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The model plant Oenothera has contributed significantly to the biological sciences and
it dominated the early development of plant genetics, cytogenetics, and evolutionary
biology. The great advantage of using Oenothera as a model system is a large body of
genetic, cytological, morphological, and ecological information collected over more than
a century. The Oenothera system offers a well-studied taxonomy, population structure,
and ecology. Cytogenetics and formal genetics at the population level are extensively
developed, providing an excellent basis to study evolutionary questions. Further, Oenothera
is grown as an oil seed crop for the production of essential fatty acids (gamma-linoleic
acid) and is considered to be a medicinal plant due to its many pharmaceutically active
secondary metabolites, such as ellagitannins. Although Oenothera has been cultivated
as a laboratory organism since the end of the 19th century, there is a substantial lack of
literature dealing with modern greenhouse techniques for the genus.This review compiles
an overview about the growth requirements for the genus Oenothera, with a special
focus on its genetically best-studied subsections Oenothera and Munzia. Requirements
for greenhouse, field, and agronomic cultures are presented, together with information on
substrate types, pest control, as well as vegetative and seed propagation, cross pollination,
harvest, and seed storage. Particular aspects like germination, bolting, and flowering
induction in taxonomically diverse material are reviewed. Methods recommended are
supported by ecological and experimental data. An overview of the possibilities for wide
hybridization and polyploidy induction in the genus is given. Germplasm resources are
referenced. In summary, a comprehensive guideline for successful laboratory cultivation
of Oenothera species is provided.
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INTRODUCTION
The first reports on growing Oenothera (evening primrose, Ona-
graceae) coincide with the early rise of genetics. For example,
pioneering work on Oenothera led Hugo de Vries to the for-
mulation of his mutation theory (de Vries, 1901–1903; Nei
and Nozawa, 2011), and evening primroses dominated classi-
cal cytoplasmic genetics (Chiu and Sears, 1993; Harte, 1994;
Hagemann, 2010; Johnson, 2010). At the same time, the genus
became a notable model to study non-Mendelian inheritance,
plastome–genome co-evolution, cytoplasmic elements in plant
adaptation and speciation, suppression of genome-wide recom-
bination, chromosome translocations, and evolutionary ecology
(Golczyk et al., 2008; Greiner et al., 2008; Rauwolf et al., 2008;
Johnson et al., 2009b; Artz et al., 2010; Johnson, 2010; Theiss
et al., 2010; Brown and Levin, 2011; Evans et al., 2011; Greiner
et al., 2011; Rauwolf et al., 2011; Agrawal et al., 2012; Greiner,
2012; von Arx et al., 2012; Burton et al., 2013; Greiner and
Bock, 2013). Furthermore, Oenothera is exploited as a crop for
the production of the essential gamma-linoleic fatty acid (Deng
et al., 2001; Fieldsend, 2007). Many of its secondary metabolites,
such as ellagitannins (e.g., oenothein B, which suppresses tumor
development), are of increasing importance (for references, see
Singh et al., 2012).

Although research on Oenothera has been conducted for more
than 120 years, there are only a few summaries available describing

cultivation techniques for evening primrose as a laboratory
organism. Relevant information was either published very early in
the German literature, or was never published but passed on within
schools of Oenothera workers. Most of these methods, however,
only refer to field experiments and almost no reports cover modern
greenhouse cultivation. This is in sharp contrast to a substantial
and emerging literature describing crop management of Oenothera
in agronomics. The aim of the present work is to summarize pub-
lished and unpublished methods used by generations of Oenothera
researchers. In addition, methods for greenhouse cultivation,
developed at the Ludwig-Maximilians-University in Munich, Ger-
many, as well as the Max Planck Institute of Molecular Plant
Physiology, Potsdam–Golm, Germany, are presented. All methods
are set into an ecological context and a summary of the com-
prehensive experimental literature supporting these methods is
given.

Currently, the genus Oenothera consists of 145 species sub-
divided into 18 sections1. It colonizes a wide range of habitats
and climate zones. Although originated in the Americas, some
of its species easily adapt and the genus includes nearly cos-
mopolitan but also endemic taxa (Wagner et al., 2007). This results
in a huge diversification, e.g., in the requirements for flower

1Sections and subsections are taxonomic ranks below the genus level, used if
appropriated in plant taxonomy.
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induction, which can vary even within a species (e.g., Evans
et al., 2005; Johnson, 2007; and references therein). Hence, the
synchronization of large numbers of Oenothera cultivars con-
taining multiple genotypes is challenging. Protocols described
in this work are based on approaches developed for the well-
studied section Oenothera, that currently contains 65 species
in the six subsections Oenothera, Raimannia, Munzia, Candela,
Emersonia, and Nutantigemma (Wagner et al., 2007). Among
them, genetically most important are subsection Oenothera (syn:
Euoenothera; Dietrich et al., 1997) and species formally grouped
into the sections/subsections Raimannia, Renneria, Anogra, and
Eu-Oenothera. The genetically studied material of the latter groups
is now included within section Kleinia and subsections Mun-
zia and Candela (Dietrich, 1977; Dietrich and Wagner, 1988;
Wagner et al., 2007). Extensive genetic literature exists for this
material (for review, see Cleland, 1972; Harte, 1994). For sub-
section Oenothera, detailed physiological studies have facilitated
the development of growth protocols, with the original methods
referring to the subsections Oenothera and Munzia (de Vries, 1913;
Schwemmle et al., 1938). These methods can, however, be used for
the whole section Oenothera (cf., Stubbe and Raven, 1979a) and
for material from other sections, like Oenothera cespitosa (section
Pachylophus), Oe. speciosa (section Hartmannia), or Oe. macro-
carpa (section Megapterium). The protocols may apply thus to
most Oenothera species, even if specific culture recommendations
given in this work largely refer to the subsection Oenothera and the
genetic stocks of Julius Schwemmle and co-workers (subsection
Munzia).

GENERAL CHARACTERISTICS
Oenothera is an herbaceous plant. Species of subsection Oenothera
are facultative biennials or short-lived perennials, 40 cm–2.5 m
(4.0 m) in size with typical heights of 1.0–1.5 m. Rosette size
can vary between 10 and 40 cm, reaching the upper limit when
cultivated (Figures 1C,D). Subsection Munzia is annual or bien-
nial, with a huge height variation, from a few cms to 2.0 m with
rosette diameters of 5–70 cm (Dietrich, 1977; Hall et al., 1988;
Harte, 1994; Dietrich et al., 1997; Wagner et al., 2007). Many
diploid species in the genus are permanent translocation heterozy-
gotes, i.e., due to reciprocal chromosome translocations meiotic
rings are formed. This leads to formation of two superlinkage
groups, so called Renner complexes, each involving one complete
haploid chromosome set (α and β). Specialized breeding behav-
ior, e.g., gametophytic lethal factors, can eliminate homozygous
segregants (α·α or β·β), resulting in permanent heterozygous off-
spring (α·β) only (Cleland, 1972). Within subsection Oenothera,
three basic nuclear genomes (A, B, and C) occurring in homozy-
gous (AA, BB, and CC) or stable heterozygous (AB, AC, and BC)
combinations could be identified. These are associated with five
basic plastome (chloroplast genome) types (I–V). Combinations
of distinct basic nuclear genomes with basic plastome types rep-
resent an important factor in species definition (Stubbe, 1989;
Dietrich et al., 1997).

GENERAL CULTIVATION SCHEME IN THE GREENHOUSE
Oenothera is a robust plant and can be grown easily in the green-
house or in field plots in temperate regions, although not all taxa

FIGURE 1 | Developmental series of plants from subsection Oenothera

under controlled greenhouse conditions. Oe. elata (A,C,E), Oe. biennis
(B,D,F). Beginning of early rosette stage, 21 days after germinations (A,B).
Bar: 2 cm. Note variation in leaf number and size between the two species.
Mature rosettes just before bolting, 42 days after germination (C,D). Bar: 10
cm. Mature plants, 77 days after germination (E,F). Bar: 20 cm. Oe. biennis
already starts blooming (F), whereas Oe. elata will flower in approximately
1 week (E).

are equally well suited for both venues. Under optimal cultiva-
tion conditions, the generation time of Oenothera comprises 4–6
months, depending on the strain. Cultivation times range from
around 4 months for the strains of the subsection Munzia and
6 months for species of subsection Oenothera. However, several
important laboratory strains in subsection Oenothera complete
their life cycle in 5 months.

Long-day conditions (16 h light/8 h dark) are required in
all stages of a greenhouse culture, except for vernalization (see
below). With the exception of Oe. grandiflora, short-day con-
ditions inhibit flower formation (see below). Standard growth
temperatures range from 18 to 22◦C. Higher temperatures such
as 24◦C (Glick and Sears, 1994; Johnson et al., 2009b) are toler-
ated and can even promote growth. They should, however, not
exceed 27◦C since for example bolting may be prevented (Yaniv
et al., 1989; Clough et al., 2001; Giménez et al., 2013; but also
see von Arx et al., 2012). Plants start to develop the first true
leaves 7–10 days after germination at a plant size of 2.0–2.5 cm
diameter. At this stage, they are transferred from seedling trays
to individual pots. About 3–4 weeks after germination, plants
reach the early rosette stage with a diameter of about 12 cm
and develop the 5th and 6th leaves (Figures 1A,B). Depending
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on the line, the stage corresponds approximately to stage 1.5 in
the Oenothera developmental code developed by Simpson (1994).
This is the earliest stage, in which plants can be vernalized and
transplanted into the final pots of 18 cm for greenhouse culti-
vation or alternatively into field plots (see below). However, also
bigger and stronger plants can be used for transplanting in field
cultures. Hence, vernalization and transplanting at later stages
is possible, but plants should not be kept too long in 6 cm
pots, since they become pot-bound or crowd each other. After
transplanting, a burst of growth is observed. Depending on the
strain/species, bolting starts 6–8 weeks and flowering 10–15 weeks
after germination (cf., de Vries, 1913; Figures 1C–F). Subsection
Munzia develops faster. With the exception of Oe. grandiflora,
which bolts very earlier and but might need special treatments
for flower induction (see below), flowering always follows bolt-
ing. Seed ripening requires another four (subsection Munzia)
to eight weeks. Fresh seeds can be sown immediately after har-
vest (cf., Steiner, 1968; Baskin and Baskin, 1994). In the field,
the plant dies after completing its life cycle (Hall et al., 1988;
Dietrich et al., 1997). However, also iteroparous behavior, i.e.,
flowering in two subsequent field seasons has been reported, espe-
cially for sandy habitats with moderate plant density (Johnson,
2007). In general, production of successive flowers depends on
day-length and terminates in short-day conditions, i.e., at the end
of a field season but not in long-day greenhouse conditions. For
growth schemes of Oenothera cultures under various conditions
see, e.g., Kachi and Hirose (1983); Gross and Kromer (1986),
Russell (1988); Reekie and Reekie (1991), Fieldsend and Mori-
son (2000b); Clough et al. (2001), Deng et al. (2001); Fieldsend
(2004), Honermeier et al. (2005), Vilela et al. (2008), or Giménez
et al. (2013).

SUBSTRATE TYPES AND IRRIGATION
Oenothera can be grown on a range of substrates. However, as a
ruderal, calcicoles weed occurring on sandy or gravelly soils (Hall
et al., 1988; Dietrich et al., 1997), it prefers well-drained substrates,
tolerates low nutrient contents (cf., de Vries, 1913) and moderate
watering. Nevertheless, the plant has a high water demand during
bolting, when it grows rapidly. To achieve optimal results, plants
must be fertilized. In ecological field studies, the largest biomass
and seed production were observed in tilled fields with rich soils
(Johnson and Agrawal, 2005; Johnson, 2007; Johnson et al., 2008).

At the Max Planck Institute in Golm, seeds were germinated
on and transferred to peat-based commercial substrates opti-
mized for Arabidopsis growth (e.g., MPG-mixture from Stender
AG, Luckenwalde, Germany) that contain fibric peat, vermiculite,
and sand [7:2:1], supplied with 150 mg/l microelements, 100 mg/l
Fe-chelate and 1 g/l of the slow-release NPK-fertilizer “Osmo-
cote Start” (Everris International B.V., The Netherlands). Older
plants were transferred to “Oenothera substrate,” a mixture of
the peat-based substrate “Standard Potting Soil Classic,” quartz
sand, and fine-grained vermiculite [4:2:1], supplied with 3 g/l
“Osmocote Exact Standard 3–4 M” (Everris International B.V.,
The Netherlands). “Standard Potting Soil Classic” is a soil mix-
ture supplied by the company Einheitserde- und Humuswerke
Gebrüder Patzer GmbH & Co.KG, Sinntal/Altengronau, Ger-
many. It is composed of natural clay, fibric and sod peat,

supplemented with 250–450 mg/l nitrogen, 250–450 mg/l P2O2,
as well as K2O (360–500 mg/l) at pH 6.0 (Köhl, unpublished;
Table 1).

In the laboratory of Wilfried Stubbe, Peat Culture Substrate 1
was used up to the early rosette stage and Peat Culture Substrate 2,
a soil mix with higher fertilizer concentration, for successive cul-
tivation (Linne von Berg, 1990). Substrates used by the laboratory
of Marc T. J. Johnson include Sunshine Mix 1 or Pro Mix Gen-
eral Purpose Peat Soil with vermiculate and a balanced Osmocote
[13:13:13], sometimes with micronutrients (e.g., Johnson et al.,
2009b).

GERMINATION
Germination of Oenothera seeds requires light and moisture. Seeds
are therefore sown on the substrate surface and covered with a
translucent dome to maintain humidity. Seedlings appear after
one or two weeks. With this method, seed quality, age and/or
strain can affect germination capacity and rate substantially up
to the point of extreme delays. Large difference can be observed
even between different sowings of the same seed lot (Davis, 1915;
de Vries, 1915). Germination rates and synchronization can be
increased by soaking seeds for 24 h at low temperatures (4–10◦C)
in the dark (cf., Ensminger and Ikuma, 1988). Seeds soaked in
0.1% Agarose can be spread more easily with a pipette. Reliable
complete germination can be achieved by transferring imbibed
seeds to continuous light and 28◦C (cf., Gross, 1985; Ensminger
and Ikuma, 1987a).

Since such conditions are difficult to achieve in the greenhouse,
seeds should be germinated on wet blotting paper in a petri dish
(cf., de Vries, 1913; Davis, 1915; Renner, 1917). More efficiently,
the seeds can be placed on a wet filter paper, which is placed on
the wall of a glass beaker or vial with a lid. The moisture of the
paper is maintained by covering the bottom of the beaker with tap
water and dipping the filter paper into it (Figure 2). In this sys-
tem, seeds germinate completely within 1–3 days (de Vries, 1915,
1916, 1917). If germination is delayed, fungi may appear on the
seeds and filter paper, which requires rinsing seeds with a 3%
hydrogen peroxide solution (Linne von Berg, 1990). Low quality
seed lots from sub-optimal storage or of increased age (see below)
require surface-sterilization with hypochlorite. These seeds can be
sown on sterile filter paper (Zupok, unpublished) or on sucrose
free ½ MS medium (cf., Chiu et al., 1988; de Gyves et al., 2001).
Delayed seed germination can be overcome by pressing water into
soaked seeds with 6–8 bar for 2–3 days (de Vries, 1915), or by
repeated incubation at 10–15◦C for the same timeframe. Subse-
quently, seeds must be returned to higher temperatures (Renner,
1917). Likewise, wetting/drying cycles, stratification, and expo-
sure to hot temperatures can break dormancy. In commercial
cultures, soaking at 45–50◦C for 24–48 h, or early spring burial in
frozen soils is sometimes applied to promote germination. Other
methods, to improve germination rates such as application of sul-
furic acid, abrasion, or priming, do not give satisfactory results
(for references, see de Vries, 1915; Steiner, 1968; Hall et al., 1988;
Nightingale and Baker, 1995; Deng et al., 2001; Wees, 2004; Xu
et al., 2010).

Interestingly, light quality has an influence on germination
(Gross, 1985). Best germination results are obtained in the spring,
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Table 1 | Cultivation conditions for Oenothera in climate controlled glasshouses or foil greenhouses without heating/cooling.

Working step Controlled environment Foil greenhouse

Sowing

Container (internal dimension) Seed flat (50 cm × 32 cm, depth 6 cm) Storage container with perforated bottom (35.5 cm × 25.5 cm,

depth 10.5 cm)

Substrate Stender MPG-mixture for Arabidopsis thaliana1 Stender MPG-mixture for Arabidopsis thaliana1

Fertilizer None None

Plants per container 50–100 seeds 50–100 seeds

Transferring

Time (das)2 14–21 14–21

Container (dimension) Round 6 cm pot Round 10 cm pot

Substrate Stender MPG-mixture for Arabidopsis thaliana1 Oenothera substrate3

Fertilizer 1 g Osmocote start/l substrate 3 g/l Osmocote Exact Standard 3–4 M

Plants per container 1 1

Planting

Time (das)2 40–50 40–50

Container (dimension) Round 18-cm pots (diameter 17.5 cm, height

16.5 cm)

Round 18-cm pots (diameter 17.5 cm, height 16.5 cm)

Substrate Oenothera substrate3 Oenothera substrate3

Fertilizer 3 g/l Osmocote Exact Standard 3–4 M 3 g/l Osmocote Exact Standard 3–4 M

Plants per container 1 1

1Composition of Stender MPG-mixture: fibric peat, vermiculite, and sand [7:2:1], supplied with 150 mg/l microelements, 100 mg/l Fe-chelate.
2Days after sowing.
3Composition of Oenothera substrate: peat-based substrate “Standard Potting Soil Classic” (natural clay, fibric and sod peat, supplemented with 250–450 mg/l
nitrogen, 250–450 mg/l P2O2, as well as K2O 360–500 mg/l at pH 6.0), quartz sand, and fine-grained vermiculite [4:2:1]). Before sowing or transferring, the substrate
is soaked with tap water containing 0.906 mg/l Propamocarb to prevent damping off.

FIGURE 2 | Germination of Oenothera seeds in a humid chamber. For
details see text.

when seeds are exposed to sunlight (cf., Davis, 1915; de Vries,
1917; Linne von Berg, 1990; Johnson and Agrawal, 2005). In
general, Oenothera seeds display a seasonal change of dormancy.
Germination is regulated by a subtle interplay of temperature

and the duration of exposure to a particular temperature, light
quality, quantity, time point and length, storage conditions
and length, or date of harvest. Also genotypic differences have
been recognized. Under certain conditions, light is not even
required for germination (Davis, 1915; Fujii and Isikawa, 1961;
Schwemmle, 1961; Steiner, 1968; Gross, 1985; Ensminger and
Ikuma, 1987a,b; Ensminger and Ikuma, 1988; Baskin and Baskin,
1994; Doroszewski, 2007).

Interesting exceptions from the standard germination protocols
are species with fruits that do not dehisce (i.e., section Gaura).
Capsules, which only contain one to four (five) seeds (Wagner
et al., 2013), are placed in 1 cm depth into the substrate and
exposed to fluorescent white light at regular greenhouse tempera-
tures until seedlings establish. This procedure is required because
the seeds are embedded in very hard tissue. 1–2 days of soaking the
capsules does help to loosen the carpels, but it is still insufficient to
extract the seeds effectively. In soil, the tissue, in which the seeds
are embedded, decomposes quickly after a few days (Johnson,
unpublished; Hollister et al., submitted).

Germination can be influenced by seed infection with Septoria
oenotherae, an Ascomycota species developing pycnidia (asexual
fruit bodies) within seeds. The pathogen is ubiquitously present in
Oenothera cultures (Simpson et al., 1995; O’Connell et al., 2005).
Heavily infected seed lots exhibit reduced or no germination.
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Adding 0.05% of Plant Preservative Mixture (Plant Cell Tech-
nology Store, Washington, DC, USA) to germination media in
tissue culture plates, or 3% of the chemical while soaking the
seeds, significantly enhances germination rates (Stegemann et al.,
unpublished). Incubation of the seeds in 45◦C hot water for 25 min
destroys the fungus without affecting germination (O’Connell
et al., 2005). Long-term steed storage at –20◦C (see below) reduces
fungal survival (Greiner, unpublished). Finally, it should be men-
tioned that in some permanent translocation heterozygous strains
50% of the seeds are aborted as a consequence of sporophytic
lethal factors (cf., Cleland, 1972).

BOLTING AND FLOWER INDUCTION
Requirements for flower-induction are quite diverse within the
whole genus Oenothera, and vernalization response is not uni-
form within a species. Depending on the material, various kinds
of behaviors have been reported. For example, most of the strains
of subsection Munzia do not require vernalization when grown
in long-day conditions. Oe. grandiflora is described as a short-day
species, but flowers under long-day conditions in the greenhouse,
but not in the field (Steiner and Stubbe, 1984; Greiner, unpub-
lished; Johnson, unpublished; see below). Some lines can be
devernalized in short day (and need long days after vernalization),
whereas others are day neutral after vernalization (for reviews
and references see Chouard, 1960; Wellensiek, 1965; Steiner and
Stubbe, 1984; Takimoto, 1985; Clough et al., 2001; Wilkins and
Anderson, 2007).

Many Oenothera taxa, however, are winter annuals or (facul-
tative) biennials (Dietrich, 1977; Hall et al., 1988; Dietrich et al.,
1997). In these genotypes, flower induction in the greenhouse
requires vernalization followed by a long-day exposure. Alternat-
ing cold–warm treatments are more effective than continuous cold
(Chouard, 1960; Picard, 1965). Seed vernalization seems to be
ineffective (Chouard, 1960; Picard, 1965; but also see Thomas and
Vince-Puce, 1997, p. 161; Deng et al., 2001), but some vernaliza-
tion response was observed in seedlings by Giménez et al. (2013).
In some materials, predisposition for vernalization starts 30 days
after germination, which corresponds to the end of the early rosette
stage described earlier, peaks after 56 and again after 180 days
(Müller-Stoll and Hartmann, 1959; reviewed in Chouard, 1960;
Takimoto, 1985). Ecological studies indicate that effective induc-
tion of bolting requires a minimal rosette diameter of 9–12 cm
(Gross, 1981; Kachi and Hirose, 1983; but also see Giménez et al.,
2013 above). However, according to field observation by Marc T.
J. Johnson, rosette size is not strictly correlated with bolting capa-
bility. In stressful environments, the minimal rosette sizes which
allow shoot induction can be very small, but can reach more than
50 cm in productive environments.

Although the photoperiod during vernalization seems be unim-
portant (cf., Picard, 1965), Oenothera is typically vernalized for
7–14 days at 4–8◦C in a 10 h light/14 h dark cycle (cf., Clough
et al., 2001). After vernalization, plants are transferred to large
pots and returned to standard greenhouse conditions (long day,
16 h light/8 h dark). Unfortunately, some lines of Oe. biennis,
Oe. villosa, and probably some Munzia strains, bolt erratically
after this treatment. In a typical representative of this group, a
line of the true European biennis (cf., Renner, 1942; Rostański,

1985), flower induction required an 11◦C day/3◦C night treatment
for more than 10 weeks, followed by a photoperiod longer than
12 h (e.g., Picard, 1965; for review see Chouard, 1960; Takimoto,
1985). We found that repeated, prolonged and harsh vernalization
cycles together with transplanting into fresh substrate can induce
flowering in such lines. However, these treatments are unreliable
and prolong cultivation time significantly (Greiner, unpublished).
Spray application of gibberellic acid generally induces bolting
and subsequent flowering in most Oenotheras (Chouard, 1960;
Takimoto, 1985; Reekie and Reekie, 1991; Greiner, unpublished).
However, the “bolting resistant” line studied by Chouard and co-
workers only responded by stem elongation and lignification, but
neither bolted nor flowered (Chouard, 1960; Picard, 1965, 1967).
The best alternative for the “bolting resistant” materials is hence
to plant them into field no later than early May, when (artificial)
vernalization is no longer required. This treatment is obligate and
done so, the plants flower reliably (Renner, 1948; Chouard, 1960;
and see below).

In summary, vernalization requirements for Oenothera can
roughly be grouped into three categories: (i) strains/species with
no or only very moderate demand for vernalization, (ii) material
with “normal” vernalization requirements, and (iii) “bolting resis-
tant” lines. Which strain belongs to which group is to some extent
independent from the species and the optimal treatment for each
line must be determined experimentally. Vernalization or planting
to the field early in May does not harm genotypes without a ver-
nalization requirement and is therefore recommended as standard
operating procedure for genotypically diverse cultures.

CROSS-POLLINATION AND SELFING, SEED HARVEST,
PROCESSING, AND STORAGE
Especially in section Oenothera, seed numbers per capsule are
quite variable ranging from 180 to 500 (Hall et al., 1988; Harte,
1994; Dietrich et al., 1997). The seed yield per capsule is high-
est on the main stem, and also depends on the position at the
stem. The first three to four flowers of a shoot produce signif-
icantly fewer seeds, and lower yields are also observed for the
last 5–20 capsules (Stubbe, unpublished; Greiner, unpublished;
Johnson, unpublished). For selfing of small-flowered, perma-
nent translocation heterozygous strains, it is sufficient of remove
the shoot tip and bag the remaining inflorescence. In those
lines, if not anyway cleistogamous, anthers overgrow the stigma,
which ensures pollination. Large-flowered, outcrossing, bivalent-
forming lines, where anthers are shorter than the style, benefit
from additional hand-pollination. For cross-pollination, flowers
with closed microsporangia should be emasculated 24 h before
flower opening. Such flowers no longer display “vitreous” petals.
Cleistogamous lines must be emasculated earlier. Typically, one
stem displays three to five flowers in the suitable developmental
stage. The remaining flowers below and flower buds above are
removed. Cross-pollination is conducted when the flower is open,
typically the following day. Direct pollination after emasculation
is possible, but reduces yield, especially in cleistogamous material.
The best pollen is obtained from flowers whose anthers already
have released their pollen, one or half a day before flower opening.
Since in Oenothera pollen grains are connected by viscin threads,
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special care must be taken to avoid unintentional pollen trans-
fer. Cleaning tweezers and hands with 70% EtOH and removing
pollen threads from flowers before emasculation by washing or
spraying with water are effective methods. Mature pollen frozen
in liquid nitrogen and stored at –80◦C can remain fertile for at
least three years, although this has not yet been investigated sys-
tematically, and fertilization success using such pollen has been
variable so far (Greiner, unpublished). For bagging of inflores-
cences, we use pergamin bags (HERA Papierverarbeitung Puttrich
GmbH & Co KG, Germany, Cat. No. 720P40), that withstand rain-
fall and are thus well-suited for field experiments (cf., de Vries,
1913). Wet bags have to be exchanged soon after rainfall, to pre-
vent mold from growing on the inflorescences. A third to half of
the bag volume should be left empty, since stems will still grow
by cell elongation after tip removal. Since lateral stems have a
tendency to break from the rosette, especially in lines contain-
ing a C-genome, they must be tied to poles. When labels with
a long wire are used (Hermann Meyer KG, Germany, Cat. No.
110130), bag closure, tying, and labeling can be conducted in
a single step (cf., de Vries, 1913; and methods of the labora-
tories of Wilfried Stubbe, Reinhold G. Herrmann and Stephan
Greiner).

The recognition of the best harvest time is not trivial. Ripe
capsules turn brown and split. Among the alternating capsules
on a stem, the basal ones can already disperse their seeds while
the upper ones are still unripe. This makes an efficient harvest
challenging, particularly in selfed plants with many capsules on a
stems. Especially in the subsection Munzia, where shattering can
be extreme, plants must be checked daily for ripe capsules during
harvest. In addition, there is even a strong proximal/distal ripen-
ing gradient within the capsules of this subsection. Stems with ripe
capsules can be dipped into 95% EtOH and flamed before drying
to reduce fungal contamination during subsequently germina-
tion (Sears and Klomparens, 1989; Sears, unpublished). Seeds
must be dried for at least six weeks before processing for long-
term storage. This can be done at room temperature between
paperboards, or, in climate chambers at 15◦C and 15% rela-
tive humidity. Subsequently, seeds should be frozen at –20◦C.
Seeds stored at room temperature fail to germinate after 3–5 years
(cf., de Vries, 1916). Storage at lower temperature (4◦C) pro-
longs seed life span significantly (cf., de Vries, 1913). A critical
aspect of long-term seed storage is seed moisture. Seeds dried
to 5% residual moisture (1 month in a dessicator with CaCl2 at
room temperature) and stored in hermetically sealed packages
(Dietrich, unpublished) remain viable for more than 25 years
(Greiner, unpublished). Seeds buried in moist soil can remain
viable for 80 years (Telewski and Zeevaart, 2002). Seed lifetime
also depends on the nutrition status and vigor of the mother plant
(de Vries, 1913).

PEST CONTROL
There is a general agreement in the literature about an enhanced
resistance of Oenothera against diseases or pests (e.g., de Vries,
1913; Fieldsend and Morison, 1999; Deng et al., 2001). How-
ever, various insect pests, fungal and even intracellular bacterial
pathogens were reported, which infect wild and cultivated evening
primroses, including roots and seeds (e.g., de Vries, 1913; Hall

et al., 1988; Sears and Klomparens, 1989; Venkatasubbaiah et al.,
1991; Simpson et al., 1995; Deng et al., 2001; Johnson and
Agrawal, 2005; Rakauskas, 2008; Agrawal et al., 2012; and refer-
ences therein). Our experimental cultures of Oenothera, grown in
Golm (Brandenburg, Germany) or Munich (Bavaria, Germany)
were regularly infested with aphids and powdery mildew, more
rarely downy mildew, white flies, and sap beetles. Besides that,
invasion by scale insects has been reported for North America
(Johnson, unpublished). Fungal infections by Botrytis occur espe-
cially at low temperatures in autumn. Young rosettes, but also
flowering plants, are to some extent susceptible to thrips infection.
In field cultures, damage by root voles was also observed. Infec-
tions by thrips, aphids, as well as downy mildew can quickly spread
and cause irreversible damage. In our experience the pesticides
mentioned below are widely tolerated by Oenothera, although
sometimes flower abortion might result from Acetamiprid appli-
cation (5 mg/m2) under certain environmental conditions. For
tolerance of further insecticides see Agrawal et al. (2012).

The most suitable method of protection against thrips depends
on the exact species that is responsible for the damage. Prob-
lematic are typical glasshouse thrips like Frankliniella occidentalis
or Thrips tabaci, since they rapidly develop pesticide resistance
and therefore cannot be controlled exclusively by insecticides. The
most effective action is the proactive use of predatory mites. Ambl-
yseius cucumeris (Katz Bio Tech AG, Germany, Cat. No. 4085)
is applied to the leaves and kills the larvae of thrips. Another
predator mite, Hypoaspis miles (Katz Bio Tech AG, Germany,
Cat. No. 4140), is applied to the soil on planting and kills soil-
dwelling stages. The biological control will become ineffective if
temperatures are higher than 28◦C, which then may lead to mass-
development of thrips. These can be controlled with Azadirachtin
(3 mg/m2) or Spinosad (27 mg/m2) up to twice per year. Care must
be taken because the predators are sensitive to many pesticides.
The aphid species that commonly infests Oenothera in European
greenhouse cultivation is Myzus persicae. This species can be con-
trolled with Acetamiprid (5 mg/m2), Pirimicarb (17.5 mg/m2)
or Pymetrozin (18 mg/m2). Acetamiprid and Pymetrozin must
not be used on flowering Oenotheras that are being visited by
bees. Furthermore, similar to greenhouse thrips, M. persicae
rapidly develops pesticide resistance. Insecticides like rape seed
oil or soap solutions that cause less resistance problems did not
yield satisfactory result, although Oenothera tolerates these sub-
stances, if light intensities are less than 600 μmol s−1 m−2. Under
suitable conditions (day length > 12 h, temperatures > 15◦C),
preventive biological control with aphid-parasitic Aphidius wasps
like Aphidius colemani (Katz Bio Tech AG, Germany, Cat. No.
4050) should be applied. In North America, the situation can be
quite different. Here, specialized aphids, including Macrosiphum
gaurae and Aphis gaurae can attack Oenothera plants (John-
son, unpublished). White flies (Aleyrodidae) infect Oenothera
species in the greenhouses without insect nets. As the chemical
control of white flies is ineffective, preventive biological con-
trol with Encarsia formosa (Katz Bio Tech AG, Germany, Cat.
No. 3050) needs to be implemented at the beginning of the
season.

Fungal infection of Oenothera with Botrytis cinerea, Pythium,
or downy mildew (Peronosporaceae) is best prevented by hygiene
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measures in the greenhouse, e.g., regular removal of dead plant
material and cleaning of all surfaces including recycled pots with
soap and water or a benzoic acid-based greenhouse disinfectant.
Substrates for sowing or transferring Oenothera seedlings can be
pretreated with Propamocarb (0.906 mg/l) to prevent damping off
(Table 1). Downy mildew infections can be prevented by avoiding
wet leaves, and controlled by Azoxystrobin (25 mg/m2). Powdery
mildew (Erysiphaceae), in contrast, thrives at low air humidity and
on older plant material. The infection rapidly spreads from older
to younger plants when both are grown in the same greenhouse.
Fungicides containing Tolylfluanid (390 mg/m2) or Azoxystrobin
(25 mg/m2) kill powdery mildew but do not prevent reinfection.
Powdery mildew rapidly becomes resistant to various fungicides.
Application of sulfur spray was found to be ineffective and inter-
feres with the biological thrips and aphid control (methods for
Oenothera developed by Karin Köhl).

For further references on chemical pest control for various dis-
eases, see, for example, Grignac (1988), Reeleder et al. (1996),
Murphy et al. (2004), Johnson et al. (2009a), Agrawal et al. (2012),
or Giménez et al. (2013). Many older pesticides are no longer regis-
tered and thus must not be used in greenhouses or fields, however.
To obtain uninfected cultures in experimental fields, early clearing
of the field in autumn and plot rotation is of particular importance
(cf., de Vries, 1913; Reeleder, 1994; O’Connell et al., 2005).

Interestingly, some Oenothera strains homozygous for the A-
genome, display a remarkable resistance against the major pests
in experimental cultures, aphids and powdery mildew. This is
even the case under very high infection pressures. On the other
hand, strains containing a B-genome, as well as Munzia lines, are
comparably susceptible to aphid or powdery mildew infections.
Within the two groups genotypic variation is observed (Hall et al.,
1988; Johnson and Agrawal, 2005; Agrawal et al., 2012; Hersch-
Green et al., 2012; Greiner, unpublished).

Oenothera displays broad resistance to pre- and post-emergence
herbicides (Stringer et al., 1985; Richardson and West, 1986; Bates
et al., 2013a,b). This might be utilized for effective weed con-
trol, especially in agronomics (Grignac, 1988; Roy et al., 1994;
Honermeier et al., 2005; Ghasemnezhad and Honermeier, 2007).
However, reports from the genetic literature are lacking so far.

CULTIVATION IN FOIL GREENHOUSES AND EXPERIMENTAL
FIELDS
In the temperate climate zone of the northern hemisphere,
Oenothera seeds are traditionally sown in January, seedlings are
selected and potted in February, and transplanted to the field
in April or May (e.g., de Vries, 1913; Gates, 1914; Schwemmle
et al., 1938; Renner, 1948). Plants pre-cultivated in warm green-
houses that exclude ultraviolet radiation need to be hardened at
the beginning of April, e.g., in a cold-frame with a shade-cloth,
before they are transplanted to the field in the beginning of May
(Linne von Berg, 1990). Requirement of fertilization depends on
the nutrient content of the soil, which ought to be determined
before plants are transplanted. The average planting distance is
30–35 cm (de Vries, 1913). In spite of its size, Oenothera is not very
competitive in experimental field cultures (cf., Gross and Werner,
1982; but also see Johnson et al., 2008; Turley et al., 2013). Thus,
weeds need to be controlled either manually or with a selective

herbicide (see above). Plants start flowering in July and August.
Crossings and self-pollination should be performed within six
weeks (de Vries, 1913; Renner, 1917; Steiner and Stubbe, 1984).
Seeds are harvested in September or October. Plants that flower
later than the beginning of September rarely produce mature
seeds, unless grown at lower latitudes. Non-bolted plants can
be overwintered, although this may transfer pests and diseases
to next year’s field plots (de Vries, 1913; Johnson, 2007; and see
above).

The schedule outlined above allows synchronization, flower
induction, and seed maturation in large experiments with diverse
genotypes within a growing season. Modern greenhouse facili-
ties enable the compression of this schedule and allow sowing in
March. Still the material must be planted into the field in the begin-
ning of May, that it can undergo natural vernalization (Renner,
1948; Roy et al., 1994; but also see Johnson, 2007). Genotypically
diverse cultures planted in June obligatorily require vernaliza-
tion, but this still runs the risk that the “bolting resistant” lines
fail to flower (see above). Material planted in June should be
grown in containers to facilitate the transfer into the greenhouse in
October/November for final seed maturation. Re-routing of field
grown material or grafting of unripe stems regularly fails (Greiner,
unpublished). However, Rossmann (1963) reports 90% ripening
success by placing half ripe stems in Knops’s or Crone’s nutrient
solution.

As an alternative to field cultivation, Oenothera can be grown
in pots in unheated polyethylene foil greenhouses (cf., Table 1).
These greenhouses are substantially cheaper than glasshouses and
prolong the season by 2–3 months, by allowing a 4–6 week ear-
lier start of the growth period and up to 2 months extension
at the end of the season. Within the greenhouse, plants can be
grown in pots, with minimal weeding. Plants are protected from
the weather that can severely damage some “fragile” lines in the
field. Rain protection makes the exchange of wet pollination bags
unnecessary.

In both, the field and polyethylene foil greenhouses, additional
treatments are required to induce flowering of Oe. grandiflora.
The species has the ability to flower in long days when grown
under standard greenhouse conditions (see above). However,
when grown in field or in foil greenhouses in the North (e.g.,
Ann Arbour, MI, USA; Düsseldorf/Munich/Potsdam-Golm, Ger-
many), Oe. grandiflora sets flower buds only as late as September,
when plants experience the natural transition to short day (Steiner
and Stubbe, 1984; Greiner, unpublished). Oe. grandiflora lines can
be synchronized with other strains by a short-day regime of 10 h
light/14 h dark, which is started when plants start bolting in long
days and finished when flower buds are formed. Plants can then be
planted in the field and will bloom in July and August (Steiner and
Stubbe, 1984; Linne von Berg, 1990). However, such a treatment
requires special growing facilities. Hence, alternatively one might
grow Oe. grandiflora in a climate-controlled greenhouse in long
days, in parallel to the other strains in the field/foil greenhouse.
Another possibility for synchronization is to delay the complete
field or foil greenhouse cultivation by late planting in June. How-
ever, special care must be taken to induce bolting of the strains
not belonging to Oe. grandiflora and, most importantly, to allow
adequate time for seed ripening late in the season (see above). In
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addition, Oe. grandiflora strains that bloom early in the field were
reported (Steiner and Stubbe, 1984), which could be selected to
simplify the crossing of multiple lines.

AGRICULTURAL CULTIVATION
Cultivars of subsection Oenothera are commercially grown as an
oil seed crop for the production of gamma-linolenic acid (Russell,
1988; Simpson and Fieldsend, 1993; Deng et al., 2001; Ghasem-
nezhad and Honermeier, 2007). Due to their faster life cycle, some
species in the subsection Munzia have been tested. These, how-
ever, displayed insufficient gamma-linoleic acid levels (Vilela et al.,
2008).

A substantial amount of literature dealing with Oenothera crop
management has accumulated, and a comprehensive review would
be beyond the scope of this article. In brief, Oenothera is grown
in temperate climates as winter and spring crop (Grignac, 1988;
Simpson and Fieldsend, 1993; Deng et al., 2001). Spring culti-
vars, depending on the regional climate, can be drilled until
mid-April. Plants start flowering in August and are harvested
in October. Winter crops are started in August, overwinter as
rosettes, flower in July and produce ripe seeds in September
(Fieldsend and Morison, 1999; Fieldsend and Morison, 2000b;
Honermeier et al., 2005). Winter crops require more effort in crop
management, but allow an earlier harvest (Fieldsend and Morison,
2000a,b; O’Connell et al., 2005). In terms of yield or oil qual-
ity, no clear recommendation for spring and winter crops can
be given. Among the investigated cultivars, spring crops tend to
produce oil with a higher percentage of gamma-linoleic acid. Bet-
ter overall oil content can be observed in winter-grown material,
which has a higher biomass and potentially greater seed yields
(Fieldsend and Morison, 1999; Fieldsend and Morison, 2000a,b;
Honermeier et al., 2005). Nitrogen fertilization has minor effects
on the yield and in any case should be applied moderately (Rus-
sell, 1988; Stobart and Simpson, 1997; Şekeroǧlu and Özgüven,
2006; Ghasemnezhad and Honermeier, 2008). The most impor-
tant factors for seed/oil yield and quality are harvesting time and
method, as well as seasonal variation of environmental factors, e.g.,
growth temperature (Yaniv and Perl, 1987; Yaniv et al., 1989; Levy
et al., 1993; Simpson and Fieldsend, 1993; Fieldsend and Morison,
2000a; Ghasemnezhad and Honermeier, 2007). Breeding goals for
Oenothera include non-splitting capsules, high seed and oil yields,
or high gamma-linoleic acid content. All of these were successfully
combined, e.g., in the cultivar Rigel (Fieldsend, 2007).

INTERSPECIFIC CROSSES, CROSS FERTILITY, AND FERTILITY
OF HYBRID OFFSPRING
Self-incompatibility is found to some extent in the entire genus
Oenothera (Wagner et al., 2007), and was reported already very
early, e.g., from Oe. organensis (subsection Emersonia; Emer-
son, 1938). However, self-incompatibility is less important in the
genetically most relevant subsections. Self-incompatibility alleles
have not been found in subsection Munzia (Dietrich, 1977) and
they are rare in subsection Oenothera. Here, they occur in Oe.
grandiflora (Stubbe and Raven, 1979b) and, according to work
of Erich E. Steiner, in some lines of Oe. biennis. In this species
they stabilize permanent translocation heterozygosity (for review
see Cleland, 1972). As a rule, within the subsections of section

Oenothera, species can be hybridized freely, but offspring often
express plastome–genome incompatibility. Besides chlorosis, these
hybrids usually develop normally, but occasionally, sterility occurs
or particular plastome–genome combinations result in severe
growth retardation (e.g., Schwemmle et al., 1938; Schwemmle and
Zintl,1939; Stubbe,1963; Cleland,1972; Stubbe et al., 1978; Stubbe
and Raven, 1979a; Stubbe, 1989; Harte, 1994; Stubbe and Steiner,
1999; and references therein). Hybrid incompatibility conferred
by nuclear alleles is sometimes found between crosses of par-
ticular strains (e.g., Renner, 1917; Rossmann, 1963; Jean, 1984;
Greiner, unpublished). In contrast to plastome–genome incom-
patibilities, these nuclear hybrid incompatibilities result from the
genetic composition of the particular hybrid, which is often not
connected with the taxonomic positions of the parents. Simi-
lar results are obtained, if species between the subsections of
section Oenothera are hybridized. Although such hybrids are more
difficult to obtain, and sometimes seed abortion is observed,
inter-subsectional crosses generally produce offspring. The hypan-
thium length and/or the plastid (chloroplast) genotype are the
most important, but not exclusive, barriers. Plastid genotype and
hypanthium length facilitate realization of certain hybrids only
in one crossing direction, i.e., the maternal parent must have
a short hypanthium, allowing the paternal pollen tube to reach
the egg cell, and/or must have a compatible plastid genotype in
order for embryos to be able to develop. Other consequences of
plastome–genome incompatibility include severe growth retarda-
tion, sterility or reduced fertility and/or meiotic irregularities in
the resulting hybrids. To obtain particular hybrids, sometimes at
least one parent must be equipped with a certain plastome type
(Stubbe and Raven, 1979a). On the other hand, complete pollen
sterility or seed abortion might be observed as a consequence of
cytoplasmic exchanges between subsections (e.g., Kistner, 1955;
Arnold, 1970). For references on the rich literature of inter-
subsectional crosses between sections Oenothera and Munzia, see
Stubbe and Raven (1979a).

VEGETATIVE PROPAGATION, INDUCTION OF POLYPLOIDY,
AND MODIFIABILITY
Vegetative propagation by stem cuttings is reported from orna-
mental strains of Oe. fruticosa (section Kneiffia; Clough et al.,
2001). It is, however, rather ineffective in the subsection Mun-
zia and Oenothera. In subsection Oenothera, new rosettes can be
propagated from lateral rosette buds (de Vries, 1913). In addition,
plants occasionally produce side rosettes. The signals triggering
the production of such rosettes remain unclear (Greiner, unpub-
lished). Also, young rosettes can be split and planted directly into
moist soil. These plants will develop full rosettes again. Alterna-
tively, they can be re-rooted in water or in a moist chamber first
(Golczyk and Greiner, unpublished). Interestingly, some species
within section Oenothera (especially Oe. humifusa and Oe. drum-
mondii) often display root induction from a cut leaf surface, when
leaf pieces are placed on wet filter paper for 1–2 weeks (Johnson,
unpublished).

Species of subsections Oenothera and Munzia are exclusively
diploid (Cleland, 1972; Dietrich, 1977; Dietrich et al., 1997),
but effective protocols for the production of polyploid lines are
available. Seeds or seedlings are placed on wet blotting paper
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containing colchicine, or alternatively rosettes are treated with
colchicine shortly before bolting. In both cases, most surviv-
ing plants produce tetraploid offspring (Hecht, 1942; Stomps,
1942; Linnert, 1950; Renner and Hirmer, 1956). Subsequent treat-
ments of tetraploid lines with colchicine can produce octo- or
even hexadecaploid plants (Renner and Hirmer, 1956; Rossmann,
unpublished). For non-permanent translocation heterozygotes,
haploid lines are reported with a spontaneous frequency of 0.1–
0.2% (Davis and Kulkarni, 1930; Harte, 1973). Additionally they
can be induced by X-ray treatment (Linnert, 1950; Harte, 1972), or
by performing wide interspecific crosses (e.g., Gates, 1929; Steiner,
1952; Schwemmle and Simson, 1956; Lee and Hecht, 1975; Harte,
1994; and references therein). Haploid material can be converted
to double-haploid lines by colchicination (e.g., Oehlkers, 1940;
Linnert, 1950; Lee and Hecht, 1975).

Plant habits and growth can be modified by abiotic factors.
For example, if Oe. grandiflora is kept in small pots, plants
stay substantially smaller and stress induces flowering extremely
early. However, genotypic variation exists (Johnson, unpublished;
Greiner, unpublished). A similar effect is observed, in Oe. elata,
when small rosettes are treated with gibberellic acid (Greiner,
unpublished). Application of uniconazole in Oe. fruticosa leads
to flower induction in comparably small plants, whereas other
growth regulators had no effect in this material (Clough et al.,
2001).

Cultivation in constant light promotes flowering in plants of
subsection Oenothera similar to long-day treatment, but can harm
some genotypes. Grown in short days, however, plants produce
more rosette leaves, which are smaller, but thicker and broader rel-
ative to long-day plants. Another contrast is that long-day rosettes
have erect leaves, while short-day rosettes lay flat on the ground
in a disk-like habit. Low temperatures promote this phenotype.
Under such conditions, plants can be maintained for years in the
greenhouse, since bolting is prevented. If rosettes, which failed to
bolt after vernalization and long-day treatment, are maintained in
a greenhouse under standard growing conditions (18–22◦C, long
day), the plants will continue to produce new rosette leaves, but
their stems will elongate and thicken, leading to a perched rosette
after senescence of older leaves (Renner, 1948; Greiner, unpub-
lished). This reassembles the phenotype obtained from application
of gibberellic acid to the “bolting resistant” lines described above.
For picture see (Picard, 1965, p. 262).

GERMPLASM RESOURCES
The laboratory of Stephan Greiner preserves a unique collection of
Oenothera germplasms consisting of about 1000 accessions. The
material mainly, but not exclusively, covers subsections Oenothera
and Munzia, including wild races and laboratory stains. About 350
lines have been analyzed genetically in detail. Among them are
hybrids of defined nuclear and plastid composition, chromosome
translocation or plastome mutants. The collection was originally
set up by Werner Dietrich and Wilfried Stubbe, later harbored by
Reinhold G. Herrmann, and is extended since then. It represents
most of the genetic work of Hugo de Vries, Otto Renner, Ralph
E. Cleland, Wilfried Stubbe, Franz Schötz, Erich E. Steiner, Julius
Schwemmle, Erick Haustein, Carl-Gerold Arnold, Adolph Hecht,
Friedrich Oehlkers, Günther Rossmann, Reinhold G. Herrmann,

Barbara B. Sears, and other Oenothera scientists, and is the living
reference collection for the taxonomy of subsection Oenothera by
Werner Dietrich, Warren L. Wagner and Peter H. Raven (Dietrich
et al., 1997), as well as the Munzia taxonomy of Werner Dietrich
(Dietrich, 1977). A large and taxonomically diverse germplasm
resource was collected by the laboratory of Marc T. J. Johnson
(University of Toronto at Mississauga, ON, Canada). It harbors
seeds of over 100 species from more than 1000 populations, with
a special focus on the genus Oenothera, mostly Oe. biennis. Fur-
ther Oenothera germplasm is available from the Ornamental Plant
Germplasm Center (OPGC) at The Ohio State University (Colum-
bus, OH, USA). The material is searchable by the USDA/ARS
National Plant Germplasm System (Germplasm Resources Infor-
mation Network, GRIN, www.ars-grin.gov). It includes material
from Ralph E. Cleland, Wilfried Stubbe, Werner Dietrich, and Cor-
nelia Harte, covering a substantial number of lines from the genetic
literature, not only from the afore mentioned laboratories. Mun-
zia species, commercial cultivars, and taxa from other Oenothera
sections are present as well. Some of these lines are described as
“historical records,” but material provided to us from OPGC easily
germinated. In addition, some groups currently working in the
field have notable living collections. The largest reported collec-
tion of Oenothera germplasm so far was the result of a breeding
program conducted by Scotia Pharmaceuticals Ltd., UK, through
the end of the 1990s and contained about 2000 accessions of
subsection Oenothera (Fieldsend, 2007).
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