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Meiotic recombination plays a critical role in achieving accurate chromosome segregation
and increasing genetic diversity. Many studies, mostly in yeast, have provided impor-
tant insights into the coordination and interplay between the proteins involved in the
homologous recombination pathway, especially the recombinase RAD51 and the meiosis-
specific DMC1. Here we summarize the current progresses on the function of both
recombinases and the CX3 complex encoded by AtRAD51 paralogs, in the plant model
species Arabidopsis thaliana. Similarities and differences respect to the function of these
proteins in other organisms are also indicated.
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INTRODUCTION
More than 10 years ago the Arabidopsis nuclear genome DNA
sequence was published (Arabidopsis Genome Initiative, 2000).
Afterward, this species has emerged as the most important exper-
imental system in plant science. Discoveries made in Arabidopsis
during the past decade have even led to the understanding or
recognition of molecular processes in other organisms, including
humans (Jones et al., 2008). Thus, Arabidopsis has now become an
indispensable tool to understand basic cellular processes such as
meiosis, a specialized type of cell division by which sexually repro-
ducing eukaryotes maintain their chromosome number across
generations.

During meiosis two rounds of cell division follow a single
round of DNA replication to produce haploid gametes. The
physical connections between homologous chromosomes (chi-
asmata) produced as consequence of reciprocal recombination
events [crossovers (COs)], in combination with sister chromatid
arm cohesion, are responsible for the correct bi-orientation of
bivalents at metaphase I and the subsequent segregation of a
complete set of chromosomes at anaphase I. Sister chromatids sep-
arate at the second division generating haploid gametes. Fusion of
gametes at fertilization restores the diploid chromosome number
of the species and initiates zygote development. Most knowledge
of this process, specifically on recombination mechanisms, derives
from studies in Saccharomyces cerevisiae and Schizosaccharomyces
pombe. However, during the past decade, analysis of meiotic
homologous recombination (HR) has been boosted by the com-
bination of forward (from phenotype to genotype) and reverse
(from genotype to phenotype) genetics in Arabidopsis (Mercier
and Grelon, 2008; Osman et al., 2011). Another approaches to
identify meiotic genes in this species have consisted on evalua-
tion of transcriptome profiling from flower buds, anthers and
meiocytes (Schmid et al., 2005; Zhang et al., 2005; Wijeratne et al.,
2007; Chen et al., 2010; Libeau et al., 2011; Yang et al., 2011), and

the proteome profiling from anthers of the close relative Brassica
oleracea (Sánchez-Morán et al., 2005). On these grounds, numer-
ous data on the mechanism, specificity and regulation of meiosis
have been accumulated. Moreover, plants have an advantage over
other eukaryotes because their meiosis is completed (not arrested)
in mutants defective in recombination, synapsis or segregation
(Jones and Franklin, 2008; Wijnker and Schnittger, 2013). The
present review analyzes the current knowledge about the process
of meiotic HR in Arabidopsis, and is mainly focused on the role of
AtRAD51 and AtDMC1 and the CX3 complex, which is encoded
by AtRAD51 paralogs.

INITIATION OF MEIOTIC RECOMBINATION IN Arabidopsis
One feature that distinguishes model organisms in relation to HR
is the link between recombination and pairing. In plants, as well as
in yeasts, mice and humans, and unlike fruit flies and nematodes,
initiation of the recombination process is essential for accurate
homologous interactions that match homologous together (Dern-
burg et al., 1998; McKim et al., 1998; Gerton and Hawley, 2005).
HR is a process by which DNA sequences are exchanged between
homologous sequences (homologous chromosomes or sister chro-
matids). In meiosis HR is a critical process required to repair
the DNA double-strand breaks (DSBs) produced at prophase I.
DSB formation is catalyzed by Spo11, which is related to the
Top6A subunit of archaeal type IIB topoisomerases. It is a meio-
sis specific protein conserved in almost all eukaryotes (Bergerat
et al., 1997; Keeney, 2001). Although it seems to be lost in Dic-
tyostelium discoideum (Malik et al., 2007), the function of Spo11
initiating meiotic recombination seems to be universal (Dernburg
et al., 1998; McKim and Hayashi-Hagihara, 1998; Romanienko
and Camerini-Otero, 1999; Celerin et al., 2000; Grelon et al., 2001;
Lichten, 2001; see de Massy, 2013 for a more recent review). In
mice and humans there are two isoforms of SPO11, SPO11α and
SPO11β. The latter one is responsible for producing most DSBs
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(Romanienko and Camerini-Otero, 1999; Bellani et al., 2010). In
plants several SPO11 paralogs have been identified: there are five
genes in Oryza sativa and three genes in Arabidopsis. In rice,
only OsSPO11-1 and OsSPO11-4 are needed for meiosis (Yu et al.,
2010; An et al., 2011). In Arabidopsis, AtSPO11-1 and AtSPO11-
2 play a role in meiotic HR whereas AtSPO11-3 is involved in
DNA endoreduplication (Hartung and Puchta, 2000; Grelon et al.,
2001; Hartung et al., 2002; Sugimoto-Shirasu et al., 2002; Stacey
et al., 2006). There is a relatively low sequence similarity between
the genes (20–30%), suggesting they are products of an ancient
duplication. AtSPO11-1 and AtSPO11-2 display a non-redundant
function in DSB formation and it has been suggested that both
proteins could work coordinately, forming a heterodimeric com-
plex or interacting reciprocally to get wild-type levels of DSBs
(Stacey et al., 2006). The double mutant Atspo11-1 Atspo11-2
does not differ phenotypically from the respective single ones,
hence both proteins would be required for the same step in the
pathway. Hartung et al. (2007a) even proposed that each DNA
strand could be broken by different AtSPO11 proteins. However,
Shingu et al. (2010) have described a multimeric active form of
AtSPO11-1.

In Saccharomyces cerevisiae the meiotic DSB formation depends
on Spo11 and at least nine more proteins (Keeney, 2001, 2008) and
the same occurs in Schizosaccharomyces pombe for Rec12 (Rec12 is
the Spo11 ortholog in this species; Davis and Smith, 2001; Young
et al., 2004). Only some of these proteins are conserved in Ara-
bidopsis, but they do not participate in DSB formation (Edlinger
and Schlögelhofer, 2011). For example, the tight dependence of
Spo11 cleave on the MRX complex is not conserved in Arabidop-
sis (Gallego et al., 2001; Bleuyard et al., 2004; Puizina et al., 2004;
Akutsu et al., 2007). Likewise, Ski8 orthologs are required for DSB
formation in S. cerevisiae, S. pombe and Sordaria, but in Arabidopsis
Ski8 is dispensable for meiosis (Jolivet et al., 2006). On the other
hand, forward genetic approaches have led to identification of
other genes necessary for DSB formation in Arabidopsis: AtPRD1,
AtPRD2, and AtPRD3 (De Muyt et al., 2007, 2009). These authors
suggested that AtPRD1 could contribute to generate an asymme-
try in DSB processing. Although an AtPRD1 ortolog has not been
found in fungi, there is a similarity between AtPRD1 and MEI1 and
between AtPRD2 and MEI4. Both, MEI1 and MEI4, are involved
in the first steps of mammalian meiosis (Libby et al., 2003; Kumar
et al., 2010). Also, PAIR1, the rice ortholog or AtPRD3, is required
for DSB formation (Nonomura et al., 2004). Another Arabidopsis
DSB forming protein recently discovered is Arabidopsis thaliana
DSB formation (AtDFO), a plant-specific protein without any
known conserved domain (Zhang et al., 2012). These findings sug-
gest that, although the DSB formation by Spo11 is well conserved,
there are significant mechanistic differences in the regulation of
this process in different organisms.

REPAIR OF DOUBLE-STRAND BREAKS BY HOMOLOGOUS
RECOMBINATION: CROSSOVERS AND NON-CROSSOVER
A HR event between two homologous sequences can result in
either CO or non-CO (NCO). In COs there is a reciprocal exchange
of alleles flanking the DSB position, the formation of at least one
CO (the obligatory chiasma) is necessary to hold homologous
chromosomes together until their segregation to opposite poles

at anaphase I. In NCOs, which are also formed associated to CO
events, flanking alleles maintain their original linkage. The current
model to explain meiotic HR was proposed in yeast by Bishop and
Zickler (2004). It broadly concurs with a previous model (Szostak
et al., 1983; Sun et al., 1989) modified by Stahl (1994), with the
exception that the CO/NCO decision is made earlier, before dou-
ble Holliday junction (dHJ) resolution and synaptonemal complex
(SC) formation (Allers and Lichten, 2001). This model is appar-
ently suitable for Arabidopsis (Ma, 2006; Sanchez-Moran et al.,
2008). Figure 1 illustrates the main steps of the Arabidopsis meiotic
recombination pathway and the proteins involved. In this model,
NCOs may be produced by synthesis-dependent strand-annealing
(SDSA), which is a mechanism involving strand invasion, DNA
synthesis and strand ejection that does not involve HJs. How-
ever, SDSA is not the only way to produce NCO during meiosis
in this species. Thus, AtTOP3α and AtRMI1, which constitute a
complex with a RecQ helicase, contribute to dissolve dHJs and
generate some NCO products (Chelysheva et al., 2008; Hartung
et al., 2008). In yeast, the helicase Sgs1 is the master controller
of meiotic recombination and determines whether a recombina-
tion intermediate becomes either a NCO product or is directed
toward a pathway that ultimately ends up as a CO (De Muyt
et al., 2012; Zakharyevich et al., 2012). Expression of AtRECQ4A
in yeast, the Arabidopsis Sgs1 ortholog, resulted in full suppres-
sion of the sgs1 mutant phenotype, indicating that both proteins
apparently play the same function (Bagherieh-Najjar et al., 2005;
Hartung et al., 2007b). However, AtRECQ4A does not seem to
play a prevalent role on CO formation (Higgins et al., 2011).
In addition, DNA translocase Fanconi anemia complementa-
tion group M (FANCM) acts as an antirecombinase, pro-
cessing meiotic DSB repair intermediates and driving them
toward NCO, constraining CO formation (Crismani et al., 2012;
Knoll et al., 2012).

Crossovers are originated by two different ways: class I COs
are interference sensitive (subject to nearby COs) and dependent
on the ZMM proteins (Börner et al., 2004), whereas class II COs
are randomly distributed and dependent on Mus81 and Mms4
proteins for their formation (de los Santos et al., 2003). Here
the word “interference” refers to positive interference, which is
the spacing of events that departs from a random distribution.
Although both CO classes are initiated by DSBs, they are gen-
erated through different intermediates: single Holliday Junctions
(sHJs) for class II COs and dHJs for class I COs. Different model
organisms are dependent on both CO classes in a different way:
in fission yeast there are not interference sensitive COs (Osman
et al., 2003; Smith et al., 2003; Cromie et al., 2006), whereas in
Caenorhabditis elegans all COs show interference (Zalevsky et al.,
1999; Hillers and Villeneuve, 2003). An intermediate situation
is found in budding yeast, mammals and Arabidopsis, whose
proteins required for both CO classes are present (Copenhaver
et al., 2002; de los Santos et al., 2003; Housworth and Stahl, 2003;
Berchowitz et al., 2007; Higgins et al., 2008a,b; Holloway et al.,
2008). In Drosophila melanogaster all COs are produced by a
third CO pathway (Yildiz et al., 2002) and associated with inter-
ference (McPeek and Speed, 1995). Although it is unclear why
some species have conserved two CO pathways, this is a general
feature in plant kingdom (Tuskan et al., 2006; Mimida et al., 2007;
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FIGURE 1 | Model for crossover (CO) and non-crossover (NCO)

formation in Arabidopsis meiosis. Double-strand breaks (DSBs) are
formed and their 5′ ends processed to generate 3′-ended single-stranded
DNA (ssDNA). One of these ends invades the homologous duplex DNA,
giving raise a D loop intermediate. If the second end is captured and the
broken DNA strands are ligated, a double Holliday junction (dHJ) is formed.
This dHJ can be dissolved as a NCO or resolved to form either a NCO or a

class I CO, sensitive to interference. Alternatively, the D loop can be
processed to generate a class II CO (insensitive to interference, this class
includes nearly 15% of total COs). Presumably most NCOs arise via
synthesis-dependent strand annealing (SDSA) and they are produced when
the D loop is dissociated before the second end capture. Main proteins
involved in Arabidopsis meiotic recombination are shown (see text for a
more detailed explanation).

Paterson et al., 2009). Furthermore, it is possible that a third CO
pathway coexists with those previously mentioned, since some
COs still occurs when the main proteins involved in class I and
II COs are eliminated in yeast (de los Santos et al., 2003; Argueso
et al., 2004) and Arabidopsis (Berchowitz et al., 2007; Higgins et al.,
2008a).

It is noteworthy that there are differences in the DSBs/COs ratio
among species (Serrentino and Borde, 2012). Neither physical
genome size nor chromosome number can explain these differ-
ences. Budding yeast shows only about two times more DSBs than
COs (Mancera et al., 2008). However, in Arabidopsis and mam-
mals, precursor sites of recombination events are much more
numerous than COs, suggesting that DSBs are mostly repair to
give NCOs (Baudat and de Massy, 2007; Sanchez-Moran et al.,
2007). In Arabidopsis, the number of NCOs per meiosis detected
by different approaches [next generation sequencing (NGS); tetrad
analysis; pollen typing] is, in general, very low (ranging from

one to six; Lu et al., 2012; Sun et al., 2012; Drouaud et al., 2013;
Wijnker et al., 2013). Since there are 120–140 DSBs in a single
meiosis, as indicated by the number of AtDMC1 foci (Sanchez-
Moran et al., 2007), and COs vary from 7 to 11 depending on
the accession studied (Sanchez-Moran et al., 2002; López et al.,
2012), one possible explanation for this discrepancy is inter-sister
repair of DSBs. However, the relative importance of the sister
as template during meiosis is totally unknown in Arabidopsis,
and it seems to occur at a low frequency in other organisms
(Pradillo and Santos, 2011). Other reasons for the low gene con-
version rates detected could be either short NCO tracts (<100 bp),
that would be undetectable because they do not convert a single
nucleotide polymorphism (SNP), or the preferential repair of het-
eroduplexes to parental genotypes (Lu et al., 2012; Wijnker et al.,
2013). On the contrary, another study using NGS approaches has
concluded that between 90 and 99% of recombination events are
due to gene conversion (Yang et al., 2012). Additional research
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should be addressed to confirm the discrepancy between these
data.

RAD51, DMC1, AND DNA STRAND EXCHANGE
Once generated by Spo11, resection of the DSB proceeds in a 5′-3′
direction, resulting in 3′ single-stranded tails that are required for
the following step in the meiotic HR process. Following this resec-
tion, 3′ single-stranded DNA (ssDNA) tails are generated around
the DSB site. In this context, HR occurs with a partner DNA intact
duplex in a strand exchange reaction catalyzed by Rad51 (which
functions during HR in all cell types) and Dmc1 (the meiosis-
specific recombinase) to get joint molecule intermediates (Neale
and Keeney, 2006). These DNA recombinases bind to the extruded
ssDNA tails, to form presynaptic filaments. Since meiotic HR pos-
sesses particular features different to mitotic HR, the preference
for interactions between homologs instead of sisters among oth-
ers, it has been proposed that Dmc1 is essential to carry out these
unique peculiarities. Even, based on the asymmetric DSB process-
ing, some authors have hypothesized that Rad51 and Dmc1 could
be loaded differentially on the distinct DNA ends (Shinohara et al.,
2000; Hunter and Kleckner, 2001; Neale et al., 2005). However,
despite the numerous investigations, the exactly way both recom-
binases work is unknown. Furthermore, there are organisms that
lack a Dmc1 ortholog, like Drosophila melanogaster and C. elegans.
Curiously, these species achieve synapsis independently of DSBs
and display COs subject to interference. This finding led Copen-
haver et al. (2002) to propose that organisms possessing Dmc1
use Dmc1-mediated non-interfering COs to achieve synapsis,
whereas synapsis occurs by a recombination-independent route
in those lacking this protein. However, Neurospora lacks both
non-interfering COs and Dmc1, but requires DSBs for synapsis
(Bowring et al., 2006). On the other hand, Arabidopsis requires
the early recombination function of SPO11 proteins to achieve
synapsis (Grelon et al., 2001; Stacey et al., 2006), grouping with
yeast, mouse, grasshopper and Coprinus, and possesses a DMC1
homolog (Kleckner, 1996; Celerin et al., 2000; Mahadevaiah et al.,
2001; Viera et al., 2004).

In budding yeast, the relative importance of Rad51 and Dmc1
in promoting meiotic interhomolog instead of intersister recom-
bination has been matter of debate in the last years. Mutants
defective in Rad51 present decreased recombination in meiosis,
with reduced spore viability (Petes et al., 1991), and fail to form
Dmc1 foci (Bishop,1994). Mutants defective in Dmc1 show defects
in meiotic recombination and accumulate recombination inter-
mediates, showing problems to form normal SCs and arresting
at late prophase I (Bishop, 1994). However, Bishop et al. (1999)
and Tsubouchi and Roeder (2003) demonstrated that high levels
of interhomolog recombination could be achieved in the absence
of Dmc1 upon either overexpression of Rad51 or its stimulat-
ing partner Rad54. These results revealed that both recombinases
are able to catalyze interhomolog recombination during meio-
sis. Nevertheless, Rad51 strand exchange capacity during meiosis
is specifically shut down by meiosis-specific factor Hed1 and
Rad54 phosphorylation in such a way that interhomolog recom-
bination is then mediated exclusively by Dmc1 (Tsubouchi and
Roeder, 2006; Niu et al., 2009; Busygina et al., 2012). Indeed, Cloud
et al. (2012) have recently reported that only the strand exchange

activity of Dmc1, and not that of Rad51, is necessary for meiotic
recombination. Thus, Rad51 would be a Dmc1 accessory factor
which contributes to homolog bias independently of its strand
exchange activity. However, exchange activity of Rad51 may also
be relevant as a fail-safe when Dmc1 fails. To add more complexity
to this landscape Hong et al. (2013) have reported that, contrarily
it was though, the default option for recombination is homolog
bias, independently whether strand exchange is promoted by either
Dmc1 or Rad51. These authors proposed a model in which the
role of Rad51/Dmc1 interplay for the establishment of homolog
bias is to counteract a role of Rec8 that promotes sister bias.
Both recombinases would contribute to homolog bias: rad51�
exhibits sister bias and the same occur in the double mutant
hed1� dmc1� (hed1� mutation permits Rad51 to carry out strand
exchange when Dmc1 is absent). These authors also provide evi-
dences for Dmc1 being an inhibitor of Rad51 activity. Recently,
Lao et al. (2013) have reported a similar inhibitory function
of Dmc1.

Curiously, in fission yeast the preferential polarities of Hol-
liday junction branch migration driven by Rad51 and Dmc1 are
different (Murayama et al., 2008, 2011). Despite similarities in pro-
tein structure and reaction features, Dmc1 promotes exchange in
the 5′-to-3′ direction relative to the ssDNA region of the DNA
substrate, while Rad51 does it in the 3′-to-5′ direction. These
differences may be important in the pathway from HR interme-
diate formation to CO production. Murayama et al. (2011) also
proposed a role for Dmc1 in the second end capture of the DSB
site.

What do we know about the function of RAD51 and DMC1
in plants? The RAD51 gene exists as a single copy in tomato
and Arabidopsis, while maize has two copies (Stassen et al., 1997;
Doutriaux et al., 1998; Franklin et al., 1999; Li et al., 2004). DMC1
gene sequences have been reported in a few plant species. While
Arabidopsis genomes contain one copy of this gene, rice has two
copies, OsDMC1A and OsDMC1B (Klimyuk and Jones, 1997;
Kathiresan et al., 2002). On the contrary, there are three expressed
copies of each of the TaRAD51 and TaDMC1 homoeologues in
bread wheat (Devisetty et al., 2010). However, most knowledge
about the function of these genes in plants has been deduced
from the study of the corresponding Arabidopsis mutants. Whereas
dmc1 budding yeast mutants show an accumulation of unpro-
cessed DSBs and form abnormal SCs (Bishop et al., 1992), the
dmc1 mutant phenotype is distinct in Arabidopsis. Atdmc1 fails to
undergo synapsis and displays ten unfragmented univalent chro-
mosomes at metaphase I (Couteau et al., 1999). Thus, in this
mutant the DSBs are repaired efficiently from the intact duplexes
of sister chromatids, probably by AtRAD51. According with this,
AtRAD51 expression, induced in young flower buds, is increased
in both homozygous and heterozygous Atdmc1 plants when com-
pared with the wild-type (Couteau et al., 1999). In contrast to
Atdmc1, the Atrad51 mutant exhibits meiotic defects in pairing
and synapsis, as well as a severe AtSPO11-dependent chromo-
some fragmentation (Li et al., 2004). However, in both mutants the
vegetative development is not affected, indicating that the func-
tion of both recombinases is dispensable for processing mitotic
DSBs under normal growth conditions. The different phenotype
of Atdmc1 and Atrad51 indicates that AtDMC1 could be primarily
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responsible for DSB repair using the homologous chromosome as
a template. In contrast, AtRAD51 would repair DSBs using a sister
chromatid as a template. This model has also been proposed in
the protist Tetrahymena, in which in the absence of DMC1, effi-
cient RAD51-dependent repair take place, but COs are suppressed
(Howard-Till et al., 2011).

In this context, AtBRCA2 could be involved in the interplay
between both recombinases, since it is required for the proper
recruitment of both AtRAD51 and AtDMC1 (Seeliger et al., 2012).
Likewise, an axis-associated protein related to the yeast Hop1
(ASY1), could play a role in coordinating the activity of the
recombinases to favor interhomolog recombination in Arabidop-
sis (Sanchez-Moran et al., 2007). Thus, ASY1 has a differential
effect on the localization of AtRAD51 and AtDMC1. AtRAD51
localization is independent on ASY1, but AtDMC1 fails to form a
stable association with chromatin when ASY1 is absent. The dis-
ruption of AtDMC1 localization in asy1 mutant produces severe
defects on chromosome alignment, synapsis and recombination,
although all DSBs are repaired and chromosomes do not show
fragmentation. The same occurs in the mutant sds, defective
for a cyclin-like protein, which also shows defects in AtDMC1
localization (De Muyt et al., 2009). On the other hand, there
is a slightly asynchrony in the chromatin loading of AtRAD51
and AtDMC1. The accumulation of AtDMC1 precedes that of
AtRAD51 (Sanchez-Moran et al., 2007). This fact could reflect
the asymmetry in the loading of both proteins to the resected
DSBs, like has also been proposed in yeast (Hunter and Kleck-
ner, 2001). Indeed, Kurzbauer et al. (2012) have reported that
AtRAD51 and AtDMC1 do not colocalize during any meiotic
stage, in concordance with the hypothesis that the recombinases
occupy opposite DNA ends at a DSB. These results, together
with the meiotic phenotype of these mutants, lead to suggest
that the AtDMC1-end would be chiefly responsible for the ini-
tial strand invasion of the homolog, whereas the AtRAD51-end
would be captured at a later stage (Figure 2). However, Kurzbauer
et al. (2012) have proposed that the AtDMC1-end could be able
to repair from both sister chromatids and homologous chromo-
somes, the strand exchange activity of RAD51 being dispensable
for meiosis. They inferred this conclusion from the meiotic phe-
notype of the double mutant atr rad51, in which meiotic DSBs are
repaired to a certain extent, even resulting in bivalent formation in
some meiocytes. They also confirmed that Atrad51 is defective in
AtDMC1 loading, whereas AtRAD51 foci numbers are not altered
in Atdmc1. It would explain the meiotic phenotype of the corre-
sponding mutants. This fact does not occur in other species such
as Tetrahymena, in which DMC1 focus formation is independent
of the presence of RAD51 (Howard-Till et al., 2011). Kurzbauer
et al. (2012) also argue that ATR has a pivotal role in the mei-
otic program and propose a model in which AtRAD51 loading
attenuates ATR signaling, allowing AtDMC1 loading (see Figure
5 in Kurzbauer et al., 2012). In this model ASY1 would inhibit
AtDMC1-end for DSB repair using sister chromatids as template.
This model would explain why the DNA repair of meiotic DSBs is
even more efficient in the triple mutant atr rad51 asy1 than in the
double mutant atr rad51. The ability to AtDMC1 to repair using
the sister has also been proved in a haploid context (Crismani et al.,
2013).

On the other hand, Da Ines et al. (2013a) have reported that
AtRAD51 would just play a supporting role in meiotic recombi-
nation, as well as in yeast. This assertion is based on the effect
of a RAD51-GFP fusion protein that retains ability to assemble
at DSBs but lacks strand exchange activity. This protein is capa-
ble to repair the meiotic chromosomal fragmentation and sterility
showed by Atrad51, without an increase of COs. However, this
complementation is not possible in the double mutant Atrad51
Atdmc1, being fully dependent on the presence of AtDMC1. Also,
another similarity between plant and yeast has been found by
Uanschou et al. (2013). These authors have demonstrated that in
the absence of AtDMC1, AtMND1/AtHOP2, an essential complex
during HR, is dispensable for AtRAD51-mediated intersister DNA
repair. However, in the presence of AtDMC1, a minimal amount
of functional AtMND1/AtHOP2 is indispensable to drive intersis-
ter DNA repair, suggesting that AtDMC1 is a negative regulator of
AtRAD51 during meiosis. This negative regulation would be crit-
ical for the establishment of AtDMC1-dependent interhomolog
connections.

Taking into account all the observations mentioned above,
it is time to ask for the role of RAD51 during plant meiotic
recombination. RAD51 is a component of the early recombina-
tion nodules, required for homology searching and synapsis in
lily (Anderson et al., 1997, 2001). In maize, Franklin et al. (1999)
observed that the number of RAD51 foci exceeds the number
of COs. This finding led to the suggestion that these extra foci
may be involved in homology search. Furthermore, Pawlowski
et al. (2003) pointed out that completion of homologous pair-
ing is necessary for the removal of RAD51 from chromosomes.
In addition, maize plants deficient in RAD51 function exhibit
unprocessed DSBs, as well as non-homologous synapsis and chi-
asmata between non-homologous chromosomes (Li et al., 2007).
A knock-down Atrad51 mutant displays a similar phenotype:
multivalents and well-defined homologous and non-homologous
bivalents (Pradillo et al., 2012). This mutant also presents less frag-
mentation than the knock-out, suggesting that somehow DSBs
are being processed by HR, although a critical level of AtRAD51
is required to ensure the fidelity of HR during interchromosomal
exchanges. This work highlighted, for first time in Arabidopsis,
that in addition to its strand exchange activity, AtRAD51 could
also be required to ensure the fidelity of HR in the interchromoso-
mal exchanges initiated by AtDMC1. Still further, Shinohara and
Shinohara (2013) have recently described a role for Rad51 in the
suppression of meiotic ectopic recombination in Saccharomyces
cerevisiae. In summary, AtRAD51 seems to play two different,
although interrelated, meiotic functions: one lying in its strand
exchange activity and other lying in helping AtDMC1 to promote
CO and to guarantee a faithful recombination. The former appears
to be dispensable during the meiotic process as it has been revealed
by recent studies (Kurzbauer et al., 2012; Da Ines et al., 2013a).
However, in this landscape many questions remain unanswered,
including the role of AtRAD51 paralogs.

RAD51 PARALOGS: THE CX3 COMPLEX
In addition to RAD51 and DMC1, Arabidopsis, in common with
vertebrates, possesses five RAD51 paralogs: RAD51B, RAD51C,
RAD51D, XRCC2, and XRCC3 (Osakabe et al., 2002; Bleuyard
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FIGURE 2 | Model for the interplay between AtRAD51 and AtDMC1

during homologous meiotic recombination in Arabidopsis. (A) During
WT meiosis, it is not known if AtRAD51 (yellow) and AtDMC1 (green)
are loaded asymmetrically at both DNA ends. According to several
studies (see text for details) the AtDMC1 nucleofilament would be
involved in the first strand invasion, whereas AtRAD51 nucleofilament
would be responsible in checking homology during the second end
invasion. However, the existence of mixed nucleofilaments could not be
ruled out. Five bivalents are observed at metaphase I. (B) In the
Atdmc1-2 mutant (Pradillo et al., 2012), all the nucleofilaments are

constituted by AtRAD51. DSBs are repaired using the sister chromatid
as template. The result is the formation of ten univalents at metaphase
I, and complete absence of chromosome fragmentation. (C) In the
Atrad51-3 mutant (knockout mutant; Pradillo et al., 2012), all the
nucleofilaments are constituted by AtDMC1. The entangled mass of
chromosomes observed at metaphase I could indicate recombination
between homologous and non-homologous chromosomes. Sister
chromatid exchanges could happen. Red and blue lines represent
homologous chromatids. Orange lines represent chromatids from a
non-homologous chromosome. Bars represent 5 μm.

et al., 2005). Yeast two-hybrid and co-immunoprecipitation stud-
ies have shown that proteins coded by these RAD51 paralogs
form two complexes in vertebrates: CX3 (RAD51C/XRCC3) and
BCDX2 (RAD51B/C/D/XRCC2; Schild et al., 2000; Masson et al.,
2001; Liu et al., 2002). Presumably these genes arose by gene
duplication and acquired new functions during evolution, their
exact role being not fully understood to date. Both complexes are
involved in DNA repair, but only CX3 plays essential roles in mei-
otic HR (Bleuyard and White, 2004; Li et al., 2005; Osakabe et al.,
2005). In mammals, biochemical studies have detected that in
the CX3 complex, RAD51C facilitates homolog pairing, whereas
XRCC3 contributes to the preferential binding of the complex
to ssDNAs (Kurumizaka et al., 2001), and both proteins promote
the loading of RAD51 onto DNA (Bishop et al., 1998; Masson

et al., 2001; Wiese et al., 2002). It has also been proposed that
CX3 functions in late stages of HR pathway, resolving Holidays
junctions (Liu et al., 2004, 2007; Sharan and Kuznetsov, 2007).
Recently, Chun et al. (2013) have demonstrated in human cells
that in response to DNA damage, BCDX2 and CX3 complexes act
upstream and downstream of RAD51 recruitment, respectively,
and both are epistatic with BRCA2.

In yeast, Rad51 paralogs are named Rad55 and Rad57 and the
corresponding proteins form a heterodimeric complex which asso-
ciates with Rad51 nucleofilament. DSB repair defects and DNA
damage sensitivity generated by mutations in these genes can be
rescued by rad51 gain-of-function alleles (Fortin and Syming-
ton, 2002). Both proteins, Rad55 and Rad57, are not functionally
equivalent since a mutation in the gene Rad55 has a much stronger
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effect respect to sensitivity to irradiation (Johnson and Syming-
ton, 1995). It is noteworthy that either rad55� or rad57� reduce
interhomolog bias during meiotic recombination (Schwacha and
Kleckner, 1997), but the Rad55-Rad57 complex has no strand
exchange activity (Hays et al., 1995; Johnson and Symington, 1995;
Sung, 1997). Their contribution to the stabilization of the Rad51
nucleofilament appears to be performed by counterbalancing the
antirecombinase activity of Srs2 (Liu et al., 2011). Other novel
yeast Rad51 paralogs, components of the Shu complex, also named
PCSS: Shu1, Shu2, Psy3, and Csm2, have recently been identified.
Their activity also counteracts the antirecombination function
of Srs2 and Sgs1 (Mankouri et al., 2007; Bernstein et al., 2011;
Sasanuma et al., 2013).

In Arabidopsis, AtRAD51C and AtXRCC3 are overexpressed
after gamma-irradiation, indicating an essential role for these
genes during DNA repair (Osakabe et al., 2002). In addition,
the meiotic phenotypes of the corresponding mutants are very
similar to that displayed by Atrad51 (Bleuyard and White, 2004;
Abe et al., 2005; Bleuyard et al., 2005; Li et al., 2005). In this

sense, the function of the CX3 complex cannot be replaced by
the BCDX2 complex and Atrad51c mutation does not produce
a more drastic meiotic phenotype than Atxrcc3, even though
AtRAD51C is present in both complexes (Figure 3). In addi-
tion, the analysis of Atrad51c and Atxrcc3 mutants in an Atspo11-1
background has shown that their meiotic chromosomal instability
comes from an inability to repair programmed DSBs (Bleu-
yard et al., 2004; Li et al., 2005). However, there are slightly
differences that support the idea that these genes are not func-
tionally identical to AtRAD51 since the vast majority of Atrad51-1
meiocytes do not have any SCs, whereas in Atrad51c there are
occasional polycomplexes, and Atxrcc3 shows abnormal SCs at
a frequency higher than those observed in Atrad51 (reviewed in
Ma, 2006). Hence, AtRAD51C, AtXRCC3, and AtRAD51 are not
genetically redundant and work together to promote the repair
of meiotic DSBs (Bleuyard et al., 2006). In this context, two-
hybrid assays performed with Arabidopsis sequences confirmed
that the CX3 complex interacts with AtRAD51 (Osakabe et al.,
2002). For this reason it has been suggested that CX3 facilitates

FIGURE 3 | Some examples of metaphases I and anaphases I in two

Atrad51 mutants and defective mutants for the CX3 complex. (A)

Knockdown (KD) mutant for Atrad51: Atrad51-2. (B) Knockout (KO)
mutant for Atrad51: Atrad51-3 (see Pradillo et al., 2012). (C) Atrad51c-1.
(D) Atxrcc3-1. The meiotic phenotype of Atrad51-3, Atrad51c-1 and
Atxrcc3-1 is quite similar: an entangled mass of chromosomes involving

multivalent associations at metaphase I, and missegregations and severe
chromosome fragmentation at anaphase I. This phenotype is slighter in
the KD mutant Atrad51-2: three bivalents and four univalents are clearly
distinguished in the picture corresponding to metaphase I. Also,
chromosome fragmentation is less drastic at anaphase I. Bars represent
5 μm.
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the loading and/or activity of this recombinase during meiotic
prophase I.

Roth et al. (2012) have verified that AtRAD51 and its par-
alogs AtRAD51C and AtXRCC3 are of great importance for SDSA
during somatic recombination. Nevertheless, the exact role of
AtRAD51C and AtXRCC3 in plant meiosis and how they collabo-
rate with AtRAD51 to achieve efficient HR remain elusive. Vignard
et al. (2007) demonstrated that in the wild-type AtDMC1 load-
ing depends on AtRAD51 and AtXRCC3. However, in a mutant
defective for the AtMND1/AtHOP2 complex, which is also essen-
tial during early stages of prophase I, AtXRCC3 is dispensable for
AtDMC1 focus formation, whereas AtRAD51 is not. Based on
this fact, these authors proposed a role for AtXRCC3 in stabiliz-
ing AtDMC1 nucleoprotein filaments, since its absence reduces
the number of AtDMC1 foci in Atmnd1. It is not known whether
AtRAD51C, which also carries out an important function during
DNA repair in the BCDX2 complex, also presents this function.
Furthermore, Da Ines et al. (2012) have analyzed the homolo-
gous pairing in Atrad51, Atrad51C, and Atxrcc3, suggesting a
separate role for AtDMC1 and AtRAD51-AtRAD51C-AtXRCC3 in
synapsis, that should be chromosome region dependent. AtDMC1
would stabilize pairing of homologous centromeric and peri-
centromeric regions, while AtRAD51 together with AtRAD51C
and AtXRCC3 would be necessary for pairing of euchromatic
chromosome arms.

With respect to the other paralogs, targeted inactivation of
mouse RAD51B, RAD51D, and XRCC2 reveals that these genes
are essential for mouse embryogenesis (Shu et al., 1999; Deans
et al., 2000; Pittman and Schimenti, 2000). In contrast, these genes
are not required for viability in Arabidopsis, as the triple mutant
Atrad51b Atrad51d Atxrcc2 shows normal vegetative and repro-
ductive growth (Serra et al., 2013; Wang et al., 2014). However,
these mutants are hypersensitive to DNA damaging agents and the
genes have partially redundant functions in DNA repair (Bleu-
yard et al., 2004, 2005; Osakabe et al., 2005; Durrant et al., 2007;
Wang et al., 2014). Indeed, the expression of genes involved in both
SDSA and single-strand annealing (SSA) pathways is affected in
the triple mutant mentioned above. This variation could be a
direct consequence of DNA damage, however, the fact that both
bleomycin treatment and the triple mutation generate specific sets
of differentially expressed genes suggests that each one has a dis-
tinct role in gene regulation (Wang et al., 2014). Concerning to this
issue Serra et al. (2013) have found that AtXRCC2, AtRAD51B, and
AtRAD51D are involved in SSA. Thus, these proteins participate in
both RAD51-dependent (SDSA) and RAD51-independent (SSA)
HR. Since the meiotic process appears to be normal in the triple
mutant Atrad51b Atrad51d Atxrcc2 (Wang et al., 2014), the BCDX2
complex seems to be dispensable during meiotic recombination.
However, a slight effect should not be ruled out. Indeed, Da Ines
et al. (2013b) have reported that the absence of AtXRCC2, and to a
lesser extent AtRAD51B, increases rates of meiotic COs. This effect
does not occur with AtRAD51D, which is mainly involved in plant
immune response (Durrant et al., 2007). Da Ines et al. (2013b)
propose that the hyper-recombination phenotype displayed by
Atxrcc2 could be due to an increase in AtDMC1-dependent
recombination promoted by a decrease in AtRAD51-dependent
recombination.

OPEN QUESTIONS
Plants, particularly Arabidopsis, present apparently relaxed meiotic
checkpoint and many mutants, unlike other model organisms, are
viable. The exact role of AtDMC1, AtRAD51 and its paralogs in
the meiotic HR is still a matter of controversy. The mechanisms
through the recombinases cooperate to promote the homology
search and the function of AtRAD51 paralogs in meiosis remain
unknown. Although during the last years several studies have con-
tributed to increase the knowledge of the interplay between these
proteins, especially by the analysis of the meiotic phenotype of
double and even triple mutants, many questions remain unan-
swered. Are the meiotic defects of Atrad51 mutants due to the
absence of the recombinase or are consequences of a failure in
AtDMC1 loading? Does the strand exchange capacity of AtRAD51
play a role during wild-type meiosis or only in certain mutants? Is
AtRAD51 able to carry out interhomolog recombination in some
genetic backgrounds? Are AtRAD51C and AtXRCC3 functionally
equivalent? Are these proteins similarly involved in both intersis-
ter and interhomolog recombination? In addition to their early
role during meiotic HR, as occur in mammals, do these pro-
teins achieve any activity after strand invasion? Answers to these
questions await development of forward-looking molecular tools,
generation of new double mutants and finding of new players in
this landscape. Time will tell.
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