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Long-distance phloem transport occurs under a pressure gradient generated by the
osmotic exchange of water associated with solute exchange in source and sink regions.
But these exchanges also occur along the pathway, and yet their physiological role has
almost been ignored in mathematical models of phloem transport. Here we present
a steady state model for transport phloem which allows solute leakage, based on the
Navier-Stokes and convection-diffusion equations which describe fluid motion rigorously.
Sieve tube membrane permeability Ps for passive solute exchange (and correspondingly,
membrane reflection coefficient) influenced model results strongly, and had to lie in the
bottom range of the values reported for plant cells for the results to be realistic. This
smaller permeability reflects the efficient specialization of sieve tube elements, minimizing
any diffusive solute loss favored by the large concentration difference across the sieve tube
membrane. We also found there can be a specific reflection coefficient for which pressure
profiles and sap velocities can both be similar to those predicted by the Hagen-Poiseuille
equation for a completely impermeable tube.
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INTRODUCTION
Phloem transport denotes long-distance transport, mainly of
assimilates arising from photosynthesis, and is the movement
of a solution in a continuum of interconnected cells, sieve ele-
ments, within the phloem of the vascular tissues in plants. It
is currently accepted that solutes enter and exit the sieve tubes
at sources and sinks, water enters and exits osmotically, and
the solution moves in these sieve tubes due to the consequent
osmotically generated pressure gradient: the theory of Münch
pressure flow.

However, there is also a considerable radial exchange of solutes
between the sieve tubes and the adjacent cells along the long-
distance pathway between source and sink regions, the so-called
transport phloem (i.e., main veins, petioles, stems, and main
roots) (Van Bel, 2003). This radial exchange has hardly been
addressed in mechanistic modeling of phloem transport. In early
work when there were vigorous discussions on the pathway mech-
anisms the flux was specified (e.g., Tyree et al., 1974; Goeschl
et al., 1976), and more recently models of cambial growth in trees
have included radial solute flux as a variable (among many pro-
cesses) (De Schepper and Steppe, 2010; Hölttä et al., 2010). The
radial flux can take both apoplastic and symplastic pathways, and
either path can predominate according to plant species and condi-
tions (Patrick and Offler, 1996). Here we consider the apoplastic
path only, where exchange is believed to be a leak/retrieval sys-
tem (Tegeder et al., 2012). The passive leak, diffusive but possibly
facilitated, is driven by the high concentration difference between
the sieve element/companion cell complex and its surround-
ing apoplast (Minchin et al., 1984; Minchin and Thorpe, 1987;

Patrick, 1990; Van Bel, 1990; Carpaneto et al., 2005; Thorpe et al.,
2005). The active retrieval is driven by sucrose/proton symport
(Hafke et al., 2013). There is good direct evidence for the mech-
anism of retrieval in several species but, for unloading to be
studied, no technique has yet given appropriate access. Passive
unloading of photosynthates into the apoplast has been esti-
mated at about 6% cm−1 in bean (Phaseolus vulgaris) (Minchin
and Thorpe, 1987; Van Bel, 1990). This passive radial exchange
of solutes is coupled with radial water flux. For example, leak-
age of radio-labeled photosynthates responds to changes in the
apoplastic water potential [e.g., by perfusing the apoplast with
sorbitol (Minchin et al., 1984); mannitol (Aloni et al., 1986;
Cabrita, 2011) or polyethylene glycol (Cabrita, 2011)]. The leak-
age of other metabolites shows similar behavior (Aloni et al.,
1986).

Given the current information about the complex process of
solute exchange in the transport phloem, and in the belief that
any realistic model for transport phloem should include such a
process, we chose as a first step to consider only the passive leak,
characterizing the sieve tube membrane by a membrane perme-
ability Ps (in our case for sugars) and a reflection coefficient σ

which describes the extent to which solute exchange is affected by
the concentration difference across the membrane (Nobel, 2009).
In all existing mathematical models of long-distance phloem
transport based on the Münch pressure flow hypothesis [see Table
1 of Thompson and Holbrook (2003a)] the reflection coefficient
was set to σ = 1, thus completely decoupling water exchange and
solute exchange by assuming an ideally semipermeable mem-
brane. The omission of radial solute exchange is not only a major
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gap in the description of phloem transport, but also makes the
existing mathematical models suspect for interpreting the vast
amount of experimental data that has been collected concerning
phloem physiology.

Here we investigate the role of radial solute exchange in the
transport phloem by studying a relatively simple system: steady
state transport of a homogeneous solution (consisting of a sin-
gle solute and water) in a tube surrounded by a bath of solution
with predefined (but not necessarily constant) pressure and con-
centration. The simplicity of this setup allows us to highlight
the effect of including radial solute exchange by comparing our
findings with previous results from Thompson and Holbrook
(2003b) and Phillips and Dungan (1993). In order to model the
hydrodynamics of this system in a rigorous way we adapted a for-
malism introduced by Phillips and Dungan (1993), based on the
Navier-Stokes and convection-diffusion equations. We extended
this approach by introducing boundary conditions that spec-
ify radial exchange of solute across the sieve tube membrane.
These exchange processes were described using the formalism
of irreversible thermodynamics for transport across membranes
(Kedem and Katchalsky, 1958). Our main focus is to study the
importance for phloem transport of water and solute movement
through the sieve tube membrane, and to evaluate the com-
mon practice in phloem flow modeling to assume semipermeable
tubes.

MATERIALS AND METHODS
MODEL ASSUMPTIONS
We propose a hydrodynamic model of phloem transport, accord-
ing to the Münch pressure flow hypothesis, with allowance for
water and solute exchange along the pathway corresponding to
the transport phloem (Van Bel, 2003) (Figure 1). The following
assumptions are made:

1. The sieve tube is considered as a right circular cylinder of
length L and radius R, such that R � L, limited by a porous
membrane through which water and solutes fluxes occur. We
use cylindrical coordinates where the axis along the path-
way is denoted by z = [0, L], the radial coordinate is r =
[0, R] and ϕ = [0, 2π] is the azimuth. The tube is surrounded

FIGURE 1 | Sieve tube model. Solution enters the sieve tube with velocity
U, pressure pi and concentration ci . There is radial exchange of water and
solute across the sieve tube membrane along the pathway. The sieve tube
is surrounded by a medium (“apoplast”) with pressure pout(z) and
concentration cout(z). R and L are sieve tube radius and length, respectively.
r and z are the directions of radial and axial flow, respectively.

by unspecified tissue (for simplicity called apoplast in the
following).

2. The flow is axisymmetrical, i.e., flow depends on axis coordi-
nate z and radial coordinate r, but not on azimuth ϕ.

3. Sieve tube sap is regarded as a homogeneous solution of a sin-
gle solute with concentration c(z, r) in water and assumed to
be an incompressible Newtonian fluid of constant density, ρ.
Sieve tube sap viscosity, μ, is constant, i.e., independent of
solute concentration.

4. End effects caused by the entry and exit of sap in the sieve tube
are negligible.

5. The system is at steady state, i.e., time independent.
6. The sap enters the sieve tube with an average speed U, with an

average solute concentration ci and at average turgor pressure
pi.

7. The membrane hydraulic conductivity, Lp, is constant. Solute
exchange across the membrane is regarded as a passive pro-
cess in which there is: (i) diffusion of solutes that is linear
with the concentration difference between the sieve tube and
the surrounding apoplast, and dependent on the sieve tube
membrane solute permeability, Ps; (ii) convection of solutes
dragged by water through the membrane.

8. Apoplast solute concentration, cout(z), and hydrostatic pres-
sure pout(z) are not affected by solute or water exchange across
the sieve tube membrane. These functions have to be provided
as boundary conditions.

9. There is a constant water potential gradient d�out
dz surrounding

the sieve tube.
10. Diffusion of solute within sieve tube sap is isotropic and obeys

Fick’s law of diffusion with a constant diffusion coefficient D,
solute-specific.

11. There is no slip at the sieve tube membrane.
12. There are no chemical reactions.
13. For simplicity, we assume osmotic pressure to be given by

van’t Hoff equation for dilute solutions: � (z) = RgTc (z),
where Rg is the universal gas constant and T the absolute
temperature.

14. Sieve plates are transverse and spaced at regular intervals
(Figure 1). The effect of sieve plates on the overall sieve tube
conductance is described by an impedance factor β which is
related to sieve tube element structure and given by Thompson
and Holbrook (2003a):

β = 8αr2
pl(

8lp + 3πrp
)

R2 + 8αr2
p

(
l − lp

) , rp < R (1)

where α is the fraction of sieve plate area composed of sieve pore
area; l is the length of sieve tube elements in between sieve plates;
rp and lp define the sieve plate pore dimensions: radius and length
respectively (Thompson and Holbrook, 2003a). As α = 1, l > lp
and R > rp we have always β < 1. For the special case of no sieve
plates the impedance factor is set to β = 1.

FUNDAMENTAL EQUATIONS
As in Phillips and Dungan (1993) the calculation starts from
the steady state Navier-Stokes equation for an incompressible
Newtonian fluid which, using the assumption of axisymmetrical
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flow, can be written in cylindrical coordinates as (Truskey et al.,
2009)

ρ

(
ur

∂ur

∂r
+ uz

∂ur

∂z

)
= −∂p

∂r
+ μ∗

[
∂

∂r

(
1

r

∂ (rur)

∂r

)
+ ∂2ur

∂z2

]
(2)

ρ

(
ur

∂uz

∂r
+ uz

∂uz

∂z

)
= −∂p

∂z
+ μ∗

[
1

r

∂

∂r

(
r
∂uz

∂r

)
+ ∂2uz

∂z2

]
(3)

where pressure p and velocities ur and uz are functions of axial
coordinate z and radial coordinate r. In most cases we omit these
dependences in our notation for simplicity. The effect of sieve
plates is described introducing an effective viscosity μ∗ = μ/β,
thus having a more viscous fluid as β = 1 [see Equation (1)].
This approach treats the sieve tube as a conduit of essentially uni-
form resistivity, a close approximation to reality in view of the
distribution of the sieve plates within sieve tubes (Weir, 1981;
Henton et al., 2002). Pressure p includes the gravitational effect,
i.e., p = p′ + ρgh; where p’ is termed the hydrodynamic pressure
inside the sieve tube, g the local acceleration of gravity and h is the
vertical coordinate above a standard reference plane. Note that in
contrast to Phillips and Dungan (1993) we use the Navier-Stokes
equation including inertial forces [left hand side of Equations
(2) and (3), respectively] to keep the formulation as general as
possible. The actual impact of inertial forces is discussed in the
Results section. The continuity equation for incompressible fluids
in cylindrical coordinates is (Truskey et al., 2009)

1

r

∂ (r ur)

∂r
+ ∂uz

∂z
= 0 (4)

and the convection-diffusion equation for dilute solutions in
steady state is (Truskey et al., 2009)

ur
∂c

∂r
+ uz

∂c

∂z
= D

[
1

r

∂

∂r

(
r
∂c

∂r

)
+ ∂2c

∂z2

]
(5)

where concentration c is a function of coordinates z and r in the
same way as pressure and velocities. The axial and radial fluxes of
solute inside the sieve tube are defined as sum of convective and
diffusive components

jsz = uzc − D
∂c

∂z
(6)

jsr = urc − D
∂c

∂r
(7)

BOUNDARY CONDITIONS
To allow for solute and water exchanges across the sieve tube
membrane, the following boundary conditions are used: radial
flux of solution through the membrane (at r = R) is given by
Starling’s equation (Nobel, 2009):

ur(R, z) = LP
{

p (R, z) − pout (z) − σRgT [c (R, z) − cout (z)]
}

(8)

where the van’t Hoff expression of osmotic pressure for dilute
solution has been inserted. The reflection coefficient of the sieve

tube membrane σ assumes a value between 0 (totally permeable)
and 1 (semipermeable). Pressure, pout, and solute concentration
cout, outside the tube do not to depend on r and are assumed to
vary linearly with distance:

pout(z) = pout(0) + dpout

dz
z (9)

and

cout(z) = cout(0) + dcout

dz
z (10)

Radial passive flux of solutes through the membrane on the one
hand is given by Equation (7) for r = R, on the other hand it
can be defined as the sum of convective flux (solute dragged by
solvent) which is linear with the average solute concentration in
the membrane, c̄(z), plus diffusive flux across the membrane that
is described by the sieve tube membrane solute permeability, Ps,
and the concentration difference across the membrane (Kedem
and Katchalsky, 1958; Benedek and Villars, 2000).

jsr(R, z) = ur(R, z) c (R, z) − D
∂c

∂r
(R, z)

= (1 − σ)ur (R, z)c̄(z) + Ps [c (R, z) − cout (z)] (11)

The concentration of solute, c̄(z), within the sieve tube membrane
is given by c̄(z) = c(R,z) + cout(z)

2 . The no-slip condition implies
that

uz (R, z) = 0 (12)

which means that the fluid velocity will be in the radial direction
only, at the boundary.

Symmetry at the center of the tube implies that radial veloc-
ity as well as radial derivatives of axial velocity and concentration
are zero at r = 0: ur(0, z) = 0, ∂uz

∂r (0, z) = 0 and ∂c
∂r (0, z) = 0.

According to our model assumptions, flow is already fully devel-
oped at the beginning of the transport phloem region consid-
ered in our model; loading of solutes and water has occurred
in the source region, not being part of our model upstream.
Therefore, the boundary conditions at the inlet of the tube
z = 0 are 〈uz(0)〉 = U , 〈c(0)〉 = ci and

〈
p(0)

〉 = pi where the
bracket denotes the average over the cross section 〈c(z)〉 =
2

R2

∫ R
0 c(r, z)rdr.

Note that the hydrodynamic equations (2) to (4) describ-
ing the solution movement inside the sieve tube do not depend
on the solute concentration explicitly, and we take viscosity to
be independent of concentration. The flow depends on con-
centration through the boundary condition Equation (8) only.
Thus, we can treat independently the hydrodynamics problem
that describes how pressure and velocity change, and the solute
transport equation (5) which is solved once the velocity field is
determined.

DIMENSIONAL ANALYSIS
As with many problems in fluid dynamics and especially when
applying the Navier-Stokes equation, the problem becomes more
simple to solve using dimensional analysis (Regirer, 1960; Kundu
and Cohen, 2008). With this method, it is possible to predict
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physical parameters that influence the sap flow and determine
the relationships between several variables (pressure, velocity
and concentration) when an exact functional relationship is
unknown. This is not possible with a direct numerical solution
of the governing equations (2) to (5). Following Regirer (1960),
Phillips and Dungan (1993) and Thompson and Holbrook
(2003b), we use system geometry and boundary conditions as
scales to define dimensionless variables in the following way:

r̂ = r

R
, ẑ = z

L
, ûz = uz

U
and ĉ = c

ci
(13)

Inserting these definitions into the governing equations, the
corresponding scaling of the remaining variables and parame-
ters [unique except for numerical prefactors which were chosen
according to Thompson and Holbrook (2003a)] becomes

p̂ = pî

R2

8LUμ∗ , ûr = ur
L

RU
, ĵsz = jsz

Uci
, ĵsr = jsr

L

RUci
,

L̂p = Lp
16L2μ∗

R3
, P̂s = Ps

2L

RU

Substituting the dimensionless variables into the governing equa-
tions, the dimensionless Navier-Stokes Equations (2) and (3)
become:

Re ε3
(

ûr
∂ ûr

∂ r̂
+ ûz

∂ ûr

∂ ẑ

)
= −8

∂ p̂

∂ r̂
+ ε2

[
∂

∂ r̂

(
1

r̂

∂
(
r̂ ûr
)

∂ r̂

)
+ ε2 ∂2ûr

∂ ẑ2

]

(14)

Re ε

(
ûr

∂ ûz

∂ r̂
+ ûz

∂ ûz

∂ ẑ

)
= −8

∂ p̂

∂ ẑ
+ 1

r̂

∂

∂ r̂

(
r̂
∂ ûz

∂ r̂

)
+ ε2 ∂2ûz

∂ ẑ2
(15)

Here ε = R/L is an abbreviation for the aspect ratio and Re =
ρRU/μ∗ is the Reynolds number, the ratio of inertial to viscous
forces. The continuity equation (4) now reads

1

r̂

∂
(
r̂ ûr
)

∂ r̂
+ ∂ ûz

∂ ẑ
= 0 (16)

The convection diffusion equation (5) becomes

ε

(
ûr

∂ ĉ

∂ r̂
+ ûz

∂ ĉ

∂ ẑ

)
= 1

Per

[
1

r̂

∂

∂ r̂

(
r̂
∂ ĉ

∂ r̂

)
+ ε2 ∂2ĉ

∂ ẑ2

]
(17)

where Per = RU/D is the Péclet number for radial flow. The
components of the sieve tube solute flux are given by:

ĵsr = − 1

Per

∂ ĉ

∂ r̂
+ εûr ĉ (18)

ĵsz = − 1

Pez

∂ ĉ

∂ ẑ
+ ûz ĉ (19)

where Pez = LU/D = Per/ε is the Péclet number for axial flow.
The Péclet number for any direction gives the ratio of the rate
of convection of the solute in that direction by the flow of sap,
to the corresponding rate of diffusion of that solute driven by a
concentration gradient.

In dimensionless notation, the boundary conditions Equations
(8), (11) and (12) at the sieve tube membrane are

ûr(1, ẑ) = L̂P

2

{
p̂
(
1, ẑ

)− p̂out
(
ẑ
)− σĤ

[
ĉ
(
1, ẑ

)− ĉout
(
ẑ
)]}
(20)

1

Per

∂ ĉ

∂ r̂

(
1, ẑ

) = εûr
(
1, ẑ

) [
ĉ
(
1, ẑ

)− (1 − σ) ˆ̄c (ẑ)]− ε
P̂s

2

[
ĉ
(
1, ẑ

)
−ĉout

(
ẑ
)]

(21)

ûz
(
1, ẑ

) = 0 (22)

The dimensionless parameter Ĥ = Rg T ciR
2

8L Uμ∗ , defined by �̂ = Ĥ ĉ,
gives the ratio of osmotic forces to viscous forces for a flow with a
characteristic velocity U (Phillips and Dungan, 1993).

The boundary conditions at the center of the tube become

ûr
(
0, ẑ

) = 0, ∂ ûz
∂ r̂

(
0, ẑ

) = 0 and ∂ ĉ
∂ r̂

(
0, ẑ

) = 0. Boundary condi-

tions at ẑ = 0 are
〈
ûz
〉 = 1,

〈
ĉ
〉 = 1 and

〈
p̂
〉 = p̂i. Thus after non-

dimensionalization the parameters governing the model behavior
are L̂p, Ĥ, P̂s , σ, ε, Re, Per together with boundary condition
values p̂i, p̂out

(
ẑ
)

and ĉout
(
ẑ
)
.

SERIES EXPANSION
Proceeding in the same way as Phillips and Dungan (1993) we
expand the state variables, ûr , ûz, ĉ and p̂ as power series of
the small dimensionless aspect ratio ε: ûr = ∑∞

j = 0 εjûrj, ûz =∑∞
j = 0 εjûzj, ĉ = ∑∞

j = 0 εj ĉj and p̂ = ∑∞
j = 0 εjp̂j. The accuracy of

the expansions, i.e., the number of terms to include, will depend
on the value of ε: the smaller ε, the more significant are the first
terms compared to higher order terms. In the case of phloem
transport, ε is smaller than 10−3 for typical sieve tube dimen-
sions (Esau, 1969). For this reason we will only consider the first
two terms (zeroth and first order) of the expansion to describe
flow in a sieve tube. Higher order terms might be of interest when
studying effects on a smaller length scale (e.g., single sieve tube
elements).

Collecting terms of the appropriate order (ε0 and up to ε1,
respectively), using respective boundary conditions and insert-
ing zeroth order results into the calculation of first order leads
to the following expressions: axial velocity can be calculated from
Equations (15) and (22) as

ûz0
(
r̂, ẑ
)= 2

∂ p̂0

∂ ẑ

(
r̂2 − 1

)
(23)

ûz1
(
r̂, ẑ
)= 2

∂ p̂1

∂ ẑ

(
r̂2−1

)+ Re

36

∂2p̂0

∂ ẑ2

∂ p̂0

∂ ẑ

(
2r̂6−9r̂4+36r̂2−29

)
(24)

where pressures p̂0 and p̂1 are independent of radial coordinate r
as a result of Equation (14). Using Equations (23) and (24), radial
velocity follows from Equation (16) as

ûr0
(
r̂, ẑ
) = −1

2

∂2p̂0

∂ ẑ2

(
r̂3 − 2r̂

)
(25)

ûr1
(
r̂, ẑ
) = −1

2

∂2p̂1

∂ ẑ2

(
r̂3 − 2r̂

)− Re

144

∂

∂ ẑ

(
∂2p̂0

∂ ẑ2

∂ p̂0

∂ ẑ

)
(
r̂7 − 6r̂5 + 36r̂3 − 58r̂

)
(26)
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Inserting Equation (20) into Equations (25) and (26) the relation
of pressure and concentration becomes

∂2p̂0

∂ ẑ2
= L̂P

{
p̂0
(
ẑ
)− p̂out

(
ẑ
)− σĤ

[
ĉ0
(
1, ẑ

)− ĉout
(
ẑ
)]}

=: ûlat 0
(
ẑ
)

(27)

∂2p̂1

∂ ẑ2
= L̂P

{
p̂1
(
ẑ
)−σĤ ĉ1

(
1, ẑ

)}− 3Re

8

∂

∂ ẑ

(
∂2p̂0

∂ ẑ2

∂ p̂0

∂ ẑ

)
(28)

The average of zeroth order axial velocity over the cross section

is
〈
ûz0
〉 = − ∂ p̂0

∂ ẑ . Thus in our model the pressure gradient at any
distance from the origin is linear with the average axial velocity,
but dependent both explicitly and implicitly on the radial flux of
water at that location, given by the zeroth order function ûlat 0

(
ẑ
)
,

see Equation (27).
Evaluating the convection diffusion equation (17) for ε = 0

together with the boundary condition, we conclude ĉ0
(
ẑ
)

to be

independent of radial coordinate: ∂ ĉ0
∂ r̂ = 0. Using this result and

Equation (23) the first order expression of Equation (17) becomes

∂ ĉ1

∂ r̂
= Per

2
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∂ ẑ

∂ ĉ0

∂ ẑ

(
r̂3 − 2r̂

)
(29)

The first order expression of the boundary condition Equation
(21) is

1

Per

∂ ĉ1
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(
1, ẑ

) = ûr0
(
1, ẑ

) [
ĉ0
(
1, ẑ
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(
ẑ
)]

− P̂s

2

[
ĉ0
(
1, ẑ

)− ĉout
(
ẑ
)]

(30)

Combining Equations (29) and (30) and inserting Equations
(25) and (27) leads to the following zeroth order equation for
concentration

∂ p̂0

∂ ẑ

∂ ĉ0

∂ ẑ
= −ûlat 0

(
ĉ0 − (1 − σ)ˆ̄c0

)
+ P̂s

(
ĉ0 − ĉout

)
(31)

The final first order expression for concentration follows from
Equation (29) using the boundary conditions

〈
ĉ1(z = 0)

〉 = 0 and〈
ûz0(z = 0)

〉 = −∂ p̂0(z = 0)/∂ ẑ = 1

ĉ1
(
r̂, ẑ
) = Per

8

∂ p̂0

∂ ẑ

∂ ĉ0

∂ ẑ

(
r̂4 − 4r̂2)− 5Per

24

∂ ĉ0(z = 0)

∂ ẑ
(32)

As the velocity profile depends on pressure only [Equations (23)
to (26)] and first order concentration follows from zeroth order
expressions [Equation (32)] we need to know ĉ0, p̂0, and p̂1 only
in order to obtain the pressure and velocity profiles and thus
describe phloem flow up to first order of the expansion in aspect
ratio ε. These variables are obtained by solving the system of
coupled differential equations (27), (28) and (31).

For a semipermeable membrane, i.e., σ = 1 and P̂s = 0, the
zeroth order equations (23), (25), (27) and (31) are identical
to findings of Phillips and Dungan (1993) except for different
numerical prefactors stemming from slightly different definitions

of the dimensionless quantities. Also in this case Equations
(27) and (31) are equivalent to the governing equations of
Thompson and Holbrook (2003b), the only difference being
in the boundary conditions. In this light it is not surprising
that the zeroth order results Equations (27) and (31) for a
permeable membrane can also be obtained using an approach
similar to Thompson and Holbrook (2003a), based on conser-
vation equations and a local application of the Hagen-Poiseuille
equation together with appropriate boundary conditions,
see Appendix B.

NUMERICAL ANALYSIS
As there is no analytical solution for the system of differential
Equations (27), (28) and (29), they were transformed into a first
order system of differential equations [Appendix C, Equations
(C.3)–(C.7)] and solved with MATLAB (R2010b, MathWorks,
Inc.) ode15s differential equations solver routine. The calculated
zeroth order of concentration, ĉ0, turgor pressure, p̂0, the first
order of turgor pressure, p̂1, and their respective derivatives were
then used to determine the average first order concentration

〈
ĉ1
〉
,

Equation (C.8). Concentration profile and sieve tube turgor pres-
sure were determined as sum of zeroth and first order. From
these profiles, average over cross section of axial velocity Equation
(C.9), radial flow at sieve tube membrane Equation (C.10), axial
solute flux Equation (19) and radial solute flux Equation (18)
were determined.

PARAMETER VALUES
Unless otherwise specified, the parameter values of Table 1 were
used (the basis for these values is given in Appendix A). The
values of the non-dimensional model parameters related to the
parameter values of Table 1 are shown in Table 2.

RESULTS
PERMEABLE MEMBRANE—THE EFFECT OF RADIAL SOLUTE
EXCHANGE
Figure 2 shows profiles of pressure, concentration and flow for
different values of the reflection coefficient σ. In the case of a
semipermeable membrane (σ = 1), concentration and pressure
differences across the sieve tube membrane (c and p are higher
than cout and pout) create a water potential difference, ��, across
the sieve tube membrane that always draws water into the sieve
tube (ûr < 0, Figure 2D), causing a pronounced non-linearity of
pressure in the direction of flow (Figure 2A). In the case of a
membrane that is permeable to solutes as well as water (σ < 1),
the water influx depends on the value of the reflection coefficient
σ and can even be zero (Figure 2D), leading to a pressure profile
almost identical to Poiseuille flow (Figure 2A). Boundary condi-
tion Equation (20) shows that a water influx (ûr < 0) will occur
as long as:

σ >
p̂ (1, z) − p̂out (z)

Ĥ
[
ĉ (1, z) − ĉout (z)

] (33)

For typical physiological conditions (Table 1), i.e., for the order
of magnitude of pressure and concentration expected for sieve
tubes, water influx into the sieve tube occurs only if σ > 0.7
(Figure 2D). If the permeability of the membrane, Ps, increases
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Table 1 | Values of the physical parameters chosen to represent the

phloem.

Parameter S.I. Unit Value

Apoplast pressure, pout(0) MPa 0.1

Apoplast solute concentration,
cout(0)

mol m−3 60

Apoplast osmotic pressure
gradient, d�out

dz

MPa m−1 0.01

Apoplast pressure gradient, dpout
dz MPa m−1 0.04

Fraction of sieve plate area
occupied by pores, α

– 0.5a

Flow speed at the origin, U m s−1 1.7 × 10−4

Turgor pressure at the origin, pi MPa 1.0

Sieve tube solute concentration
at the origin, ci

mol m−3 600

Pathway length, L m 0.5

Sap viscosity, μ Pa s 0.0015

Sieve plate pore radius, rp μm 0.23a

Sieve plate length, lp μm 0.5a

Sieve plate impedance factor, β — 0.079a

Sieve tube element length, l μm 250a

Sieve tube membrane hydraulic
conductivity, Lp

m s−1 Pa−1 5 × 10−15

Sieve tube radius, R μm 10

Sieve tube solute permeability, Ps m s−1 1.83 × 10−9 (1 − σ) d

Sucrose diffusion coefficient, D m2 s−1 4.6 × 10−10 b

Sucrose specific volume, V̄S m3 mol−1 2.155 × 10−4 c

Temperature, T ◦C 22

Universal gas constant, Rg J K−1 mol−1 8.314

Water density, ρw kg m−3 998

a Thompson and Holbrook (2003a).
b Phillips and Dungan (1993).
c Eszterle (1993).
d Appendix A.

Table 2 | Values of non-dimensional physical parameters resulting

from data of Table 1.

Parameter Value

ĉout
(
ẑ
)

0.1 + 0.00679ẑ

ε 2 × 10−5

L̂p 0.3797

Ĥ 11.405

p̂i 7.746

P̂s 1.038 (1–σ)

Per 3.696

p̂out
(
ẑ
)

0.7746 + 0.3098ẑ

Re 8.94 × 10−5

σ 0 to 1

(with σ decreasing from σ = 1 to σ = 0.7; see Appendix A for
the relationship of Ps and σ), the absolute value of the pressure
gradient in the direction of flow becomes smaller with decreas-

ing axial velocity (Figure 2C) as
〈
ûz
〉 ≈ − ∂ p̂

∂ ẑ , see Equation (C.9).
This trend arises from two factors that decrease the sieve tube

solute concentration along the axis: first, the dilution created
by water influx, dependent on the water potential difference
across the sieve tube membrane; second, the passive efflux of
solutes across the sieve tube membrane, dependent on the con-
centration difference between the sieve tube and the apoplast.
The passive loss of solutes is favored by a higher sieve tube
solute concentration compared with the surrounding apoplast.
The decrease in concentration, as one moves further down the
tube, means less water will enter because the water potential
difference across the sieve tube membrane decreases, and more
so for a more permeable membrane (Figure 2D). Consequently,
due to the volume conservation, the increase in axial velocity
is less for more permeable membranes (Figure 2C) and there is
also a decrease in axial solute flux (Figure 2E). Due to the con-
centration difference across the sieve tube membrane there is
solute efflux which increases for smaller values of the reflection
coefficient, σ, corresponding to a leakier membrane (Figure 2F).
However, the sieve tube membrane solute permeability, Ps, is in
the order of 10−10 m s−1 (see Appendix A), and too small to
cause dramatic changes in the sieve tube concentration. If the
permeability of the sieve tube membrane, Ps, increases (with a
corresponding decrease in the reflection coefficient, σ) there is a
smaller osmotic effect on water exchange, leading to less water
entering the sieve tube (Figure 2D) and a smaller decrease of
solute concentration (Figure 2B). Eventually, for a very perme-
able membrane there is a reversal and water moves out radially
for σ < 0.7 (Figure 2D), and the axial velocity decreases along
the axis (Figure 2C). Simultaneously, the pressure inside the sieve
tube decreases less and less for smaller values of σ (Figure 2A).
Axial velocity and axial solute flux at one point become null
(Figures 2C,E). Numerical calculation has to stop at this point
since, without specifying boundary conditions at the outlet of
the tube, it cannot be decided whether there is inflow from the
opposite side or the axial velocity remains zero along the tube.

The expected behavior of solute concentration
〈
ĉ
〉

for very per-
meable membranes (small values of σ) would be that

〈
ĉ
〉

decreases
less with distance, approaching a value constant over distance for
σ = 0, but not increasing over the initial value at z = 0. Obviously
our numerical results of solute concentration (Figure 2B) deviate
from this expected behavior. The steep increase in

〈
ĉ
〉

(Figure 2B)
for very small values of σ stems from the fact that the pressure
gradient on the left hand side of Equation (31) approaches zero
much faster than radial solute flow on the right hand side. The
extreme of this scenario is seen for a totally permeable membrane
(σ = 0), in which case the radial water exchange is driven solely by
the pressure difference across the sieve tube membrane, and the
solute flux occurs predominantly through convection by the water
moving across the sieve tube membrane. In this case Equation

(31) becomes ∂ p̂0
∂ ẑ

∂ ĉ0
∂ ẑ =

(
−ûlat 0/2 + P̂s

) (
ĉ0 − ĉout

)
, concentra-

tion inside the sieve tube c0(z) should stay constant, and apoplast
solute concentration cout (z) would be expected to tend to c0(z)
as a consequence of the high permeability of the membrane.
However, our model assumes cout (z) to be independent of radial
solute flux, with constant apoplastic concentration gradient over
distance [model assumptions 8 and 9, see also Equation (10)],
leading to a higher concentration difference between inside and
outside than expected, and, as a mathematical consequence of
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FIGURE 2 | Effect of solute permeability on the flow within a sieve tube

limited by a permeable membrane. Pressure (A), average concentration (B),
average axial velocity (C), radial velocity at sieve tube membrane (D), axial (E)

and radial (F) solute fluxes with position ẑ for different reflection coefficients
(and therefore solute permeability). Pressure and axial velocity profiles for the
Poiseuille flow regime are also shown (• • • • • •) in (A) and (C) respectively.

Equation (31), an accumulation of solute inside the tube with dis-
tance. Thus the results for solute concentration (Figure 2B) and
radial solute flow (Figure 2F), though consistent with the model
assumptions, are not realistic for small values of σ.

COMPARISON OF ZEROTH AND FIRST ORDER OF EXPANSION
In order to justify the truncation of the series expansion we
compare zeroth and first order results. For velocity and pres-
sure Equations (23) to (28) the first two orders structurally only
differ by expressions proportional to the Reynolds number Re
which is quite small in our case (Re = 8.94 × 10−5 for the val-
ues reported in Table 1). Thus we expect terms proportional to
Re not to contribute significantly for the set of parameters given

(Table 1). The remaining terms of first order in Equations (24),
(26) and (28) should be of the same order of magnitude as zeroth
order, depending on boundary conditions. Together with the fact
that the aspect ratio ε is small (ε = 2 × 10−5 for the values of
Table 1) we conclude that zeroth order strongly dominates the
series expansions of velocity and pressure profiles.

The comparison is less obvious for the concentration pro-
file where first order Equation (32) is proportional to the Péclet
number Per . Since the Péclet numbers in our case are Per = 3.62
and Pez = 1.81 × 105, it is obvious from Equation (19) that the
diffusion component of the solute flux in the axial direction is
negligible compared to the convection component. However this
situation does not occur for the radial direction, Equation (18).
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FIGURE 3 | Comparison of zeroth and first order results. Average solute
concentration for different values of the reflection σ and axial position ẑ
between ẑ = 0 and ẑ = ẑmax (see Figure 2). All curves start at
ĉ0(ẑ = 0) = 1 and ĉ1(ẑ = 0) = 0. Parameters of Table 1 were used for the
numerical calculation. The diagonal indicates same order of magnitude of
zeroth and first order coefficients in the power series expansion.

Clearly, diffusive processes (in this case passive) can be important
for solute exchange between the sieve tube and its surround-
ings, and especially if the radial convection flow is small. Figure 3
shows a comparison of zeroth and first order concentration, i.e.,
the numerical solutions of Equations (31) and (C.8) for the
parameter values of Table 1 and different values of the reflection
coefficient σ. First order concentration never exceeds the order of
magnitude of zeroth order. Together with the small aspect ratio ε

it is thus clear that first order in general does not contribute signif-
icantly for this set of parameters (Table 1). This implies that out of
the set of dimensionless parameters governing the model behav-
ior together with the three boundary condition values p̂i, p̂out

(
ẑ
)

and ĉout
(
ẑ
)
, there are only three independent significant ones: L̂p,

Ĥ and the reflection coefficient σ. Permeability P̂s depends on σ,
see Equation (A.2). Aspect ratio ε, Reynolds number Re (i.e., the
effect of inertial forces) and Peclét number Per play a role only
when the first order of the series expansion becomes relevant,
such as in wider sieve tubes for which ε is bigger than we have
considered (Table A1).

SENSITIVITY ANALYSIS
For a semipermeable membrane (σ = 1), the exploration of
the model behavior for a wide range of possible values of the
dimensionless parameters has been provided by Thompson and
Holbrook (2003b). Extending this approach to semipermeable
membranes would be laborious due to the additional parameters
involved. Instead we performed a sensitivity analysis of our model
in order to compare the significance of the model parameters,
with particular focus on the role the reflection coefficient plays
compared to the other parameters, varying each model parameter
and boundary condition stepwise from −50 to 50% in relation

to the parameter values of Table 1 [which are somewhat simi-
lar to the standard parameter set of Thompson and Holbrook
(2003b)]. Figure 4 shows the relative change of the state vari-
ables pressure, average solute concentration, average axial velocity
and radial velocity at the sieve tube membrane. Variation of the
parameters causes the dimensionless values of pressure at the inlet
of the tube p̂(z = 0) to differ even if initial pressure pi is kept con-
stant. To avoid this effect we converted dimensionless results back
into original dimensions for the sensitivity analysis. Since the val-
ues of the state variables (except for radial velocity) are fixed by
boundary conditions at the inlet of the tube, see Figure 2, changes
at the end of the tube (i.e., z = L) are taken as indicator of model
sensitivity. Boundary conditions pi, ci, and U correspond to state
variables p, 〈c〉, and 〈uz〉, respectively. In cases where these bound-
ary conditions vary, curves of related state variables are not shown
in Figure 4 because the variation of initial values dominates the
changes of these variables.

Variation of parameters and boundary conditions is straight-
forward except for the reflection coefficient σ ∈ [0, 1] which is
the only parameter limited by a lower as well as an upper bound-
ary. We chose σ = 1 as reference and show negative variation
only (such that −50% corresponds to σ = 0.5). Doing so, σ over-
all appears as one of the most sensitive model parameter, see
Figure 4. Given the difficulty of comparing results for varying σ

with other (only partially limited) parameters, this result should
be treated cautiously regarding a direct numerical comparison
of the fractional sensitivities. Still it shows that even small vari-
ations of sieve tube solute permeability have a strong effect on the
resulting system behavior. Thus there remains no reason to ignore
radial solute exchange as it apparently plays in the same league as
hydraulic conductivity, geometry and other system properties.

Another obvious result from Figure 4 is that apoplast pres-
sure, concentration and respective gradients (Table 1) do not
contribute to the system behavior as strongly as other param-
eters and boundary conditions. The apoplast surrounding the
phloem has been considered to have a constant water poten-
tial in most phloem transport models; very few authors (Tyree
et al., 1974; Weir, 1981; Thompson and Holbrook, 2003b) con-
sidered the more realistic situation of a water potential varying
with height. Our result suggests that a water potential gradient
can be disregarded, since it constitutes the least influential param-
eter for all state variables. Nevertheless, in a branched architecture
the apoplastic water potential of alternative sinks may well be
important (Kaufman and Kramer, 1967; Lang and Düring, 1991).

DISCUSSION
Solute exchange across sieve tube membranes in the pathway
region has hardly been considered in mathematical modeling of
phloem transport. Tyree et al. (1974) and more recently Hölttä
et al. (2010) and De Schepper and Steppe (2010) have considered
a radial solute flow, but in each case the reflection coefficient’s
value was unity, thus both over-estimating the osmotic contri-
bution to the driving force for solution flow (Equation 8), and
decoupling solute and water fluxes (Equation 11). In this study
we present a rigorous way of including radial fluxes of both water
and solute in the pathway region, in order to give a more realistic
analysis of phloem transport. As a first step, we consider passive

Frontiers in Plant Science | Plant Biophysics and Modeling December 2013 | Volume 4 | Article 531 | 8

http://www.frontiersin.org/Plant_Biophysics_and_Modeling
http://www.frontiersin.org/Plant_Biophysics_and_Modeling
http://www.frontiersin.org/Plant_Biophysics_and_Modeling/archive


Cabrita et al. Phloem transport with radial exchange

FIGURE 4 | Sensitivity analysis. Varying all relevant model parameters up
to ±50% from the values of Table 1, the resulting relative change of the
state variables (at the end of the tube, i.e., z = L) is shown as indicator of
model sensitivity. State variables are pressure (A), average solute

concentration (B), average axial velocity (C) and radial velocity at the sieve
tube membrane (D). Dimensionless results were converted into original
dimensions. Curves are not shown for parameters that give a boundary
condition of the corresponding state variable.

solute exchange, as a sum of diffusive and convective fluxes across
the sieve tube membrane, see Equation (11). Our model considers
a diffusive solute flux, described by the irreversible thermody-
namics formalism which relates membrane solute permeability,
Ps, hydraulic conductivity, Lp, and solute reflection coefficient, σ

(Appendix A) (Kedem and Katchalsky, 1958).
In the following we compare our approach to the two main

papers it is an extension of, i.e., Phillips and Dungan (1993) and
Thompson and Holbrook (2003b). In both papers there are just
two dimensionless parameters governing the system behavior, L̂p

and Ĥ [R̂ and F̂ in the notation of Thompson and Holbrook
(2003b)], whereas we have three independent parameters L̂p,

Ĥ, σ when calculating the zeroth order of the series expansion,
together with three boundary condition values p̂i, p̂out

(
ẑ
)

and
ĉout

(
ẑ
)
. Aspect ratio ε, Reynolds number Re and Peclét number

Per enter the final equations if calculating the first order of the
series expansion, as we did in contrast to Phillips and Dungan
(1993). The main difference to Thompson and Holbrook (2003b)
(except for allowance of radial solute exchange) is in the bound-
ary conditions: with a permeable membrane, solute flux density is
no longer constant along the transport pathway, thus an assump-
tion of a fixed concentration value at the end of the tube becomes
numerically intricate when comparing different values of mem-
brane permeability. We therefore chose the boundary conditions
of Phillips and Dungan (1993), i.e., fixed values of flux, con-
centration and pressure at the inlet of the tube. Unlike Phillips
and Dungan (1993) and Thompson and Holbrook (2003b) we

refrained from exploring the full range of possible values of the
dimensionless parameters but focused instead on the effect of
different permeabilities with their different rates of radial solute
exchange, given a typical and representative set of physiological
parameters.

For a semipermeable membrane (σ = 1), radial water
exchange across the sieve tube membrane leads to a strong devia-
tion from Poiseuille flow (Figures 2A,C), the more so the longer
the sieve tube. For very long sieve tubes the model predicts that
pressure can become negative [Figure 5A, this phenomenon was
called “mathematical plasmolysis” by Thompson and Holbrook
(2003b)] and an unrealistically steep increase of axial veloc-
ity [“runaway phenomenon”, Tyree et al. (1974)] is observed
(Figure 5C). These effects are weakened for the more realistic
case of a permeable sieve tube membrane (σ < 1), see Figure 2.
According to Equation (33), for a certain value of the reflection
coefficient, i.e., for σ ≈ 0.73 for our choice of parameter val-
ues (Table 1), there is almost no water influx [ûr

(
r̂ = 1

) ≈ 0,
see Figure 5D], pressure stays positive (Figure 5A) and the “run-
away phenomenon” of axial velocity does not occur (Figure 5C).
These results show that longer sieve tubes can sustain more sta-
ble flow conditions than sieve tubes limited by semipermeable
membranes if solute efflux occurs, because of the smaller radial
water flux (Figures 2D and 5D) which leads to a less severe
dilution of sap (Figures 2B and 5B). At the special value of
solute permeability corresponding to σ ≈ 0.73, pressure and axial
velocity get closest to Poiseuille flow, and there is (approximate)
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FIGURE 5 | Effect of membrane solute permeability on flow within long

sieve tubes. Profiles of pressure (A), average concentration (B), average axial
velocity (C) and radial velocity at sieve tube membrane (D) for same parameter

set as in Figure 2, except for sieve tube length which was set to L = 3 m. The
two curves are for semipermeability (σ = 1.0), and for the permeability which
gives approximate equilibrium of radial water potential (σ = 0.73).

radial water potential equilibrium as can be seen from
Equation (20).

The assumption that sieve tubes are in water potential equilib-
rium with their surrounding apoplast in plant stems is generally
made when measuring turgor pressure gradients indirectly for
sieve tubes (Kaufman and Kramer, 1967; Wright and Fisher, 1980;
Sovonick-Dunford et al., 1981). Murphy (1989) showed that sym-
plastic connectivity between sieve tubes and the surrounding
tissue would not greatly affect the approximation of radial water
potential equilibrium. Although our results refer to an idealized
sieve tube with no active solute transport, we conclude that this
common assumption is more realistic in phloem transport mod-
eling if sieve tubes are taken as permeable, because the value of the
water potential difference, ��, across the sieve tube membrane
is approaching zero only for a permeable membrane (Figure 5D),
so that �� ≈ 0 for σ ≈ 0.73. Assuming this quasi radial water
potential equilibrium, and since �� = � – �out, the sieve tube
axial turgor pressure gradient is simply given by the sum of the
axial gradients, of the external water potential and the internal
osmotic pressure. That is:

dp

dz
∼= d�out

dz
+ d�

dz
(34)

Ignoring �� between sieve tubes and the apoplast, Equation
(34) should yield good estimates of phloem turgor pressure and

turgor pressure gradients specifically in pathway regions, as in
stems.

Clearly, metabolism and storage processes occur throughout
the stems of plants, especially in big specimens like trees, and so
significant radial solute fluxes must occur (Minchin and Thorpe,
1987; Van Bel, 1990; Hoch et al., 2003). Our value of sieve tube
membrane permeability to solutes, Ps, (in this case sugars) lies in
the bottom range of the values reported for plant cells, 10−10 to
10−6 m s−1, and it is smaller than the values reported for non-
charged solutes (Diamond and Wright, 1969; Nobel, 2009). Our
choice of parameter values is justified in Appendix A. This small
sieve tube membrane permeability to solutes reflects the efficient
specialization of sieve tube elements to bulk flow, as it minimizes
the diffusive solute loss across the sieve tube membrane. Hence,
we have a more efficient system of carbon transport along the
plant body that is built to keep solute losses at minimum. Such
an efficient transport system is especially important for big speci-
mens where source and sink regions are far apart. For example, in
the case of Cucurbitaceae, the combination of a small solute sieve
tube membrane permeability to sugars, e.g., sucrose, with the
fact that they transport oligosaccharides that exist in the phloem
only and seem not to leave it diffusively (Webb and Gorham,
1964, 1965; Schaffer et al., 1996), further illustrates a specializa-
tion of sieve tubes to a more efficient system for solute transport
bulk flow.
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OUTLOOK
In this study we have applied the Navier–Stokes equation with
boundary conditions that describe radial fluxes of both water
and solutes to allow a better understanding of phloem transport
dynamics. Reloading of solutes through active processes could
be added to the boundary condition Equation (11). Whether
described by the product of a transport coefficient and the
apoplast solute concentration, or by Michaelis–Menten kinet-
ics, the effect of solute reloading on phloem flow would be
mainly to counteract the passive solute loss and draw less water
into the sieve tube (Figure 2D). Consequently the changes of
turgor pressure, velocity and concentration with axial distance
would be less than our predictions where there is only solute
loss. Also, it would further illustrate the benefit for bulk flow in
sieve tubes from minimizing radial solute loss. Thus the changes
seen in both the axial velocity and axial solute flux would be
attenuated and their profiles would be closer to a more stable
system (Figures 2C,F). Additionally, if the reloading of solutes
were taken into account, it would be necessary to formulate
mechanisms that affect apoplastic concentration in relation to
sieve tube solute concentration. This also would help to obtain
a more realistic model behavior for very permeable membranes
(σ < 0.5). By testing several hypothetical reloading mechanisms
(e.g., linear function, Michaelis-Menten) together with possible
functions that describe apoplastic concentration over distance, we
could gain insight into how plants may have specialized in order
to cope with scenarios or situations in which their membrane
permeability is affected.

The resistance imposed by sub cellular structures, i.e., cyto-
plasmic components, phloem proteins (P-protein), and their rela-
tion to sieve plates, could be added to the sieve plate impedance
factor β, affecting the sieve tube resistance only, and described
by the viscous term of the Navier–Stokes equation. The effects
observed in our model would thus be enhanced, i.e., the pres-
sure changes due to viscous losses. Hence, the problem turns
out to be how to best describe the influence of those sub cellu-
lar structures on the overall resistance of the pathway. It would
also be informative to investigate the effect of a different sieve
tube element structure e.g., where surface arrangement affects
the areas for flows in membrane and lumen, as with inclined
sieve plates.

For the interpretation of phloem flow measurements, it is of
significance that our model shows that, out of all the parame-
ters, a crucial one, the reflection coefficient, typically is the least
well known. Its importance suggests that it might be possible to
estimate the value of the reflection coefficient by calibrating the
model with experimental data, if other relevant parameters are
sufficiently well known.
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APPENDIX A. PHYSIOLOGICAL PARAMETERS
SIEVE TUBE STRUCTURE
Sieve elements are elongated with the longitudinal axis paral-
lel to the bundle of vascular tissues. Their length is several to
many times greater than their width, but both dimensions can
vary considerably within the same plant and between species
and genera. Typically, the sieve element length varies from 100
to 5000 μm while its width varies between 10 and 400 μm, for
an approximately cylindrical shape (Esau, 1969; Parthasarathy,
1975). Therefore, for a sieve tube length, L, of 0.5 m, compara-
ble to a small plant, we specified the following dimensions of
the sieve tube elements: radius R = l0 μm; length l = 250 μm;
with 0.5 as the fraction of sieve plate area composed of sieve
plate pore area; sieve plate pore radius rp = 0.23 μm; sieve plate
pore length, which equals sieve plate thickness, lp = 0.5 μm
(Thompson and Holbrook, 2003a,b). With these dimensions the
sieve plate impedance factor β [Equation (1)] is 0.079, which
accounts for the sieve plate contribution to the total sieve tube
axial conductivity.

SAP VISCOSITY
The phloem sap viscosity depends on both temperature and
phloem sap chemical composition (proteins, sugars and other
solutes). According to Chirife and Buera (1997) the viscosity of
sugar solutions at a given temperature T is given by:

μ (φ, T) = μ0 (T) a (T) exp (E (T) xs) (A.1)

where μ0(T) is the viscosity of the solvent, in this case water,
at absolute temperature T; xs is the mole fraction of sugars and
a(T) and E(T) are parameters depending on both temperature
and sugar species. For a temperature of 22◦C (295.15 K), μ0 =
9.548 × 10−4 Pa s (Kundu and Cohen, 2008), a = 0.905 and
E = 57.19 (Chirife and Buera, 1997). However, for convenience,
as mentioned in the model assumptions we consider phloem
sap viscosity as constant (μ = 1.5 mPa s) well inside the range
(1–2 mPa s) for typical values of sucrose concentration in sieve
tubes, 300–900 mol m−3 (Taiz and Zeiger, 1998).

TURGOR PRESSURE
There are not many published results on phloem turgor pres-
sure. Considering both the nature and location of phloem in the
plant body, it is clearly difficult not only to get access but also
to measure its turgor pressure without damage. The first mea-
surement of turgor pressure in the phloem was by Buttery and
Boatman (Buttery and Boatman, 1964) using adapted manome-
ters directly inserted in the laticiferous tissue of Pará rubber tree
(Hevea brasiliensis). Although not belonging to the translocation
pathway, the latex vessel system and sieve tubes are intimately
associated elements so that the latex vessel system is considered
part of the phloem tissue in Hevea and its turgor pressure was
assumed to represent values in sieve tubes (Nicole et al., 1991).
However, the first measurements of sieve tube turgor pressure
(Hammel, 1968) used a manometric device, improved from that
of Buttery and Boatman (1964), inserted in the secondary phloem
of red Oak trunk (Quercus rubra). Hammel (1968) also observed
gradients in osmotic pressure, pressure reducing at 0.03 MPa m−1

in the direction of flow from source to sink. However, those values
were surprisingly low. According to the Münch hypothesis, higher
values of turgor and osmotic pressure gradients were expected for
the flows and sieve element anatomy of oak. Later, using pressure
transducers and the phloem needle technique of Hammel (1968),
other species were examined: white ash trunk (Fraxinus ameri-
cana L.) (Sovonick-Dunford et al., 1981; Lee, 1981a,b); Manna
ash (Fraxinus ornus) (Milburn, 1980); squirting cucumber stems
(Ecballium elaterium) (Sheikholeslam and Currier, 1977a,b). By
using a pressure bomb and Bourdon-type gauge Milburn and
Zimmermann (1977) measured pressures in coconut palm inflo-
rescences (Cocos nucifera L.). Milburn (1980), using a glass-spiral
pressure gauge, measured pressure in castor bean (Ricinus com-
munis) sieve tubes. Wright and Fisher (1980) developed another
direct way of measuring sieve tubes turgor pressure using sev-
ered aphid stylets with attached capillary micromanometers to
indicate pressure in sieve tubes of Babylon willow (Salix baby-
lonica) stems and in bark strips of sandbar willow (Salix exigua)
Wright and Fisher (1983). Following Wright and Fisher (1980),
Fisher and Cash-Clark (2000) measured sieve tube pressure in
the peduncle of wheat. Following the same method, but with an
on-line sensor, Gould et al. (2004) presented the second work on
a smaller species sow thistle (Sonchus oleraceus). In an indirect
method, phloem turgor pressure was determined by Kaufman
and Kramer (1967) from measurements of tissue water poten-
tial along with phloem sap osmotic pressure in red maple (Acer
rubrum L.), in reasonable agreement with Hammel (1968). Using
the same method, Rogers and Peel (1975) observed turgor pres-
sure gradients in stems of osier (Salix viminalis), and purple
willow (Salix purpurea). Based on these findings, for our mod-
eling purposes turgor pressure at entry to the system was set to
pi = 1 MPa.

SIEVE TUBE MEMBRANE HYDRAULIC CONDUCTIVITY, LP

One of the main parameters describing sieve tube membrane
transport is the membrane hydraulic conductivity, Lp. There are
not many data on Lp. The first measurements, by Milburn (1974)
on castor bean (Ricinus communis L.) bark segments, gave val-
ues between 5.7 and 8.8 × 10−14 m s−1 Pa−1. Sovonick-Dunford
et al. (1982) obtained a value of 9.6 × 10−15 m s−1 Pa−1 for the
sieve tube elements of secondary phloem of red oak stem (Quercus
rubra). Wright and Fisher (1983) measured 5 × 10−15 m s−1

Pa−1 on sandbar willow (Salix exigua) bark strips. Before these
investigations, most phloem transport models used the hydraulic
conductivity published for membranes of other types of plant
cells. However, most of that work was for algal cells. Tyree’s (1970)
review found the membrane hydraulic conductivity for plant cells
to range from 5×10−15 to 1 × 10−12 m s−1 Pa−1. Thus, when
compared with other cells, it seems that sieve tubes are at the bot-
tom of that range. In this study, sieve tube membrane hydraulic
conductivity, Lp, will be taken as 5 × 10−15 m s−1 Pa−1.

SOLUTE PERMEABILITY, PS , AND REFLECTION COEFFICIENT, σ
Of all the biological parameters used to describe phloem trans-
port, the reflection coefficient of sieve tube membrane to solutes,
σ, and the membrane permeability to those same solutes,
Ps, are the most difficult to determine. From an irreversible-
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thermodynamic analysis of solute and water transport across
a membrane, Kedem and Katchalsky (1958) showed that the
membrane parameters Ps and σ should be related:

PS = RgT
Lp

V̄S
(1 − σ) (A.2)

V̄S is the specific volume of the solute. To our knowledge there
are no measurements of these parameters for the sieve tube ele-
ment/companion cell complexes. Hence, one can only speculate
from studies of other types of plant cells. Diamond and Wright
(1969) presented an empirical relation between the parameters
for non-electrolytes from experimental data of Nitella mucromata
cells. Although they do not present any theoretical justification,
the data show reasonably well that σ decreases closely in paral-
lel with increasing permeability Ps. The permeability was smaller
than 10−8 m s−1 for σ greater than 0.8, and of the order of
10−5 m s−1 for σ ∼= 0. From a survey of experimental data on
plant cells, Kargol et al. (1997) found a very good agreement with
Equation (A.2) in measurements from maize roots, but not with
measurements from isolated cells of Nitella translucens. Kargol
et al. (1997) observed that the linear relationship of Kedem and
Katchalsky agrees more with experimental data from artificial
membranes. Kargol and Kargol (2000) showed a better agreement
with experimental data when the right hand side of Equation
(A.2) is multiplied by K = 0.021 ± 0.015. Subsequently, Kargol
(2001) showed that K depends on the solute concentration within
the membrane: K = c̄ V̄S. However, as a first approach we will
adopt the linear relationship (A.2) multiplying the right hand
side by K = 0.031, which is closer to the average value obtained
for the very few plant species presented by Kargol and Kargol
(2000), however none of them referring to phloem tissue specif-
ically. Inserting physiological conditions in sieve tubes (Table 1)
into Equation (A.2), the solute permeability of the sieve tube

membrane is given by:

PS = 1.83 × 10−9 (1 − σ) (m s−1) (A.3)

Hence Ps varies between 10−9 m s−1, for totally permeable mem-
brane (σ = 0), and 10−11 m s−1, for an almost impermeable
membrane (σ = 0.99).

APOPLASTIC ENVIRONMENT
Connor et al. (1977) and Legge (1985) measured vertical water
potential gradients in mountain ash (Eucalytus regnans F. Muell.),
between −0.007 and −0.034 MPa m−1, with increasing height.
This agrees with the estimated range of −0.01 to −0.03 MPa m−1

of the total water potential gradient necessary to drive transpira-
tion stream in trees (Zimmermann and Brown, 1971). Regarding
smaller plants, Begg and Turner (1970) measured apoplastic
pressure gradients of 0.08 MPa m−1 in tobacco. There are not
many studies on solute concentrations in the stem apoplast.
Minchin and Thorpe (1984) measured the sucrose concentration
in the developing stem of bean (Phaseolus vulgaris L.) reduc-
ing from basal to apical ends with a gradient of 175 mol m−4

approximately, corresponding to an osmotic pressure gradient
of 0.4 MPa m−1. Zimmermann and Brown (1971) observed a
reduction in the osmotic pressure with height in white ash
(Fraxinus Americana) of 0.02 MPa m−1 while Connor et al. (1977)
observed 0.01 MPa m−1 in mountain ash (Eucalyptus regnans
F. Muell). Hence, taking the estimates of Connor et al. (1977)
and Zimmermann and Brown (1971), we specified an apoplastic
water potential gradient, d�out

dz , of 0.03 MPa m−1 and apoplastic

osmotic pressure gradient, d�out
dz , 0.01 MPa m−1, in our model.

Therefore the apoplastic pressure gradient, dpout
dz , surrounding the

sieve tube will be 0.04 MPa m−1, taking the direction of flow from
apical to basal ends as is convenient for phloem flow.

Table A1 | Pressure and pressure gradient measurements on several plant species.

References Species Pressure (MPa) Pressure gradient

(MPa m−1)

Method

Buttery and Boatman (1964) Hevea brasiliensis 0.3–1.1 Adapted manometer

Hammel (1968) Quercus rubra 0.83–3.06 −0.07 Improved method from Buttery and
Boatman (1964)

Sovonick-Dunford et al. (1981); Lee
(1981a,b); Milburn (1980)

Fraxinus americana L.,
Fraxinus ornus

0.69–1.73 Pressure transducers plus method of
Hammel (1968)

Sheikholeslam and Currier
(1977a,b)

Ecballium elaterium 0.15–1.04 Pressure transducers plus method of
Hammel (1968)

Milburn and Zimmermann (1977) Cocos nucifera L. 0.12–0.76 Pressure bomb and Bourdon-type
gauge

Milburn (1980) Ricinus communis 0.9–1.09 Glass-spiral pressure gauge

Wright and Fisher (1980) Salix babylonica 0.79 Attached capillary micromanometers

Wright and Fisher (1983) Salix exigua 0.63 Attached capillary micromanometers

Fisher and Cash-Clark (2000) Triticum aestivum 2.3 Attached capillary micromanometers

Gould et al. (2004) Sonchus oleraceus 0.4–1.2 Attached capillary micromanometers

Kaufman and Kramer (1967) Acer rubrum L. 0.39–0.56 −0.08 to 0.05 Indirect from water potential
measurements

Rogers and Peel (1975) Salix viminalis, Salix purpurea −0.27 to −0.05 Indirect from water potential
measurements
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APPENDIX B. MODEL BASED ON LOCAL APPLICATION OF
HAGEN-POISSEUILLE EQUATION
Here we show that our zeroth order model Equations (27) and
(31) can also be obtained using an approach similar to Thompson
and Holbrook (2003a), based on conservation equations and a
local application of the Hagen-Poiseuille equation together with
appropriate boundary conditions. The same assumptions hold as
described in Materials and Methods except for absence of a radial
coordinate, i.e., the radial flow profile inside the tube is neglected
because the solution inside the tube is regarded as well stirred in
the radial direction. Also the diffusion of solutes within sieve tube
sap is neglected.

VOLUME CONSERVATION
We start with considering an infinitesimal volume element
[z − �z, z] of the tube along the axial direction. The balance
between incoming (axial) and outgoing (axial and lateral) fluxes
in the infinitesimal volume element is given by J (z − �z) =
J (z) + Jlat (z). Here J denotes axial volume flux [m3 s−1] which
is related to axial flux density j [m s−1] by J = A j, A = πR2 being
the cross section through which axial flux occurs. Lateral area of
the volume element is Alat = 2πR�z and lateral volume flux is
Jlat = Alat jlat. Thus

j (z) − j (z − �z)

�z
= − 2

R
jlat (z) (B.1)

In analogy to Equation (8) lateral flux density across the mem-
brane is given by Starling’s Equation (Nobel, 2009)

jlat (z) = LP
{

p (z) − pout (z) − σRgT [c (z) − cout (z)]
}

(B.2)

where the van’t Hoff relation for dilute solutions has been
inserted. Performing the limit�z → 0, Equation (B.1) becomes

∂ j (z)

∂z
= − 2

R
jlat (z) (B.3)

CONVECTIVE FLOW
Convective flow inside the tube is assumed to emanate from a
pressure gradient according to a local applicability of the Hagen-
Poiseuille equation such that axial flux density is given by

j (z) = − R2

8μ∗
∂p

∂z
(z) (B.4)

with μ∗= μ/β as before.

SOLUTE CONSERVATION
In steady state, incoming and outgoing solute fluxes for the small
volume element of the tube have to be balanced:

J (z − �z) c (z − �z) − J (z) c (z) − Jlat (z) c̄ (z) (1 − σ)

− AlatPs �c (z) = 0 (B.5)

where the first two terms are axial solute flux into and out of
the volume element, respectively. The other two terms describe

lateral solute flux as sum of convective flux (solute dragged by
solvent) and diffusive flux across the membrane. The concen-
tration difference across the membrane has been abbreviated as
�c (z) = c (z) − cout (z) and c̄(z) denotes solute concentration in
the membrane, a suitably defined function involving inside and
outside concentration, e.g.

c̄(z) = c(z) + cout(z)

2
.

Dividing Equation (B.5) by volume, inserting j (z − �z) =
j (z) + 2�zR−1jlat (z) from Equation (B.1) and performing the
limit �z → 0, the solute conservation Equation (B.5) becomes
(omitting the z dependence in our notation)

j
∂c

∂z
= 2

R
jlat (c − (1 − σ)c̄) − 2

R
Ps �c (B.6)

The system of differential Equations (B.3), (B.4) and (B.6) can be
solved if boundary conditions pi := p (z = 0), U := j (z = 0) and
ci := c (z = 0) as well as apoplast conditions pout (z) and cout(z)
are provided.

NON-DIMENSIONALIZATION
In order to further simplify the equations we apply the same non-
dimensionalization as in section Dimensional Analysis. Equations
(B.2), (B.3), (B.4) and (B.6) now read

Lateral membrane flux : ĵlat = L̂P

{
p̂ − p̂out − σĤ

(
ĉ − ĉout

)}
(B.7)

Volume conservation : ∂ ĵ

∂ ẑ
= −ĵlat (B.8)

Convective flux : ∂ p̂

∂ ẑ
= −ĵ (B.9)

Solute conservation : ĵ
∂ ĉ

∂ ẑ
= ĵlat

(
ĉ − (1 − σ)ˆ̄c

)
− P̂s

(
ĉ − ĉout

)
(B.10)

The four parameters remaining are L̂p, Ĥ, P̂s and σ. Boundary

conditions are ĵ
(
ẑ = 0

) = 1, ĉ
(
ẑ = 0

) = 1 and p̂
(
ẑ = 0

) = p̂i :=
piR

2

8L Uμ∗ . By eliminating flux density from Equations (B.8) to
(B.10) the notation can be further compacted, leaving only two
differential equations:

∂2p̂

∂ ẑ2
= L̂P

[
p̂ − p̂out − σĤ

(
ĉ − ĉout

)]
(B.11)

∂ p̂

∂ ẑ

∂ ĉ

∂ ẑ
= −L̂P

[
p̂ − p̂out − σĤ

(
ĉ − ĉout

)] (
ĉ − (1 − σ)ˆ̄c

)
+ P̂s

(
ĉ − ĉout

)
(B.12)

which are identical to Equations (27) and (31).

APPENDIX C. PREPARING MODEL EQUATIONS FOR
NUMERICAL EVALUATION
In order to numerically evaluate the system of differential equa-
tions (27), (28) and (31), they are transformed into a first order
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system of differential equations in the following way: inserting
Equation (27) into Equation (28) leads to

∂2p̂1

∂ ẑ2
= L̂P

[
p̂1 − σĤ ĉ1

(
r̂ = 1

)]
(C.1)

−3Re

8

{
L̂P

∂ p̂0

∂ ẑ

[
∂ p̂0

∂ ẑ
− ∂ p̂out

∂ ẑ
− σĤ

(
∂ ĉ0

∂ ẑ
− ∂ ĉout

∂ ẑ

)]

+ (
ûlat 0

)2
}

where first order concentration at the sieve tube membrane
follows from Equation (32)

ĉ1
(
r̂ = 1

) = −3Per

8

∂ p̂0

∂ ẑ

∂ ĉ0

∂ ẑ
− 5Per

24

∂ ĉ0(z = 0)

∂ ẑ
(C.2)

Thus the system of five first order differential equations to be
solved is

∂ p̂0

∂ ẑ
= p̂1

0 (C.3)

∂ p̂1

∂ ẑ
= p̂1

1 (C.4)

∂ ĉ0

∂ ẑ
=
[
−ûlat 0

(
ĉ0 − (1 − σ)ˆ̄c0

)
+ P̂s

(
ĉ0 − ĉout

)]
/p̂1

0 (C.5)

∂ p̂1
0

∂ ẑ
= ûlat 0 (C.6)

∂ p̂1
1

∂ ẑ
= L̂P

{
p̂1 + σĤPer

[
3

8
p̂1

0
∂ ĉ0

∂ ẑ
+ 5

24

∂ ĉ0(z = 0)

∂ ẑ

]}

−3Re

8

{(
ûlat 0

)2 + L̂Pp̂1
0

[
p̂1

0 − ∂ p̂out

∂ ẑ
− σĤ

(
∂ ĉ0

∂ ẑ
− ∂ ĉout

∂ ẑ

)]}

(C.7)

where ûlat 0
(
ẑ
)

is given by Equation (27). Respective initial con-
ditions are p̂0(0) = p̂i, p̂1(0) = 0, ĉ0(0) = 1, p̂1

0(0) = −1 and
p̂1

1(0) = −3Re/8 ûlat 0 (0).
Inserting Equation (31) into Equation (32), the average of first

order concentration over the cross section becomes

〈
ĉ1
〉 = 5Per

24

{
ûlat 0

(
ĉ0 − (1 − σ)ˆ̄c0

)
− P̂s

(
ĉ0 − ĉout

)− ∂ ĉ0(z = 0)

∂ ẑ

}

(C.8)

The average of axial velocity (zeroth plus first order) over cross
section follows from Equations (23) and (24) as

〈
ûz
〉 = −∂ p̂0

∂ ẑ
− ε

(
∂ p̂1

∂ ẑ
+ 3Re

8

∂2p̂0

∂ ẑ2

∂ p̂0

∂ ẑ

)
(C.9)

Combining Equations (25) and (26) radial velocity (zeroth plus
first order) at the sieve tube membrane becomes

ûr
(
r̂ = 1

) = 1

2

∂2p̂0

∂ ẑ2
+ ε

2
L̂P

{
p̂1 − σĤ ĉ1

(
r̂ = 1

)}
(C.10)
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