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Arabidopsis arenosa is a close relative of the model plant A. thaliana, and exists in nature
as stable diploid and autotetraploid populations. Natural tetraploids have adapted to whole
genome duplication and do not commonly show meiotic errors such as multivalent and
univalent formation, which can lead to chromosome non-disjunction and reduced fertility.
A genome scan for genes strongly differentiated between diploid and autotetraploid A.
arenosa identified a subset of meiotic genes that may be responsible for adaptation to
polyploid meiosis. To investigate the mechanisms by which A. arenosa adapted to its
polyploid state, and the functionality of the identified potentially adaptive polymorphisms,
a thorough cytological analysis is required.Therefore, in this chapter we describe methods
and techniques to analyze male meiosis in A. arenosa, including optimum plant growth
conditions, and immunocytological and cytological approaches developed with the specific
purpose of understanding meiotic adaptation in an autotetraploid. In addition we present
a meiotic cytological atlas to be used as a reference for particular stages and discuss
observations arising from a comparison of meiosis between diploid and autotetraploid A.
arenosa.
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INTRODUCTION
Over the past 15 years, Arabidopsis thaliana has prevailed as the
model organism of choice to investigate meiosis in plants. It is
amenable for such studies due to its annotated genome sequence,
collection of mutants, ease of transformation, and established
cytology (The Arabidopsis Genome Initiative, 2000). This has
led to the identification and characterisation of numerous genes
involved in crossover pathways (reviewed by Osman et al., 2011).
It has proved extremely successful for understanding diploid
meiosis but is limited when investigating the evolution of poly-
ploidy in plants. A. thaliana neotetraploids have been synthesized
using colchicine to study early responses to genome duplication
(Santos et al., 2003). However, established natural autotetraploid
populations are not known, hence this species cannot be used
to study longer-term adaptation to whole genome duplication.
A. arenosa is a related species within the genus (Al-Shehbaz
and O’Kane, 2002). It is self-incompatible with extant diploid
(2n = 2x = 16) and established autotetraploid (2n = 4x = 32)
populations (Koch and Matschinger, 2007; Schmickl et al., 2012).
A comparative genome sequence analysis of established popula-
tions of autotetraploid A. arenosa (Hollister et al., 2012) as well
as diploid versus autotetraploid populations have identified a
subset of meiotic genes that are strongly differentiated and may
be responsible for adaptation to polyploid meiosis (Yant et al.,
2013).

To investigate the mechanisms by which A. arenosa has
adapted to its autopolyploid state, and to verify the function-
ality of the identified polymorphisms, a thorough cytological

analysis is required. Previous cytological studies have focused
on characterization of A. arenosa polyploids using fixed mate-
rial (Comai et al., 2003; Carvalho et al., 2010). Here we pro-
vide a detailed description of immunocytological techniques as
well as optimum plant growth conditions using fresh mate-
rial. In addition, we provide a comparative cytological mei-
otic atlas for identifying particular stages of both diploid and
tetraploid A. arenosa. We also present metaphase I chromo-
some spreads as examples of fluorescence in situ hybridization
(FISH) using repetitive DNA probes in this species. Finally,
we discuss specific observations from these experiments. This
will enable characterization of key meiotic proteins and pro-
cesses underpinning stable chromosome transmission in A.
arenosa.

MATERIALS
PLANTS
Sow individual diploid and tetraploid A. arenosa seeds in 10 cm
diameter pots using (50% Sunshine Mix #4/50% fine vermi-
culite) and grow with 16 h long-day light cycles at 22◦C and
8 h dark cycles at 12◦C. Particular tetraploid genotypes such as
Kasparstein and Trencin require vernalizing (∼6 weeks at 4◦C),
but otherwise seeds will germinate in contact with the soil and
moisture. If the seeds have been collected directly from the
wild it is necessary to surface sterilize them according to Hol-
lister et al. (2012). From germination it takes ∼6–8 weeks for
the most rapid accessions to flower, and is subject to geno-
typic variability. Once growing the plants can be maintained to
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a year or more by regular re-potting and partial shading. To
obtain seeds from these plants it is necessary to cross-pollinate
individuals. This can be achieved simply by juxtaposing flowers
from different plants so that the pollen is transferred to the style of
the opposing plant or using a paintbrush to transfer pollen from
plant-to-plant.

IMMUNOCYTOLOGICAL REAGENTS
(1) Digestion medium: 0.1 g (0.4% w/v) cytohelicase (Sigma C

C8274) is dissolved with 0.375 g (1.5% w/v) sucrose and 0.25 g
(1% w/v) polyvinylpyrrolidone (Sigma MW 40,000) in 25 ml
sterile deionized water. Aliquots of 1 ml are dispensed and
can be stored at −20◦C.

(2) Spreading medium: 1.0–1.5% (v/v) Lipsol (Appleton Woods
LP40023) in sterile deionized water.

(3) Paraformaldehyde fixative: Weigh out 4 g paraformaldehyde
(EM grade) in the fume hood. Dissolve in 100 ml of sterile
deionized water pre-warmed to 60◦C and add four drops of
1 M NaOH. Stir the mixture on a magnetic stirrer for 1 h,
or until it dissolves before filtering through Whatman paper.
Adjust the pH to 8.0. The fixative can be stored for up to
1 week at 4◦C.

(4) Blocking buffer: Make 1% (w/v) bovine serum albumin (BSA)
in 1× phosphate buffer saline (PBS; we tend to use pre-
pared tablets, but PBS can also be made up from 10× stock
with 1.37 M NaCl, 27 mM KCl, 100 mM Na2HPO4, 18 mM
KH2PO4,adjusted to pH 7.4 if necessary) and add Triton X-
100 for a final volume of 0.1% (v/v). Autoclave before storage
at room temperature. The working solution of the buffer is
1:10 with sterile deionized water.

(5) Primary antibodies: Make up to the relevant dilution, e.g.,
1:100, 1:500, 1:1000 in blocking buffer.

(6) Washing solution: 1× PBS with 0.1% (v/v) Triton X-100.
(7) Secondary antibodies: Make up to the relevant dilution

(generally 1:50/1:200) in blocking buffer, e.g., anti-rat, anti-
rabbit, anti-guinea pig, anti-mouse, conjugated to fluorescein
isothiocyanate (FITC), Cy3, or Alexa Fluor dyes1.

(8) Counterstaining solution: Prepare 4′,6-diaminido-2-pheny-
lindole (DAPI) as a stock solution at 1 mg/ml in sterile deion-
ized water. Dispense in aliquots and store at −20◦C. For
working solution add 10 μl of 1 mg/ml stock solution to
1 ml anti-fade mounting medium such as Vectashield2.

CYTOLOGICAL REAGENTS
(1) Fixative: Mix three parts of absolute ethanol with one part

glacial acetic acid. Prepare fresh each time.
(2) 0.01 M Citrate Buffer: Prepare a working solution of the buffer

(pH 4.5) by using 4.45 ml 0.1 M sodium citrate and 5.55 ml
0.1 M citric acid, made up to 100 ml with sterile deionized
water.

(3) Stock digestion medium: Dissolve 1% (w/v) cellulase (Sigma
C1794), 1% (w/v) pectolyase (Sigma P5936) in a work-
ing solution 0.01 M citrate buffer, pH 4.5. Store in
aliquots at −20◦C.

1www.invitrogen.com
2www.vectorlabs.com

(4) Digestion medium: mix 333 μl of the stock digestion medium
with 667 μl 0.01 M citrate buffer, pH 4.5.

(5) 65% (v/v) acetic acid: Dilute glacial acetic acid with sterile
deionized water.

(6) Counterstaining solution. See Immunocytological
Reagents (8).

REAGENTS FOR FLUORESCENCE IN SITU HYBRIDIZATION
(1) Probe labeling: Use the nick translation labeling kit3

following the manufacturer’s instructions. Use either biotin-
16-deoxyuridine triphosphate (dUTP) or digoxigenin-11-
dUTP as nucleotide conjugates for DNA labeling.

(2) Hybridization mix: Weigh out 1 g dextran sulfate (use high
MW 500,000), 5 ml deionized formamide, and 1 ml 20×
saline-sodium citrate (SSC) made up to 7 ml with sterile
deionized water. Dissolve at 65◦C, cool and pH to 7.0. Aliquot
this into 1.5 ml microfuge tubes and store at −20◦C.

(3) Prepare 20 μl of probe mixture per slide; 14 μl of hybridiza-
tion mix, 0.5–2 μl of labeled probe, and if necessary add
sterile deionized water for a final volume of 20 μl. Thus, the
final hybridization mix consists of 50% (w/v) deionized for-
mamide, 2× SSC and 10% (w/v) dextran sulfate and adjust
pH to 7.0.

(4) Vulcanizing rubber solution: (e.g., as found in bicycle tire
repair kits).

(5) Make up post-hybridization washes: Three Coplin jars of 50%
(w/v) formamide-2× SSC pH 7.0, (150 ml deionized for-
mamide, 30 ml 20× SSC and 120 ml sterile deionized water),
with 4T buffer [4× SSC + 0.05% (v/v) Tween 20] for all
subsequent washes.

(6) For detection of digoxigenin probes, make up antibodies as
either anti-digoxigenin-FITC or anti-digoxigenin-rhodamine
at 5 ng/μl in digoxigenin blocking solution shortly before use.
The blocking solution is made with 4T buffer and 0.5% Roche
Digoxigenin blocking reagent, centrifuged at 19,000 g for
5 min and the supernatant stored in 1 ml aliquots at −20◦C.

(7) For biotin labeled probes use Streptavidin-Cy3/FITC4 made
up in biotin blocking solution. This is made with 4T buffer
and 5% (w/v) dried skimmed milk. Centrifuge at 19,000 g for
5 min and store the supernatant in 1 ml aliquots at −20◦C.

DNA PROBES FOR FLUORESCENCE IN SITU HYBRIDIZATION
(1) Telomere probe. Oligonucleotide sequences 5′-TTTAGGGT

TT AGGGTTTAGGGTTTAGGGTTTAGGG-3′ and 5′-CCCT
AAACC CTAAACCCTAAACCCTAAACCCTAAA-3′ (100
pmol each) were used in a 50 μl primary reaction as primer
and template. The polymerase chain reaction (PCR) was:
denaturation at 93◦C for 30 s; annealing at 55◦C for 45 s;
extensión at 72◦C, 45 s; 30 cycles. A secondary PCR using 1 μl
template from the primary PCR but replacing deoxythymi-
dine triphosphate (dTTP) with dUTP-biotin/digoxigenin was
used to label the probe. The probe labeled with biotin

3www.roche-applied-science.com
4www.roche-applied-science.com
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can be detected using streptavidin conjugated to a fluo-
rophore and the digoxigenin probe can be detected using an
anti-digoxigenin antibody conjugated to a fluorophore.

(2) Centromere probe. Oligonucleotide sequences 5′-AGCTTCTT
ATTGCTCTCAACGG-3′ and 5′-TTAGAAGCTCCAAAACCG
AAAA-3′were used to amplify DNA extracted from A. arenosa.
The PCR reaction was: denaturation at 93◦C for 2 min fol-
lowed by 30 cycles of 93◦C for 25 s; annealing at 57◦C for 30 s;
extension at 72◦C for 40 s according to Comai et al. (2003).

(3) 5S ribosomal DNA probe. Plasmid pCT4.2 containing the 5S
rDNA gene wfrom A. thaliana as a 500 bp insert cloned in
pBlu. Modified DNA base analogs can be incorporated using
either the biotin or DIG Nick translation kit according to
manufacturers’ instructions5.

(4) 45S ribosomal DNA probe. Clone pTa71 (Gerlach and Bed-
brook, 1979) containing a 9-kb EcoRI fragment of Triticum
aestivum consisting of the 18S–25S rRNA genes and the spacer
regions. Incorporate modified DNA base analogs as in (3).

METHODS
PLANT MATERIAL
For undertaking an analysis of A. arenosa male meiosis, the cor-
rect material has to be collected. In Table 1, bud sizes have been
measured from tip to base using a calibrated graticule (so that
10 bars = 1 mm) within the eyepiece of a binocular dissecting
microscope. Meiotic stages were then determined using at least
five replicates from fresh material (see immunolocalization) and
fixed material (see cytological preparation).

IMMUNOLOCALIZATION
(1) Collect fresh inflorescences using Watchmaker’s forceps and

place onto moistened filter paper in a Petri-dish.
(2) Excise the anthers from the buds of the correct size using

a dissecting microscope, Watchmaker’s forceps, and a fine
mounted needle. For each slide, anthers from a few buds
(∼2–4) may be used for meiotic stages G2 to leptotene and
for zygotene to pachytene, ∼1–2 buds.

5www.roche-applied-science.com

Table 1 | Bud sizes and meiotic stages in diploid and tetraploid

A. arenosa.

Bud size (mm) Diploid (meiotic stage) Tetraploid (meiotic stage)

0.65 G2 G2

0.7 G2 and leptotene G2 and leptotene

0.75 Leptotene Leptotene and zygotene

0.8 Leptotene–pachytene Leptotene and zygotene

0.85 Diakinesis–tetrad Zygotene and pachytene

0.9 Diakinesis–tetrad Zygotene–MI

0.95 Metaphase I–tetrad Pachytene–MII

1.0 Metaphase I–pollen Pachytene–tetrad

1.1 Pollen Tetrad

1.2 Pollen Pollen

(3) For anthers from buds < 0.8 mm it is advised to transfer
directly to a pre-cleaned slide with a drop (5 μl) of digestion
medium (for buds > 0.8 mm go to point 3.2.8).

(4) The anthers can then be macerated with a small brass rod or
equivalent blunt object by tapping for a minute and then a
second 5 μl digestion medium is added. This is to mechan-
ically break the anther cell walls so the meiocytes may be
released into the digestion medium.

(5) Transfer the slide to a moist box at 37◦C for 2 min to aid cell
wall disruption.

(6) Then remove the slide, add 10 μl 1% Lipsol and spread cells
with the mounted needle (to remove cytoplasm from the
chromosomes).

(7) Add 20 μl 4% paraformaldehyde to the digested cell mixture
on the slide, mix with the pipette tip and then allow to air dry
in a fume-hood for > 1 h (go to step 3.2.12).

(8) For anthers > 0.8 mm, add 2 μl sterile distilled water onto a
cavity slide.

(9) Add the anthers and cut transversely with a razor blade (or
scalpel) and squeeze out the meiocytes with a thick (1 mm Ø)
mounted needle or brass rod.

(10) Add 8 μl digestion medium to the meiocytes, mix with the
mounted needle and transfer to a moist box at 37◦C for 3–
4 min.

(11) Remove digested meiocytes without anther debris using a
yellow tip cut off at the end with a pair of scissors and add to
a pre-cleaned slide.

(12) Add 10 μl 1.0–1.5% Lipsol and gently spread with a fine
mounted needle. Note: 1.5% Lipsol is recommended for
pachytene spreads to remove cytoplasm and reduce back-
ground.

(13) Add 20 μl 4% paraformaldehyde and mix with a pipette tip,
then allow to air dry >1 h in a fume-hood.

(14) Add 50 μl blocking solution containing primary antibodies
at a preferred concentration directly to the slide.

(15) Cover slides with parafilm by placing on top and incubate
at 37◦C for 30 min or overnight at 4◦C in a sealed plastic
container with damp tissue paper to prevent desiccation.

(16) After the incubation, wash slides in washing solution
(2 × 5 min).

(17) Drain off excess wash buffer by standing on tissue paper for
∼2 min.

(18) Add secondary antibodies and incubate at 37◦C for 30 min
(as step 3.2.15).

(19) Then wash as in step 3.2.16.
(20) Drain off excess washing solution by standing on tissue paper

for ∼2 min and then add an appropriate mounting medium,
e.g., DAPI in Vectashield.

CYTOLOGICAL PREPARATION
(1) Fix buds in (5–20 ml) 3:1 (v/v) ethanol:acetic acid solution.
(2) Add fresh fixative solution after 1 h and then leave > 24 h.
(3) Whole buds may be used successfully, but for better spread

preparations it is advisable to dissect the anthers from the
buds using Watchmaker’s forceps and a fine mounted needle.

(4) Wash dissected buds/anthers with citrate buffer by adding
500 μl and then removing (2 × 5 min).

www.frontiersin.org January 2014 | Volume 4 | Article 546 | 3

http://www.roche-applied-science.com
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


“fpls-04-00546” — 2013/12/30 — 16:41 — page 4 — #4

Higgins et al. Cytological analysis of A. arenosa

(5) Add the cell wall digesting enzymes prepared in citrate buffer
(500–1000 μl) to the washed material and ensure material is
submerged using Watchmakers forceps.

(6) Incubate in a humidified atmosphere, e.g., a sandwich box
containing damp tissues at 37◦C (50 min for anthers and
75 min for buds).

(7) After incubation, remove the cell wall enzyme digesting solu-
tion and replace with cold (4◦C) ∼0.5 ml sterile distilled water
to stop the enzymatic reaction and prevent over-digestion.

(8) Place one bud or a few anthers (5–10) onto a slide, with a
small drop of water (∼2 μl) and then quickly macerate with a
mounted needle, ensuring that the material does not dry out.

(9) Add 7 μl 65% acetic acid to the cells, place on a hot-plate at
45◦C and spread the mixture using the mounted needle and
then leave ∼30 s.

(10) Then place the slide on the bench and add 2× 200 μl 3:1
fixative as a ring around the material. Then pour off the excess
fixative, blot with tissue paper and then dry with a commercial
hair dryer by warming the back of the slide.

(11) The slides are now ready for basic cytology and can be visual-
ized with a fluorescence microscope after mounting with 7 μl
DAPI in Vectashield and adding covering with a cover-slip.

FLUORESCENCE IN SITU HYBRIDIZATION
(1) Prepare required probes either by incorporating modified

DNA base analogs using PCR or by nick translation (as
described in Materials).

(2) Add 20 μl of the probe mixture to a slide previously prepared
containing spread meiotic chromosomes. Add a cover-slip
(22 mm × 22 mm) and then seal edges with vulcanizing
rubber solution.

(3) Denature the probe and chromosomal DNA by heating slides
on a hot-plate at 70–75◦C for 4 min.

(4) Hybridize the probe and chromosomes by incubating
overnight at 37◦C in a sealed plastic container with damp
tissue paper.

(5) Carry out post-hybridization washes by removing the rub-
ber solution and cover-slip either by gloved fingers or using
forceps. Wash the slides three times in 50% formamide-2×
SSC at 45◦C for 5 min for each wash, then once in 2× SSC at
45◦C for 5 min, and once in 4T buffer at room temperature
for 5 min.

(6) Perform a secondary labeling reaction for probe visualization.
Fluorescent secondary antibodies such as anti-digoxigenin
or Streptavidin (for biotin) conjugated with fluorochromes
such as Cy3, rhodamine and FITC are used according to
the manufacturers’ instructions. They are diluted in the
immunolocalization blocking buffer (or specific biotin or
digoxigenin blocking buffers described in Materials) and
50 μl per slide is added, covered with parafilm and incubated
in a sealed plastic container with damp tissue paper at 37◦C
in the dark for 30 min. The parafilm is then removed and the
preparations are washed in the washing solution 3 × 5 min.

(7) Slides are then counterstained with 7 μl DAPI in Vectashield.
(8) The FISH preparations can now be viewed with a fluores-

cence microscope containing filters for DAPI, texas red, Cy3,

and FITC and equipped with an image capture and analysis
system.

RESULTS AND DISCUSSION
In developing the methods described in this chapter, several
observations have been made when comparing diploid and
tetraploid meiosis in A. arenosa. First of all, bud sizes were the
same for early meiotic stages (G2-leptotene) in the diploid and
tetraploid (Table 1). However, whilst pachytene is only observed in
0.8 mm buds in the diploid, in the tetraploid it is present in a range
of larger buds (0.85–1.0 mm). Moreover, in the diploid, anther size
is a reliable indicator of meiotic stage whereas in the tetraploid,
meiotic stages and anther sizes are variable. This reduction in
cell stage synchronicity may be the result of a delay in chromo-
some synapsis, which has previously been observed in the absence
of ZYP1 (Higgins et al., 2005). A similar situation has also been
observed in the A. thaliana retinoblastoma mutant (rbr-2) where
buds that would usually contain only pollen contained earlier mei-
otic stages, representing a likely delay (Chen et al., 2011). Thus, in
A. arenosa even though initiation of meiosis occurs in anthers of
the same sized buds, the diploid develops pollen within 1.0 mm
buds whereas in the tetraploid it is 1.2 mm. These bud sizes may
reflect an apparent change in pairing and synapsis between the
diploid and tetraploid. It may be hypothesized that the tetraploid
has evolved slower progression through meiosis to ensure fidelity
of crossovers between homologs. This hypothesis may be tested by
carrying out a time-course experiment developed by Armstrong
et al. (2003).

The chromosome axis-associated protein ASYNAPSIS1 (ASY1)
is required for wild-type levels of inter-homolog recombination,
crossover formation, and synapsis in Arabidopsis and Brassica
(Armstrong et al., 2002; Sanchez-Moran et al., 2007). In A. arenosa,
ASY1 exhibits signatures of selection and strong differentiation
between diploids and tetraploids and consequently may localize
or function differently (Hollister et al., 2012; Yant et al., 2013).
During prophase I in A. arenosa, immunolocalization of ASY1
is similar to that previously described in A. thaliana and Brassica
(Figure 1; Armstrong et al., 2002; Sanchez-Moran et al., 2007).
ASY1 is initially observed as discrete punctate foci during G2
(Figures 1A,G), which extend and coalesce at leptotene to form
a linear signal (Figures 1B,H) During zygotene and pachytene,
the ASY1 signal is reduced in the ZYP1 labeled synapsed regions,
reflecting either protein depletion or reorganization of the chro-
mosome axes (Figures 1C–F,I–L). In A. thaliana, two duplicated
tandem inverted genes, ZYP1a and ZYP1b, encode the synap-
tonemal complex transverse filament proteins (from here on
referred to as ZYP1). ZYP1 is required for normal chromosome
synapsis and promoting wild-type levels of crossovers. It is also
necessary for resolving chromosome interlocks and preventing
non-homologous crossovers (Higgins et al., 2005). In A. arenosa,
ZYP1 also exhibits signatures of selection and strong differentia-
tion between diploids and tetraploids and function or regulation
could be affected (Hollister et al., 2012; Yant et al., 2013). In A.
thaliana, the ZYP1 protein initially localizes to chromosomes as
foci or short stretches during zygotene which then elongate until
pachytene, when the chromosomes are fully synapsed (Higgins
et al., 2005). In A. arenosa short stretches of ZYP1 are detected at
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FIGURE 1 | Immunolocalization of meiotic chromosome axis protein

ASY1 (green) and synaptonemal complex transverse filament protein

ZYP1 (red) in diploid and tetraploid Arabidopsis arenosa. G2 to
pachytene in diploid (A–F) and tetraploid (G–L). G2 (A,G), leptotene (B,H),
early zygotene (C,I), mid-zygotene (D,J), late-zygotene (E,K), pachytene
(F,L). White arrows in (J) highlight parallel ZYP1 stretches. Chromosomes
have been stained with DAPI (blue) and bar = 10 μm.

early zygotene in both diploid and tetraploid (Figures 1C,I). By
mid-zygotene the ZYP1 stretches become more extensive, accom-
panied by further synapsis initiation sites (Figures 1D,J). At
this stage the tetraploid differs to the diploid as parallel linear
ZYP1 stretches become apparent (Figure 1J, white arrows), which
may reflect synchronous synapsis progression of both pairs of
homologous chromosomes. During late-zygotene chromosome
interlocks are visible in the tetraploid (Figure 1K), which are
resolved by pachytene when discrete, condensed chromosomes are
observed (Figures 1F,L). At pachytene, the synaptonemal com-
plexes appear shorter in the tetraploid than the diploid which
could be due to a difference in condensation as a result of amino
acid changes described in Yant et al. (2013) or that the chromo-
somes are at different stages of condensation during pachytene
(Figures 1F,L).

A meiotic atlas of diploid and tetraploid A. arenosa is presented
to be used as a cytological reference (Figure 2). Interestingly, it
reveals an extra level of chromosome organization during zygotene
in the tetraploid, compared to the diploid (Figures 2C,L). In
the tetraploid, up to four chromosomes align and even greater
numbers converge at the brightly DAPI stained heterochromatic

regions. This organization has been observed in populations
collected from Trencin, Slovakia and Triberg, Germany and
may represent independent convergent adaptation or gene flow.
It will be interesting to determine if these aligned chromo-
somes are pairs of homologs and if this is a mechanism which
has evolved to prevent ectopic recombination. This may be
consistent with the parallel linear ZYP1 stretches observed in
Figure 1J.

Fluorescence in situ hybridization is a useful cytological tech-
nique to label specific chromosomal regions. It may be used
for identifying individual chromosomes, polymorphic loci or
investigating the function of chromosomal regions in biological
processes. We have used DNA probes to label repetitive DNA
sequences (centromeres, telomeres, 5S and 45S ribosomal DNA)
at metaphase I on diploid and tetraploid A. arenosa (Figure 3).
At metaphase I it is possible to score chiasmata, the cytological
sites of crossovers based on chromosome shape (Sanchez-Moran
et al., 2001). The probes may be used to determine chiasma posi-
tion, number and homologous or non-homologous associations
in A. arenosa. The telomere probe has previously been used in
A. thaliana (Armstrong et al., 2001) and the centromere probe
in A. arenosa (Comai et al., 2003). Interestingly, the centromere
repeat was highly polymorphic between and within chromosomes
in the diploid (Figure 3A), which may reflect variations in cen-
tromere size or repetitive DNA element content. The telomeres
are detected at the ends of the short and long chromosome arms
(Figures 3A,C). In the diploid, the 5S and 45S rDNA distinguish
the chromosomes into three groups: 1) three chromosomes with
no probes; 2) two chromosomes with 45S only; 3) three chromo-
somes with 5S and 45S (Figure 3B). In the tetraploid, the probes
are not always symmetrical revealing either previous chromo-
some rearrangements, insertions, deletions or non-homologous
crossovers (Figure 3D). Non-homologous chiasmata have previ-
ously been reported in A. thaliana ZYP1RNAi lines and the authors
postulated that this may be due to the high sequence similarity in
duplicated regions on non-homologous chromosomes (Higgins
et al., 2005). It is conceivable that whole genome duplication in A.
arenosa affects all aspects of meiotic surveillance, so that the obli-
gate chiasma, homologous recombination, and interference may
be disrupted.

SUMMARY
In this chapter we have described cytological methods to inves-
tigate meiotic adaptation to polyploidy in A. arenosa. We have
developed immunocytological techniques and used repetitive
DNA probes for FISH. This has revealed differences between the
diploid and tetraploid during meiosis. An extra level of chro-
mosome organization appears to occur during zygotene in the
tetraploid that does not occur in the diploid. In the tetraploid,
multiple chromosomes align and associate at heterochromatic
regions during zygotene as well as parallel ZYP1 stained chro-
mosomes being observed. This is consistent with the bud sizes
being greater in the tetraploid at this stage, indicating a possible
delay to enable successful chromosome sorting and homologous
recombination. However, in the tetraploid there are examples of
bivalents at metaphase I with non-symmetrical 45S and 5S rDNA
labeling may represent non-homologous crossovers, suggesting
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FIGURE 2 | A cytological meiotic atlas of diploid and tetraploid

Arabidopsis arenosa. (A–I) Representative meiotic stages of a diploid
population collected from Strecno and a tetraploid population collected from

Triberg (J–R). G2 (A,J), leptotene (B,K), zygotene (C,L), pachytene (D,M),
diplotene (E,N), diakinesis (F,O), metaphase I (G,P), dyad (H,Q), and tetrad
(I,R). Chromosomes have been stained with DAPI and bar = 10 μm.

FIGURE 3 | Fluorescence in situ hybridization of meiotic chromosome

spreads using repetitive DNA probes in diploid and tetraploid

Arabidopsis arenosa. Representative meiotic metaphase I stages in diploid

(A,B) and tetraploid (C,D) using the centromere and telomere probes (A,C)

and the 5S and 45S rDNA probes (B,D). Chromosomes have been stained
with DAPI (blue). Bar = 10 μm.
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that A. arenosa has not yet evolved a completely stable solution to
genome duplication.

ACKNOWLEDGMENTS
We would like to thank Karen Staples for growing the plants and
Steven Price for FISH probe preparation. We would also like to
thank Nancy Kleckner for helpful discussions and the reviewers
for improving the manuscript. The F. Chris H. Franklin laboratory
is supported by the BBSRC. Kevin M. Wright is supported by
NIH fellowship # 1F32GM105293-01 and a Harvard Postdoctoral
Award for Professional Development.

AUTHOR CONTRIBUTIONS
James D. Higgins performed cytological experiments assisted by
Kevin M. Wright and F. Chris H. Franklin. Kevin M. Wright and
Kirsten Bomblies provided plant material and growth conditions.
James D. Higgins, Kevin M. Wright, Kirsten Bomblies and F. Chris
H. Franklin wrote the paper.

REFERENCES
The Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the

flowering plant Arabidopsis thaliana. Nature 408, 796–815. doi: 10.1038/35048692
Al-Shehbaz, I. A., and O’Kane, S. L. Jr. (2002). Taxonomy and phylogeny of

Arabidopsis (brassicaceae). Arabidopsis Book 1: e0001. doi: 10.1199/tab.0001
Armstrong, S. J., Caryl, A. P., Jones, G. H., and Franklin, F. C. (2002). Asy1, a

protein required for meiotic chromosome synapsis, localizes to axis-associated
chromatin in Arabidopsis and Brassica. J. Cell Sci. 115, 3645–3655. doi: 10.1242/jcs.
00048

Armstrong, S. J., Franklin, F. C., and Jones, G. H. (2001). Nucleolus-associated
telomere clustering and pairing precede meiotic chromosome synapsis in
Arabidopsis thaliana. J. Cell Sci. 114, 4207–4217.

Armstrong, S. J., Franklin, F. C., and Jones, G. H. (2003). A meiotic time-course for
Arabidopsis thaliana. Sex. Plant Reprod. 16, 141–149 doi: 10.1007/s00497-003-
0186-4

Carvalho, A., Delgado, M., Barao, A., Frescatada, M., Ribeiro, E., Pikaard, C.
S., et al. (2010). Chromosome and DNA methylation dynamics during meiosis
in the autotetraploid Arabidopsis arenosa. Sex. Plant Reprod. 23, 29–37. doi:
10.1007/s00497-009-0115-2

Chen, Z., Higgins, J. D., Hui, J. T. L., Li, J., Franklin, F. C. H., and Berger, F. (2011).
Retinoblastoma protein is essential for early meiotic events in Arabidopsis. EMBO
J. 30, 744–755. doi: 10.1038/emboj.2010.344

Comai, L., Tyagi, A. P., and Lysak, M. A. (2003). FISH analysis of meiosis in Arabidop-
sis allopolyploids. Chromosome Res. 11, 217–226. doi: 10.1023/A:1022883709060

Gerlach, W. L., and Bedbrook, J. R. (1979). Cloning and characterization of ribo-
somal RNA genes from wheat and barley. Nucleic Acids Res. 7, 1869–1885. doi:
10.1093/nar/7.7.1869

Higgins, J. D., Sanchez-Moran, E., Armstrong, S. J., Jones, G. H., and Franklin, F.
C. H. (2005). The Arabidopsis synaptonemal complex protein ZYP1 is required
for chromosome synapsis and normal fidelity of crossing over. Genes Dev. 19,
2488–2500. doi: 10.1101/gad.354705

Hollister, J. D., Arnold, B. J., Svedin, E., Xue, K. S., Dilkes, B. P., and Bomblies,
K. (2012). Genetic adaptation associated with genome-doubling in autote-
traploid Arabidopsis arenosa. PLoS Genet. 8: e1003093. doi:10.1371/journal.pgen.
1003093

Koch, M. A., and Matschinger, M. (2007). Evolution and genetic differentiation
among relatives of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 104, 6272–
6277. doi: 10.1073/pnas.0701338104

Osman, K., Higgins, J. D., Sanchez-Moran, E., Armstrong, S. J., and Franklin, F.
C. H. (2011). Pathways to meiotic recombination in Arabidopsis thaliana. New
Phytol. 190, 523–544. doi: 10.1111/j.1469-8137.2011.03665.x

Sanchez-Moran, E., Armstrong, S. J., Santos, J. L., Franklin, F. C. H., and
Jones, G. H. (2001). Chiasma formation in Arabidopsis thaliana accession
Wassileskija and in two meiotic mutants. Chromosome Res. 9, 121–128. doi:
10.1023/A:1009278902994

Sanchez-Moran, E., Santos, J. L., Jones, G. H., and Franklin, F. C. H. (2007). ASY1
mediates AtDMC1-dependent interhomolog recombination during meiosis in
Arabidopsis. Genes Dev. 21, 2220–2233. doi: 10.1101/gad.439007

Santos, J. L., Alfaro, D., Sanchez-Moran, E., Armstrong, S. J., Franklin, F. C. H., and
Jones, G. H. (2003). Partial diploidization of meiosis in autotetraploid Arabidopsis
thaliana. Genetics 165, 1533–1540.

Schmickl, R., Paule, J., Klein, J., Marhold, K., and Koch, M. A. (2012). The evolu-
tionary history of the Arabidopsis arenosa complex: diverse tetraploids mask the
Western Carpathian center of species and genetic diversity. PLoS ONE 7:10. doi:
10.1371/journal.pone.0042691

Yant, L., Hollister, J. D., Wright, K. M., Arnold, B. J., Higgins, J. D., Franklin, F. C.,
et al. (2013). Meiotic adaptation to genome duplication in Arabidopsis arenosa.
Curr. Biol. 23, 2151–2156. doi: 10.1016/j.cub.2013.08.059

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 26 November 2013; paper pending published: 11 December 2013; accepted:
13 December 2013; published online: 03 January 2014.
Citation: Higgins JD, Wright KM, Bomblies K and Franklin FCH (2014) Cytological
techniques to analyze meiosis in Arabidopsis arenosa for investigating adaptation to
polyploidy. Front. Plant Sci. 4:546. doi: 10.3389/fpls.2013.00546
This article was submitted to Plant Genetics and Genomics, a section of the journal
Frontiers in Plant Science.
Copyright © 2014 Higgins, Wright, Bomblies and Franklin. This is an open-access arti-
cle distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal is cited,
in accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

www.frontiersin.org January 2014 | Volume 4 | Article 546 | 7

http://dx.doi.org/10.3389/fpls.2013.00546
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive

	Cytological techniques to analyze meiosis in arabidopsis arenosa for investigating adaptation to polyploidy
	Introduction
	Materials
	Plants
	Immunocytological reagents
	Cytological reagents
	Reagents for fluorescence in situ hybridization
	Dna probes for fluorescence in situ hybridization

	Methods
	Plant material
	Immunolocalization
	Cytological preparation
	Fluorescence in situ hybridization

	Results and discussion
	Summary
	Acknowledgments
	Author contributions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


