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The primary reactions in photosynthesis
take place in the reaction centers sur-
rounded by light harvesting complexes
(Blankenship, 2002; Diner and Rappaport,
2002; Frank and Brudvig, 2004). There are
two types of photosynthetic reaction cen-
ters. The type I reaction center has iron-
sulfur cluster as stable electron acceptor,
such as photosystem I complexes, green
bacterial and heliobacterial reaction cen-
ters, and the type II uses quinone as
stable electron acceptor including photo-
system II and purple bacterial reaction
centers. The electron transfer in type II
reaction center in unidirectional via the
L-subunit of the reaction centers (Maroti
et al., 1985; Hoerber et al., 1986; Martin
et al., 1986; Michel-Beyerle et al., 1988).
However, the electron transfer in the type
I reaction center is different from that in
the type II centers, which is bidirection-
ational (Guergova-Kuras et al., 2001; Li
et al., 2006). The three dimensional struc-
tures of both types of reaction centers were
determined at atomic resolution (Jordan
et al., 2001; Ferreira et al., 2004; Loll et al.,
2005; Amunts et al., 2007; Umena et al.,
2011). The electron transfer pathways in
both types of reaction centers are well
established (Van Grondelle, 1985; Schatz
et al., 1988; Fleming and van Grondelle,
1997; Dekker and Van Grondelle, 2000;
Gobets and van Grondelle, 2001; Seibert
and Wasielewski, 2003; Van Grondelle and
Novoderezhkin, 2006). The primary elec-
tron donor in the reaction centers is a
pair of chlorophyll molecules, and pheo-
phytin is the primary electron acceptor
(Klimov et al., 1977; Holzwarth et al.,
2006).

Light is the only source of energy for
photosynthesis; it can also be harmful to

plants (Powles, 1984). During the recent
10 years the molecular processes of pho-
toinhibition had been intensively stud-
ied (Adams and Demmig-Adams, 1993;
Aro et al., 1993; Baker and Bowyer, 1994;
Anderson et al., 1997; Asada, 1999; Melis,
1999; Niyogi, 1999; Adir et al., 2003; Telfer,
2005; Murata et al., 2007; Tyystjarvi, 2008;
Kramer, 2010; Hou and Hou, 2013). The
PSII complex is composed of more than 15
polypeptides and 200 pigment molecules.
Because there are many pigment and pro-
tein molecules not related directly to the
photoinhibition reaction, it is difficult to
identify which molecule is photodamaged.
The preparation of PS II reaction center
D1/D2/cytochrome b-559 complex, which
contains only a few polypeptides and pig-
ments, can be a good material to meet the
difficulty (Nanba and Satoh, 1989).

The PS II reaction center
D1/D2/cytochrome b-559 complexes from
higher plants contain five polypeptide
subunits (Seibert et al., 2004). It contains
six chlorophyll a (Chl a), two β-carotene
(Telfer et al., 1987; Seibert et al., 1988;
Gounaris et al., 1990; Kobayashi et al.,
1990; Barbato et al., 1991). The PSII
reaction center does not contain the
quinone electron acceptors QA and QB.
It photochemical reaction is restricted to
radical pair formation and recombina-
tion (Takahashi et al., 1987; Crystall et al.,
1989; Wasielewski et al., 1989). Addition of
exogenous electron donors and acceptors
allows secondary electron flow reaction to
occur. Therefore the D1/D2/cytochrome
b-559 complex constitutes a good simple
system for probing on the mechanisms
from both acceptor-side and donor-side
photoinhibition (Barber and Andersson,
1992; Barber and De Las Rivas, 1993; Yu

et al., 1995). It has found that primary
electron donor P680, accessary chlorophyll,
carotene, amino acid residues such as his-
tidine, and pheophytin are vulnerable to
excess light.

The primary electron donor P680 of
PSII can be damaged easily by exposure
of strong light, when no additions are
made (Telfer and Barber, 1989). Singlet
oxygen is formed as a consequence of rad-
ical pair recombination (McTavish et al.,
1989; Durrant et al., 1990). The gener-
ation of this highly toxic species causes
initially a selective and irreversible bleach-
ing of the chlorophylls that constitute P680

and a breakdown of the D1 protein to a
23-kDa fragment containing the N termi-
nus of the complete protein (De Las Rivas
et al., 1993). In the presence of a suitable
electron acceptor such as silicomolybdate
or decylplastoquinone, the P680

+ lifetime
is increased, and irreversible bleaching of
β-carotene and chlorophyll are observed,
which are independent of oxygen (Telfer
et al., 1991). Under these conditions break-
down of the D1 protein leads to a 24-kDa
fragment of C-terminal origin (Shipton
and Barber, 1991).

The photobleaching at 680 nm is usu-
ally attributed to the photodamage of P680

in the PS II reaction center (Telfer et al.,
1990). There is the significant overlapping
of absorption of P680, accessary chloro-
phyll, and pheophytin in the PS II reaction
center (Diner and Rappaport, 2002). Using
high performance liquid chromatography
(HPLC) the one pheophytin in PS II reac-
tion center is photo damaged (Hou et al.,
1995; Kuang et al., 1995). The time course
of pheophytin photodamage showed the
content of pheophytin decreases faster
than that of chlorophyll, suggesting that
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light-induced damage of pheophytin and
P680 occurred step by step in which pheo-
phytin photodamage first and followed by
P680 (Hou et al., 1996). The kinetics of the
photodamage reaction of P680 suggested
that the photodegradation product of P680

photodamage is possibly a pheophytin-like
molecule (Peng et al., 1999).

A photoprotective hypothesis of pheo-
phytin against photoinactivation induced
from acceptor-side in PS II was proposed
(Hou et al., 1996). When P680 bound-
ing to D1 and D2 proteins is excited
by light energy, primary charge separa-
tion takes place and the radial pair P680

+
Pheo− is formed, in which the excited
state P680 ejects and transfers one electron
to the primary electron acceptor pheo-
phytin bound to D1 protein. Since pri-
mary quinone electron acceptor QA is
lost in the preparation of PS II reaction
center complex, the radical pair may be
recombined and the P680 triplet is formed.
The singlet oxygen generated by the reac-
tion of the triplet P680 and oxygen in
the solution is a highly toxic species to
PS II reaction center. The pheophytin
molecule probably bound to D2 protein
firstly damaged by the singlet state oxy-
gen. More excitation energy accumulated
in PS II may cause the photodestruc-
tion of P680 and accessary chlorophyll.
The photodamage of P680 and accessory
chlorophyll resulted in the loss of pho-
tochemical activity of PS II. The role of
the pheophytin molecule bound to D2
subunit is probably to remove the sin-
glet state oxygen as a result protecting
P680 against the photoinduced damage.
A study of photoinhibition in vitro and
in vivo concluded that photoinhibition in
intact pea leaves at low temperature is
mainly due to the acceptor-side mech-
anism (Shipton and Barber, 1994). The
unidirectional photodamage and photo-
protection of pheophytin is probably the
important scheme by which the pho-
toinhibitory reaction takes place in green
plants in vivo.

As we discussed early, the role of
the second or inactive electron transfer
branch is unclear. Because the pheophytin
molecule on D2 protein is the key com-
ponent of the second electron-transfer
branch in the PS II reaction center, the uni-
directional photodamage of pheophytin
infer that the role of the second branch is

to protect the first one. In other words, the
function of the second electron-transfer
branch is to remove the singlet state oxy-
gen species using the pheophytin molecule
on D2 protein.

As PS II and purple bacterial reaction
centers are both belong to the type-II reac-
tion centers, the significant similarity in
both structure and function are expected.
During the early stages of the photoinhi-
bition of isolated spinach PS II reaction
center there is a loss of pheophytin (Hou
et al., 1995; Kuang et al., 1995). To see if
the process of photoinhibition is similar
or different between the purple bacterial
and plant reaction centers, the photosyn-
thetic pigments and their correlation to
the photochemical activity of the isolated
reaction centers from Rb. sphaeroides were
assessed (Hou et al., 2005). The experi-
mental data demonstrated: (1) One bac-
teriopheophytin molecule associated with
photochemical activity of the isolated reac-
tion center from Rb. sphaeroides is dam-
aged under strong light illumination; (2)
The damaged bacteriopheophytin is likely
located in the L subunit of the reaction
center; (3) The special pair P870 undergoes
a two-step photodamage reaction.

Further investigation on the photo-
damage mechanisms of bacteriopheo-
phytin in the reaction centers from
Rb. sphaeroides is conducted by using

FIGURE 1 | Unidirectional photodamage of pheophytin in PS II reaction centers.

liquid chromatography-mass spectrome-
try (Hou, 2008). The experimental results
show that one of the two bacteriopheo-
phytin molecules in the purple bacterial
centers accompanying with the complete
loss of photoactivity is damaged under
strong illumination due to the destruction
of its chemical structure. Three degrada-
tion products of the bacteriopheophytin
photodamage reactions are identified and
probably produced by the hydration, de-
hydrogen, and de-methylation of bac-
teriopheophytin molecule under strong
light conditions. The main degradation
product is probably formed by the de-
methylation at C-8 in the bacteriopheo-
phytin molecule.

Which pheophytin in PS II is more
sensitive to strong light is currently
unknown and need further investigation.
The pigment analysis using HPLC and
UV-vis-NIR spectroscopy indicates that
one pheophytin in PS II and purple
bacterial reaction center is more pho-
tosensitive than the other (Hou et al.,
1996, 2005). The damaged pheophytin
may be bound to D1 or D2 proteins
(Figure 1). The HPLC and photochem-
ical activity analysis suggested that the
damaged pheophytin is likely in the inac-
tive branch in PS II reaction center
complex. However, we cannot exclude
that possibility of the alternative option,
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i.e., the damaged pheophytin is located in
the active is via D1 protein. This notion is
supported by the observation that the pho-
todamage of bacteriopheophytin in pur-
ple bacterial reaction center seems to be
located in L-subunit.

The pheophytin mutants of
Synechocystis sp. PCC 6803 might be useful
to provide additional evidence on the site
of the photosensitive pheophytin in pho-
tosynthesis. Two mutants, D1-Leu210His
and D2-Leu209His, wherein the pheo-
phytin in D1 and D2 protein is replaced
by a chlorophyll, respectively. In these two
mutants, there is only one pheophytin
per reaction center. In the D1-Leu210His
mutant, the only pheophytin in the reac-
tion center is bound to D2 protein. If
the photo damaged pheophytin in D2
protein, the photodamage of pheophytin
would be expected in the D1-Leu210His
mutant. Alternatively, if the pheophytin
in D1 protein is more photosensitive,
one would observe that photodamage
of pheophytin in the D2-Leu209His
mutant.

Unidirectionality of pheophytin
photodamage might involve electron
transfer reaction. For example, upon exci-
tation with blue light (390 nm) a transient
B-side charge separated electron trans-
fer was observed in picoseconds at room
temperature (Haffa et al., 2003). A series
of mutations involving the introduction
of potentially negative amino acids in
the vicinity of P870 were characterized
in terms of the nature of this reaction. B-
side electron transfer in bacterial reaction
center from Rb. sphaeroides was proposed
to be possible photoprotection via rapidly
quenching higher excited states of the
reaction center (Lin et al., 2001).

Unidirectional electron transfer and
photodamage are also discovered in other
cofactors such as carotenoid in PS II.
The reaction centers of PS II contain two
types of β-carotene with different ori-
entations. The β-carotene (I) absorbing
at 470 and 505 nm is roughly parallel
to the membrane plane, and β-carotene
(II) absorbing at 460 and 490 nm seems
to be perpendicular orientation (Breton
and Kato, 1987) The linear dichroism sig-
nal at 485 nm in the PS II core com-
plex CP47/D1/D2/cytochrome b-559 is
decreased upon strong illumination (Hou
et al., 2000). The observation may be

explained as the conformation changes of
β-carotene (II) pool, which tends to more
perpendicular orientation respective to the
membrane plane.

Multiple photoprotective hypothe-
ses have been established including
Mn-mediated UV photoinactivation
(Hakala et al., 2005; Ohnishi et al.,
2005; Wei et al., 2011; Hou et al., 2013),
cytochrome b-559 cyclic electron flow or
cytochrome b-559 reversible intercon-
vertion between the two redox forms
(Thompson and Brudvig, 1988; Barber
and De Las Rivas, 1993; Shinopoulos and
Brudvig, 2012), and a β-carotene pho-
tooxidation (Telfer et al., 2003; Alric,
2005; Shinopoulos et al., 2014). The
unidirectional photodamage of pheo-
phytin in photosynthesis is discovered.
However the site of the damage pheo-
phytin is unknown. The possible function
of the pheophytin in photosynthesis
is complex and likely involves for-
ward electron transfer, photoprotection,
structural support, photosynthetic evo-
lution, and alternative electron transfer.
Further investigation using biophysi-
cal techniques and mutagenic methods
is required to approve or exclude these
possibilities.

ACKNOWLEDGMENTS
This work is supported by Alabama State
University.

REFERENCES
Adams, W. W. 3rd., and Demmig-Adams, B. (1993).

Energy dissipation and photoprotection in leaves
of higher plants. Curr. Top. Plant Physiol. 8, 27–36.

Adir, N., Zer, H., Shochat, S., and Ohad, I.
(2003). Photoinhibition - a historical per-
spective. Photosyn. Res. 76, 343–370. doi:
10.1023/A:1024969518145

Alric, J. (2005). In vivo carotenoid triplet formation in
response to excess light: a supramolecular photo-
protection mechanism revisited. Photosyn. Res. 83,
335–341. doi: 10.1007/s11120-005-1105-3

Amunts, A., Drory, O., and Nelson, N. (2007). The
structure of a plant photosystem I supercomplex
at 3.4.ANG. resolution. Nature 447, 58–63. doi:
10.1038/nature05687

Anderson, J. M., Park, Y. L., and Chow, W. S. (1997).
Photoinactivation and photoprotection of photo-
system II in nature. Physiol. Plant. 100, 214–223.
doi: 10.1111/j.1399-3054.1997.tb04777.x

Aro, E. M., McCaffery, S., and Anderson, J. M. (1993).
Photoinhibition and D1 protein degradation in
peas acclimated to different growth irradiances.
Plant Physiol. 103, 835–843.

Asada, K. (1999). The water-water cycle in
chloroplasts: scavenging of active oxygens

and dissipation of excess photons. Annu. Rev.
Plant Physiol. Plant Mol. Biol. 50, 601–639. doi:
10.1146/annurev.arplant.50.1.601

Baker, N. R., and Bowyer, J. R. (1994). Photoinhibition
of Photosynthesis: From Molecular Mechanisms to
the Field. Oxford: BIOS Scientific Publishers.

Barbato, R., Race, H. L., Friso, G., and Barber, J.
(1991). Chlorophyll levels in the pigment-binding
proteins of photosystem II. A study based on the
chlorophyll to cytochrome ratio in different pho-
tosystem II preparations. FEBS Lett. 286, 86–90.
doi: 10.1016/0014-5793(91)80947-2

Barber, J., and Andersson, B. (1992). Too much of a
good thing: light can be bad for photosynthesis.
Trends Biochem. Sci. 17, 61–66. doi: 10.1016/0968-
0004(92)90503-2

Barber, J., and De Las Rivas, J. (1993). A func-
tional model for the role of cytochrome b559 in
the protection against donor and acceptor side
photoinhibition. Proc. Natl. Acad. Sci. U.S.A. 90,
10942–10946. doi: 10.1073/pnas.90.23.10942

Blankenship, R. E. (2002). Molecular Mechanisms of
Photosynthesis. Oxford: Blackwell Science.

Breton, J., and Kato, S. (1987). Orientation of
the pigments in photosystem II: low-temperature
linear-dichroism study of a core particle and
of its chlorophyll-protein subunits isolated from
Synechococcus sp. Biochim. Biophys. Acta 892,
99–107. doi: 10.1016/0005-2728(87)90252-0

Crystall, B., Booth, P. J., Klug, D. R., Barber, J., and
Porter, G. (1989). Resolution of a long lived flu-
orescence component from D1/D2/cytochrome b-
559 reaction centers. FEBS Lett. 249, 75–78. doi:
10.1016/0014-5793(89)80019-5

Dekker, J. P., and Van Grondelle, R. (2000). Primary
charge separation in Photosystem II. Photosyn. Res.
63, 195–208. doi: 10.1023/A:1006468024245

De Las Rivas, J., Shipton, C. A., Ponticos, M., and
Barber, J. (1993). Acceptor side mechanism of
photoinduced proteolysis of the D1 protein in
photosystem II reaction centers. Biochemistry 32,
6944–6950. doi: 10.1021/bi00078a019

Diner, B. A., and Rappaport, F. (2002). Structure,
dynamics, and energetics of the primary photo-
chemistry of photosystem II of oxygenic photo-
synthesis. Annu. Rev. Plant Biol. 53, 551–580. doi:
10.1146/annurev.arplant.53.100301.135238

Durrant, J. R., Giorgi, L. B., Barber, J., Klug, D. R.,
and Porter, G. (1990). Characterization of triplet
states in isolated photosystem II reaction centers:
oxygen quenching as a mechanism for photodam-
age. Biochim. Biophys. Acta 1017, 167–175. doi:
10.1016/0005-2728(90)90148-W

Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber,
J., and Iwata, S. (2004). Architecture of the pho-
tosynthetic oxygen-evolving center. Science 303,
1831–1838. doi: 10.1126/science.1093087

Fleming, G. R., and van Grondelle, R. (1997).
Femtosecond spectroscopy of photosynthetic
light-harvesting systems. Curr. Opin. Struct. Biol.
7, 738–748. doi: 10.1016/S0959-440X(97)80086-3

Frank, H. A., and Brudvig, G. W. (2004).
Redox functions of carotenoids in photo-
synthesis. Biochemistry 43, 8607–8615. doi:
10.1021/bi0492096

Gobets, B., and van Grondelle, R. (2001). Energy
transfer and trapping in photosystem I. Biochim.
Biophys. Acta 1507, 80–99. doi: 10.1016/S0005-
2728(01)00203-1

www.frontiersin.org January 2014 | Volume 4 | Article 554 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Physiology/archive


Hou Unidirectional photodamage of pheophytin

Gounaris, K., Chapman, D. J., Booth, P., Crystall,
B., Giorgi, L. B., Klug, D. R., et al. (1990).
Comparison of the D1/D2/cytochrome b559 reac-
tion centre complex of photosystem two isolated
by two different methods. FEBS Lett. 265, 88–92.
doi: 10.1016/0014-5793(90)80890-U

Guergova-Kuras, M., Boudreaux, B., Joliot, A., Joliot,
P., and Redding, K. (2001). Evidence for two active
branches for electron transfer in photosystem I.
Proc. Natl. Acad. Sci. U.S.A. 98, 4437–4442. doi:
10.1073/pnas.081078898

Haffa, A. L. M., Lin, S., Williams, J. C., Taguchi, A.
K. W., Allen, J. P., and Woodbury, N. W. (2003).
High yield of long-lived B-side charge separation
at room temperature in mutant bacterial reaction
centers. J. Phys. Chem. B 107, 12503–12510. doi:
10.1021/jp034703p

Hakala, M., Tuominen, I., Keranen, M., Tyystjarvi,
T., and Tyystjarvi, E. (2005). Evidence for
the role of the oxygen-evolving manganese
complex in photoinhibition of Photosystem
II. Biochim. Biophys. Acta 1706, 68–80. doi:
10.1016/j.bbabio.2004.09.001

Hoerber, J. K. H., Goebel, W., Ogrodnik, A., Michel-
Beyerle, M. E., and Cogdell, R. J. (1986). Time-
resolved measurements of fluorescence from reac-
tion centers of Rhodopseudomonas viridis and the
effect of menaquinone reduction. FEBS Lett. 198,
268–272. doi: 10.1016/0014-5793(86)80418-5

Holzwarth, A. R., Muller, M. G., Reus, M., Nowaczyk,
M., Sander, J., and Rogner, M. (2006). Kinetics
and mechanism of electron transfer in intact
photosystem II and in the isolated reaction cen-
ter: pheophytin is the primary electron acceptor.
Proc. Natl. Acad. Sci. U.S.A. 103, 6895–6900. doi:
10.1073/pnas.0505371103

Hou, H. J. M. (2008). “Identification of the degrada-
tion products involved in bacteriopheophytin pho-
todamage of the photosynthetic reaction centers
from Rb. sphaeroides by liquid chromatography-
mass spectrometry,” in Photosynthesis: Energy from
the Sun, eds J. P. Allen, B. Osmond, J. H. Golbeck
and E. Gantt (Dordrecht: Springer), 1473–1478.

Hou, H. J. M., Zhang, X., Liu, H., Steven, J.,
Young, E., Lien, T., et al. (2005). “Photodamage
of one bacteriopheophytin molecule in the pho-
tosynthetic reaction center from Rb sphaeroides,”
in Photosynthesis: Fundamental Aspects to Global
Perspertives, eds A. Van Der Est and D. Bruce
(Lawrence: Allen Press), 501–503.

Hou, J. M., Dejonghe, D., Shan, J. X., Li, L. B., and
Kuang T. Y. (2000). Orientation of pigments in the
isolated photosystem II sub-core reaction center
complex: a linear dichroism study, J. Integr. Plant
Biol. 42, 1211–1214

Hou, J. M., Kuang, T. Y., Peng, D. C., Tang, C. Q.,
and Tang, P. (1996). The photodamage and pro-
tective role of pheophytin a in the photosystem
II reaction center against light-induced damage.
Prog. Nat. Sci. 6, 489–493.

Hou, J. M., Peng, D. C., Kuang, T. Y., Tang, C. Q., and
Tang, P. (1995). Pheophytin A molecule associa-
tion with primary photochemistry in the isolated
photosystem II reaction center D1/D2/Cyt B559
complex. J. Integr. Plant Biol. 37, 405–408.

Hou, X., and Hou, H. J. M. (2013). Roles of man-
ganese in photosystem II dynamics to irradiations
and temperatures. Front. Biol. 8, 312–322. doi:
10.1007/s11515-012-1214-2

Hou, X., Raposo, A., and Hou, H. J. M. (2013).
Response of chlorophyll d-containing cyanobac-
terium Acaryochloris marina to UV and visible
irradiations. Photosynth. Res. 117, 497–507. doi:
10.1007/s11120-013-9946-7

Joliot, P., and Joliot, A. (1999). In vivo analysis of
the electron transfer within photosystem I: are
the two phylloquinones involved? Biochemistry 38,
11130–11136.

Jordan, P., Fromme, P., Witt, H. T., Klukas, O.,
Saenger, W., and Krauss, N. (2001). Three-
dimensional structure of cyanobacterial photosys-
tem I at 2.5 A resolution. Nature 411, 909–917. doi:
10.1038/35082000

Klimov, V. V., Klevanik, A. V., Shuvalov, V. A., and
Kransnovsky, A. A. (1977). Reduction of pheo-
phytin in the primary light reaction of photosys-
tem II. FEBS Lett. 82, 183–186. doi: 10.1016/0014-
5793(77)80580-2

Kobayashi, M., Maeda, H., Watanabe, T., Nakane, H.,
and Satoh, K. (1990). Chlorophyll a and β-carotene
content in the D1/D2/cytochrome b-559 reaction
center complex from spinach. FEBS Lett. 260,
138–140. doi: 10.1016/0014-5793(90)80086-X

Kramer, D. M. (2010). The photonic smart grid of the
chloroplast in action. Proc. Natl. Acad. Sci. U.S.A.
107, 2729–2730. doi: 10.1073/pnas.0914429107

Kuang, T. Y., Hou, J. M., Peng, D. C., Tang, C. Q., and
Tang, P. (1995). Light-induced damage of pheo-
phytin a molecule in the isolated photosystem II
reaction center D1/D2/Cyt b559 complex. J. Integr.
Plant Biol. 37, 401–404.

Li, Y., van der Est, A., Lucas, M. G., Ramesh, V.
M., Gu, F., Petrenko, A., et al. (2006). Directing
electron transfer within Photosystem I by break-
ing H-bonds in the cofactor branches. Proc.
Natl. Acad. Sci. U.S.A. 103, 2144–2149. doi:
10.1073/pnas.0506537103

Lin, S., Katilius, E., Haffa, A. L. M., Taguchi, A. K. W.,
and Woodbury, N. W. (2001). Blue light drives B-
side electron transfer in bacterial photosynthetic
reaction centers. Biochemistry 40, 13767–13773.
doi: 10.1021/bi015612q

Loll, B., Kern, J., Saenger, W., Zouni, A., and Biesiadka,
J. (2005). Towards complete cofactor arrange-
ment in the 3.0 A resolution structure of photo-
system II. Nature 438, 1040–1044. doi: 10.1038/
nature04224

Maroti, P., Kirmaier, C., Wraight, C., Holten, D.,
and Pearlstein, R. M. (1985). Photochemistry
and electron transfer in borohydride-treated
photosynthetic reaction centers. Biochim. Biophys.
Acta. 810, 132–139. doi: 10.1016/0005-2728
(85)90128-8

Martin, J. L., Breton, J., Hoff, A. J., Migus, A., and
Antonetti, A. (1986). Femtosecond spectroscopy
of electron transfer in the reaction center of
the photosynthetic bacterium Rhodopseudomonas
sphaeroides R-26: direct electron transfer from the
dimeric bacteriochlorophyll primary donor to the
bacteriopheophytin acceptor with a time constant
of 2.8 +- 0.2 psec. Proc. Natl. Acad. Sci. U.S.A. 83,
957–961. doi: 10.1073/pnas.83.4.957

McTavish, H., Picorel, R., and Seibert, M. (1989).
Stabilization of isolated photosystem II reac-
tion center complex in the dark and in the
light using polyethylene glycol and an oxygen-
scrubbing system. Plant Physiol. 89, 452–456. doi:
10.1104/pp.89.2.452

Melis, A. (1999). Photosystem-II damage and repair
cycle in chloroplasts: what modulates the rate of
photodamage? Trends Plant Sci. 4, 130–135.

Michel-Beyerle, M. E., Plato, M., Deisenhofer, J.,
Michel, H., Bixon, M., and Jortner, J. (1988).
Unidirectionality of charge separation in reac-
tion centers of photosynthetic bacteria. Biochim.
Biophys. Acta 932, 52–70. doi: 10.1016/0005-
2728(88)90139-9

Murata, N., Takahashi, S., Nishiyama, Y.,
and Allakhverdiev Suleyman, I. (2007).
Photoinhibition of photosystem II under envi-
ronmental stress. Biochim. Biophys. Acta 1767,
414–421. doi: 10.1016/j.bbabio.2006.11.019

Nanba, O., and Satoh, K. (1989). Isolation of a
photosystem II reaction center consisting of D-
1 and D-2 polypeptides and cytochrome b-559.
Proc. Natl. Acad. Sci. U.S.A. 84, 109–112. doi:
10.1073/pnas.84.1.109

Niyogi, K. K. (1999). Photoprotection revisited:
genetic and molecular approaches. Annu. Rev.
Plant Physiol. Plant Mol. Biol. 50, 333–359

Ohnishi, N., Allakhverdiev, S. I., Takahashi, S.,
Higashi, S., Watanabe, M., Nishiyama, Y., et al.
(2005). Two-step mechanism of photodamage to
photosystem II: step 1 occurs at the oxygen-
evolving complex and step 2 occurs at the
photochemical reaction center. Biochemistry 44,
8494–8499

Peng, D. C., Hou, J. M., Kuang, T. Y., Tang, C. Q., and
Tang P. (1999). Photoinduced damage of the pho-
tosystem II primary electron donor P680: a high
performance liquid chromatographic analysis of
pigment content in D1/D2/cytochrome b559 com-
plex under photoinhibitory conditions. J. Integr.
Plant Biol. 41, 1307–1311

Powles, S. B. (1984). Photoinhibition of
photosynthesis induced by visible light.
Annu. Rev. Plant Physiol. 35, 15–44. doi:
10.1146/annurev.pp.35.060184.000311

Schatz, G. H., Brock, H., and Holzwarth, A. R. (1988).
Kinetic and energetic model for the primary pro-
cesses in photosystem II. Biophys. J. 54, 397–405.
doi: 10.1016/S0006-3495(88)82973-4

Seibert, M., Picorel, R., Rubin, A. B., and Connolly,
J. S. (1988). Spectral, photophysical, and stabil-
ity properties of isolated photosystem II reac-
tion center. Plant Physiol. 87, 303–306. doi:
10.1104/pp.87.2.303

Seibert, M., and Wasielewski, M. R. (2003). The iso-
lated Photosystem II reaction center: first attempts
to directly measure the kinetics of primary
charge separation. Photosyn. Res. 76, 263–268. doi:
10.1023/A:1024986307839

Seibert, M., Yruela, I., and Picorel, R. (2004).
Isolation of photosystem II reaction center com-
plexes from plants. Methods Mol. Biol. 274, 53–62.
doi: 10.1007/978-1-60761-925-3_3

Shinopoulos, K. E., and Brudvig, G. W. (2012).
Cytochrome b559 and cyclic electron transfer
within photosystem II. Biochim. Biophys. Acta
1817, 66–75. doi: 10.1016/j.bbabio.2011.08.002

Shinopoulos, K. E., Yu, J., Nixon P. J., and Brudvig,
G. W. (2014). Using site-directed mutagenesis to
probe the role of the D2 carotenoid in the sec-
ondary electron-transfer pathway of photosystem
II. Photosynth Res. [Epub ahead of print].

Shipton, C. A., and Barber, J. (1991). Photoinduced
degradation of the D1 polypeptide in isolated

Frontiers in Plant Science | Plant Physiology January 2014 | Volume 4 | Article 554 | 4

http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology/archive


Hou Unidirectional photodamage of pheophytin

reaction centers of photosystem II: evidence
for an autoproteolytic process triggered by
the oxidizing side of the photosystem. Proc.
Natl. Acad. Sci. U.S.A. 88, 6691–6695. doi:
10.1073/pnas.88.15.6691

Shipton, C. A., and Barber, J. (1994). In vivo
and in vitro photoinhibition reactions gener-
ate similar degradation fragments of D1 and
D2 photosystem-II reaction-centre proteins. Eur.
J. Biochem. 220, 801–808. doi: 10.1111/j.1432-
1033.1994.tb18682.x

Takahashi, Y., Hansson, O., Mathis, P., and Satoh,
K. (1987). Primary radical pair in the pho-
tosystem II reaction center. Biochim. Biophys.
Acta 893, 49–59. doi: 10.1016/0005-2728(87)
90147-2

Telfer, A. (2005). Too much light? How β-carotene
protects the photosystem II reaction centre.
Photochem. Photobiol. Sci. 4, 950–956. doi:
10.1039/b507888c

Telfer, A., and Barber, J. (1989). Evidence for the pho-
toinduced oxidation of the primary electron donor
P680 in the isolated photosystem II reaction center.
FEBS Lett. 246, 223–228. doi: 10.1016/0014-5793
(89)80287-X

Telfer, A., De las Rivas, J., and Barber, J. (1991).
β-carotene within the isolated photosys-
tem II reaction center: photooxidation and
irreversible bleaching of this chromophore
by oxidized P680. Biochim. Biophys. Acta
1060, 106–114. doi: 10.1016/S0005-2728
(05)80125-2

Telfer, A., Frolov, D., Barber, J., Robert, B., and
Pascal, A. (2003). Oxidation of the two β-
carotene molecules in the photosystem IIreaction

center. Biochemistry 42, 1008–1015. doi:
10.1021/bi026206p

Telfer, A., He, W. Z., and Barber, J. (1990). Spectral
resolution of more than one chlorophyll electron
donor in the isolated photosystem II reaction cen-
ter complex. Biochim. Biophys. Acta 1017, 143–151.
doi: 10.1016/0005-2728(90)90145-T

Telfer, A., Marder, J. B., and Barber, J. (1987).
Photosystem II reaction centers isolated from
phosphorylated pea thylakoids carry phosphate on
the D1 and D2 polypeptide subunits. Biochim.
Biophys. Acta 893, 557–563. doi: 10.1016/0005-
2728(87)90107-1

Thompson, L. K., and Brudvig, G. W. (1988).
Cytochrome b-559 may function to protect pho-
tosystem II from photoinhibition. Biochemistry 27,
6653–6658. doi: 10.1021/bi00418a002

Tyystjarvi, E. (2008). Photoinhibition of Photosystem
II and photodamage of the oxygen evolving man-
ganese cluster. Coord. Chem. Rev. 252, 361–376.
doi: 10.1016/j.ccr.2007.08.021

Umena, Y., Kawakami, K., Shen, J. R., and Kamiya, N.
(2011). Crystal structure of oxygen-evolving pho-
tosystem II at a resolution of 1.9 A. Nature 473,
55–61. doi: 10.1038/nature09913

Van Grondelle, R. (1985). Excitation energy transfer,
trapping and annihilation in photosynthetic sys-
tems. Biochim. Biophys. Acta 811, 147–195. doi:
10.1016/0304-4173(85)90017-5

Van Grondelle, R., and Novoderezhkin, V. I. (2006).
Energy transfer in photosynthesis: experimental
insights and quantitative models. Phys. Chem.
Chem. Phys. 8, 793–807. doi: 10.1039/b514032c

Wasielewski, M. R., Johnson, D. G., Seibert, M.,
and Govindjee. (1989). Determination of

the primary charge separation rate in iso-
lated photosystem II reaction centers with
500-fs time resolution. Proc. Natl. Acad.
Sci. U.S.A. 86, 524–528. doi: 10.1073/pnas.
86.2.524

Wei, Z., Cady, C. W., Brudvig, G. W., and Hou,
H. J. M. (2011). Photodamage of a Mn(III/IV)-
oxo mix valence compound and photosystem II
complexes: evidence that high-valent manganese
species is responsible for UV-induced photodam-
age of oxygen evolving complex in photosystem
II. J. Photochem. Photobiol. B 104, 118–125. doi:
10.1016/j.jphotobiol.2011.01.017

Yu, Z., Kuang, T., Lu, R., Tang, C., and Tang, P.
(1995). Light-induced damage of amino acid
residues and degradation of polypeptides in
D1/D2/cytochrome b559 complex. J. Integr. Plant
Biol. 37, 267–273.

Received: 19 December 2013; accepted: 26 December
2013; published online: 13 January 2014.
Citation: Hou HJM (2014) Unidirectional photodam-
age of pheophytin in photosynthesis. Front. Plant Sci.
4:554. doi: 10.3389/fpls.2013.00554
This article was submitted to Plant Physiology, a section
of the journal Frontiers in Plant Science.
Copyright © 2014 Hou. This is an open-access article
distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the
original publication in this journal is cited, in accor-
dance with accepted academic practice. No use, distribu-
tion or reproduction is permitted which does not comply
with these terms.

www.frontiersin.org January 2014 | Volume 4 | Article 554 | 5

http://dx.doi.org/10.3389/fpls.2013.00554
http://dx.doi.org/10.3389/fpls.2013.00554
http://dx.doi.org/10.3389/fpls.2013.00554
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Physiology/archive

	Unidirectional photodamage of pheophytin in photosynthesis
	Acknowledgments
	References


