiting role in plant transformation.

Another recalcitrant species of agricultural importance that
has attracted attention is grapevine (Vitis vinifera). Proteomic
profiling in grapevine calli grown in the absence or presence of
agrobacteria allowed identification of 38 differentially expressed
proteins (Zhao et al., 2011). ROS scavenging enyzmes were down-
regulated in co-cultivated cells (ascorbate peroxidase, tocopherol
cyclase). The authors concluded that low transformation rates
and extensive necrosis in A. tumefaciens-treated grapevine derive
from an impaired ROS scavenging system and an over-activation
of apoptotic/hypersensitive response pathways.

APPROACHES TO OVERCOME RECALCITRANCE
Because strong and prolonged host defense responses generally
correlate with reduced transformation success (Figure 2), exter-
nal attenuation of these responses may be a means to improve
transformation efficiencies. The experimental approaches that
can be taken to manipulate host defenses are as manifold as
the defense strategies themselves. The problem can be tackled
from different sides: (1) by using modified agrobacterial strains
that elicit a weaker defense, as e.g., shown in a study on potato
(Vences-Guzman et al., 2013); (2) by modifying the composi-
tion of plant media and/or growth conditions to keep defense
levels low, e.g., Zhang et al. (2013a); (3) by transient and tar-
geted manipulation of the plants non-self-recognition machinery
(see below); (4) by counteracting the effect of antimicrobial sub-
stances. This strategy proved successful in tea, where L-glutamine
was found to overcome the bactericidity of polyphenols (Sandal
et al., 2007).

In an innovative study Tsuda and colleagues demonstrated
how detailed knowledge on plant-microbe interactions can be
employed for successful transformation. AvrPto encodes an effec-
tor protein from the bacterial plant pathogen Pseudomonas
syringae. The protein suppresses plant immunity by interfer-
ing with plant immune receptors. The AvrPto gene was placed
under the control of a dexamethasone-inducible promoter. In
transgenic Arabidopsis plants carrying the inducible construct,
dexamethasone pre-treatment largely improved transformation
in agro-infiltrated leaves (Tsuda et al., 2012).

An entirely different “pre-treatment strategy” proved success-
ful in perennial ryegrass (Lolium perenne L.) (Zhang et al., 2013a).
Stable transformants were obtained at an impressively high rate
(84%), and 60% of the transgenic calli were regenerated into
green plantlets. This was achieved by combining two strategies,
while either treatment alone had little effect (10–20% transforma-
tion efficiency): (1) Myo-inositol, a component of many standard

media, was removed from the callus culture medium. (2) A cold
shock pre-treatment was applied prior to agrobacterial infection.

Myo-inositol levels in plants are primarily controlled by a
specific oxygenase, which catalyses the first step in the conver-
sion of this sugar into plant cell wall polysaccharides (Endres
and Tenhaken, 2009). The basis of the effect observed by Zhang
and colleagues is still largely elusive. It appears that myo-inositol
acts in different ways and at multiple levels: omission of myo-
inositol promoted Agrobacterium binding to the cell surface. It
also repressed H2O2 production in infected tissue. One indirect
consequence of ROS production, callus browning, could fur-
thermore be suppressed when including the cold pre-treatment
(Zhang et al., 2013a). Worthwhile questions are: Does growth of
cold-pre-treated calli on myo-inositol-free medium alter cell wall
composition to support agrobacterial attraction, invasion and/or
survival in L. perenne cells? If so, what is the critical difference?
Can such favorable cell wall characteristics be imitated to facilitate
agrobacterial transformation of other recalcitrant species?

CONCLUSIONS
The molecular battle between agrobacteria and plants is impres-
sive, instructive and challenging (Figure 2). Impressive, because
the arms race takes so many forms. Instructive, because dis-
coveries from Agrobacterium-plant interaction studies may drive
progress in other fields of microbe-host association research.
Challenging, because the external conditions that permit or pro-
hibit transformation including transgene expression are diverse,
and the balance needs to be determined empirically. The current
state of research provides substantial breeding ground for plant
scientists to search for this balance in their favorite species in a
more targeted manner.
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