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Reversible protein ubiquitination plays a crucial role during the regulation of plant immune
signaling. E3 ubiquitin (Ub)-ligase enzymes, which are classified into different families
depending on their structural and functional features, confer the specificity of substrate
and are the best characterized components of the ubiquitination cascade. E3 Ub-ligases of
different families have been shown to be involved in all steps of plant immune responses.
Indeed, they have been involved in the first steps of pathogen perception, as they appear
to modulate perception of pathogen-associated molecular patterns by pattern-recognition
receptors at the plasma membrane and to regulate the accumulation of nucleotide-binding
leucine-rich repeat-type intracellular immune receptors. In addition, E3 Ub-ligase proteins
are also involved in the regulation of the signaling responses downstream of pathogen
perception through targeting vesicle trafficking components or nuclear transcription factors,
for instance. Finally, we also discuss the case of microbial effector proteins that are able
to target host E3 Ub-ligases, or to act themselves as E3 Ub-ligases, in their attempt to
subvert the host proteasome to promote disease.
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INTRODUCTION
Reversible protein conjugation with ubiquitin (Ub), or ubiquiti-
nation, is a key regulatory mechanism that controls a variety of
cellular processes in eukaryotic cells, including DNA repair, gene
transcription, protein activation or receptor trafficking, although
the best characterized function of Ub involves selective pro-
tein degradation through the 26S proteasome (Vierstra, 2009).
Ub becomes covalently attached to lysine residues of intracellu-
lar targets via an ATP-dependent reaction cascade that involves
the sequential action of three enzymes: E1 (Ub-activating), E2
(Ub-conjugating), and E3 (Ub-ligase). The importance of the Ub-
related pathway is underlined by the finding that the Arabidopsis
genome encodes more than 1600 genes (> 6% of the total genome)
involved in Ub/26S proteasome system (UPS)-related functions.
Most of these genes (> 1400) encode putative E3 Ub-ligases (Maz-
zucotelli et al., 2006). E3 proteins are classified into four main
subfamilies depending on their structural features and mecha-
nism of action: HECT (Homologous to E6-associated protein
C-Terminus), RING (Really Interesting New Gene), U-Box and
CRL (Cullin-RING Ligases; Vierstra, 2009). HECT proteins form
an Ub-E3 intermediate before transfer of Ub to the substrate
(Downes et al., 2003). RING and U-box proteins are structurally
related single polypeptides that, respectively, use zinc chelation
and hydrogen bonds/salt bridges to transfer Ub from the Ub-E2
intermediate to the target (Stone et al., 2005; Yee and Goring,
2009). Ub-ligases containing a RING domain can act indepen-
dently or as part of a multisubunit CRL complex such as the
SCF (Skp1, Cullin, F-box)-type ligase. In this complex, substrate
recognition is provided by the F-box protein, whereas the RING
protein binds to the E2 (Hua and Vierstra, 2011). By contrast, some

RING-type Ub-ligases act independently and determine substrate
specificity allowing the interaction between the E2 and the target
protein by tethering them in close proximity (Vierstra, 2009).

Plants have developed a multi-layered defense system to ensure
their survival in a microbe-rich environment. A first line of
pathogen detection is activated after recognition of highly con-
served PAMPs/MAMPs (pathogen-/microbe-associated molecular
patterns) by specific plant PRRs (pattern-recognition receptors),
leading to a form of basal resistance called PTI (PAMP-triggered
immunity; Jones and Dangl, 2006). Thriving pathogens evolved
to secrete virulence effectors that inactivate crucial PTI regula-
tors thereby counteracting plant defenses. In turn, plants gained
the ability to recognize these effectors through resistance (R)
proteins, for the most part intracellular NB-LRR (nucleotide-
binding-leucine-rich repeat) immune sensors, that lead to a more
efficient form of resistance called ETI (effector-triggered immu-
nity; Jones and Dangl, 2006). This specific resistance is frequently
associated to development of the hypersensitive response (HR), a
form of programmed cell death at the infection site that prevents
pathogen spreading (Coll et al., 2011).

In plants, the UPS pathway, and more particularly E3 Ub-ligase
proteins, have been shown to be involved in responses to a vari-
ety of stimuli (Vierstra, 2009; Robert-Seilaniantz et al., 2011).
Since the finding that the SCF complex-interacting protein SGT1
(Suppressor of G2 allele of skp1) is an essential component of
R gene-triggered disease resistance provided a first connection
between the UPS and plant immune signaling (Azevedo et al.,
2002), evidence that E3 Ub-ligase proteins act as regulators of plant
immunity has increasingly accumulated (Trujillo and Shirasu,
2010; Marino et al., 2012). Indeed, modulation of the expression
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of E3 Ub-ligase-encoding genes has been reported following elic-
itor treatment or inoculation with different pathogens. Moreover,
misregulation of E3 Ub-ligase gene expression, using overexpress-
ing, RNA interference (RNAi) and/or mutant lines, results in
modulation of plant defense responses following pathogen inocu-
lation [reviewed in (Marino et al., 2012)]. Therefore, it has become
increasingly evident that plant E3 Ub-ligase proteins play impor-
tant roles in the regulation of immune signaling, although the
proteins targeted by Ub-ligases are only known in a limited num-
ber of cases, and our current knowledge of the involved molecular
mechanisms is thus only partial. Here we review positive and
negative roles played by E3 Ub-ligases during the regulation of
various steps of plant immunity, from pathogen recognition to
downstream signaling during both PTI and ETI responses. Due to
space limitations, we focus on recent reports about E3 Ub-ligases
for which a target protein has been identified during the plant
response to bacterial or fungal pathogens, since these particular
examples provide insight into the cellular processes involved in
regulation of immune signaling. For an overview on UPS-related
pathways in response to viral infection we refer the reader to a
recent review (Alcaide-Loridan and Jupin, 2012). We also discuss
the case of microbial effectors that, to promote disease, either
target host E3 Ub-ligases or act as Ub-ligases inside plant cells
(Figure 1).

PLANT E3 UB-LIGASES INVOLVED IN REGULATION OF
PATHOGEN PERCEPTION
Several E3 ligase proteins have been identified as modulators of
the first steps of pathogen recognition by plant cells, as they
appear to be able to target both PRR and NB-LRR proteins in
order to prevent unnecessary activation of defense signaling. In
rice (Oryza sativa), the RING-type E3 Ub-ligase XB3 interacts
with the receptor-like kinase (RLK) protein XA21, which con-
fers resistance to bacterial blight caused by Xanthomonas oryzae
pv. oryzae (Xoo; Wang et al., 2006). XB3 has been shown to be
required for XA21 accumulation and XA21-mediated resistance
to Xoo, suggesting that it most likely targets a protein that mod-
ulates accumulation of XA21 (Wang et al., 2006). XA21 is able
to phosphorylate XB3 but the molecular mechanism underlining
activation of defense responses by XB3 remains to be elucidated.
Overexpression of members of the XB3 family from rice, Arabidop-
sis and citrus in Nicotiana benthamiana induces cell death and this
effect is dependent on XB3 catalytic activity, suggesting an evolu-
tionarily conserved role for the XB3 protein family in regulating
plant programmed cell death (Huang et al., 2013).

In Arabidopsis, the U-box E3 ligases Plant U-Box12 (PUB12)
and PUB13 have been involved in attenuation of PTI responses
triggered by perception of flagellin, or its active peptide derivative
flg22, by the PRRs Flagellin Sensing2 (FLS2) and its co-receptor
BAK1. In response to flg22, PUB12 and PUB13 form a BAK1-
dependent complex with FLS2 and are able to polyubiquitinate
FLS2, but not BAK1 (Lu et al., 2011). BAK1 phosphorylates PUB12
and PUB13 and this phosphorylation is enhanced by flg22 and by
the FLS2/BAK1-associated kinase BIK1 (Lu et al., 2011). flg22-
dependent signaling is enhanced in pub12 or pub13 mutant plants
and, in agreement with PUB12 and PUB13 promoting FLS2 degra-
dation, pub12 pub13 double mutant plants displayed increased

resistance to bacterial infection. These data are consistent with
the fact that FLS2 undergoes flg22-induced endocytosis and sub-
sequent degradation (Robatzek et al., 2006; Gohre et al., 2008;
Beck et al., 2012; Choi et al., 2013). However, whether stabilization
of FLS2 in pub12pub13 plants reflects FLS2 accumulation at the
plasma membrane or within an endosomal compartment remains
to be determined. A recent report showed that FLS2 degradation
occurs in a flg22 time- and dose-dependent manner, which may
play a significant role in turning over ligand-occupied FLS2, but
the role of PUB12 and PUB13 in this process was not determined
in this study (Smith et al., 2013).

Similar to PRR proteins, intracellular NB-LRR immune recep-
tors are also targeted by E3 Ub-ligases, which appear to control R
protein accumulation at multiple levels. First, in Arabidopsis, the
F-box motif E3 Ub-ligase CPR1 interacts with and down-regulates
the accumulation of the NB-LRR R proteins Suppressor of npr1-1
Constitutive1 (SNC1) and Resistant to P. syringae2 (RPS2), result-
ing in attenuation of immune signaling (Cheng et al., 2011; Gou
et al., 2012). Second, accumulation of SNC1 and RPS4, an addi-
tional NB-LRR immune receptor, are also negatively regulated
by Suppressor of rps4-RLD1 (SRFR1), a tetratricopeptide repeat
protein (Kim et al., 2010; Li et al., 2010). Since (i) SNC1 levels
increased in CPR1-overexpressing plants treated with the protea-
some inhibitor MG132 (Gou et al., 2012); (ii) SRFR1 interacts
with SGT1; and (iii) increased SNC1 and RPS4 accumulation
was also observed in sgt1 mutant plants (Li et al., 2010), stabil-
ity of SNC1 and RPS4 is likely regulated by SRFR1 through SGT1
interaction with the SCF complex, revealing an additional molec-
ular mechanism to prevent autoimmnunity. Third, mutation of
MOS12 (modifier of snc1-12), that encodes an Arabidopsis Arg-
rich protein homologous to human cyclin L, resulted in altered
SNC1 and RPS4 splicing patterns and protein levels (Xu et al.,
2012). Interestingly, MOS12 interacts with the nuclear U-Box
E3 ligases MAC3A and MAC3B, which are required for full R
protein-mediated resistance, suggesting that MOS12, MAC3A,
and MAC3B contribute to the fine-tuning of R gene expression,
in a process that appears to be critical for directing appropriate
defense outputs (Monaghan et al., 2009; Xu et al., 2012). Finally, a
recent report showed an intriguing link between cell cycle reg-
ulation and defense signaling (Bao et al., 2013). Omission of
the Second Division (OSD1) and its homolog UV-B-Insensitive
4 (UVI4) are two negative regulators of the multisubunit E3
Ub-ligase APC/C (anaphase-promoting complex/cyclosome) that
regulates cell cycle progression in Arabidopsis. Overexpression of
either OSD1 or UVI4 leads to downregulation of APC/C activ-
ity, overaccumulation of the APC/C degradation target CYCB1;1,
upregulation of several R genes, including SNC1, and spontaneous
cell death and enhanced disease resistance to virulent bacteria (Bao
et al., 2013). These data provide further evidence of the intricate
control exerted on immune receptor levels in order to regulate
defense activation.

PLANT E3 UB-LIGASES INVOLVED IN REGULATION OF
DEFENSE-RELATED SIGNALING
Pathogen perception by PRRs stimulates a cascade of signal-
ing events including changes in ion fluxes across the plasma
membrane, production of reactive oxygen species (ROS),
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FIGURE 1 | Ub-ligase proteins during the regulation of plant immune

signaling. (A) Examples of positive and negative regulatory roles on plant
immunity by host E3 Ub-ligases. The RING-type protein XB3 is required for
the accumulation of the receptor protein XA21 and promotes downstream
HR and defense responses. U-box proteins PUB12 and PUB13 attenuate
flg22-mediated PTI signaling. The U-box protein PUB22 targets the exocyst
complex subunit Exo70B2, which leads to attenuation of PTI signaling.
Accumulation of the intracellular immune receptor SNC1 appears to be
controlled by the SCF complex through the interaction with both the F-box
CPR1 and the SGT1-interacting protein SRFR1. Modulation of SNC1 levels
by the multisubunit cell cycle-related E3 ligase APC/C or the U-box proteins
MAC3A and MAC3B provide additional molecular mechanisms to control
immunity. The interaction between the RING-type E3 Ub-ligase EIRP1, and
the TF WRK11 results in suppressed transcriptional activation of WRKY11
target genes AOS and LOX1, thereby enhancing PTI. The RING E3 ligase
MIEL1 interacts with the MYB TF MYB30, which results in weakened

transcriptional activation of VLCFA-related genes and therefore suppressed
HR and defense responses. The RING protein BOI1 interacts with and
ubiquitinates the MYB TF BOS1 that is required for pathogen resistance.
However, the effect of BOI1 on BOS1 accumulation and transcriptional
activation remains unknown. (B) Microbial effector proteins acting as or
interacting with E3 ligase proteins in the host. The bacterial effector
AvrPtoB is able to suppress both PTI and ETI signaling though its respective
interaction with FLS2/CERK1 PRRs and the cytoplasmic kinase Fen. The
oomycete effector AVR3a suppresses INF1-induced cell death by interacting
with and stabilizing the host U-box E3 ligase CMPG1. The fungal effector
protein AvrPiz-t targets the RING E3 ligase APIP6, which in turn is able to
ubiquitinate AvrPiz-t, resulting in suppressed PTI. RING-, F-box- and
U-box-type E3 Ub-ligases are, respectively, represented by rectangles,
squares, and octagons. All proteins displaying E3 ligase activity are
represented in green. Effectors are represented by stars. See the text for
details.

induction of mitogen-activated protein kinases (MAPKs), modu-
lation of host gene transcription and callose deposition at the plant
cell wall. Amplitude and duration of these signaling responses
must be tightly regulated to ensure an appropriate response. In
addition to their role in internalization or degradation of recep-
tors to attenuate downstream signaling, E3 Ub-ligase proteins
also regulate the accumulation of plant components involved in
defense-related signaling.

Similar to PUB12 and PUB13, PUB22 acts in concert with
PUB23 and PUB24 to negatively regulate PTI responses in Ara-
bidopsis (Trujillo et al., 2008). Following elicitation with various
PAMPs, pub22/pub23/pub24 triple mutants displayed enhanced
early signaling responses, indicating that these three PUB proteins
target components involved in defense signaling triggered by dif-
ferent PRRs (Trujillo et al., 2008). Indeed, the exocyst complex sub-
unit Exo70B2 that is involved in vesicle tethering during exocytosis,
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has been identified as a cellular target of PUB22 (Stegmann et al.,
2012). PUB22 is stabilized in response to flg22 treatment (poten-
tially by inhibition of its autocatalytic ubiquitination activity),
leading to Exo70B2 ubiquitination and proteasomal degradation.
Exo70B2 is required for both immediate (ROS production, MAPK
activation) and later responses (PTI marker gene expression, root
growth inhibition) triggered by several PAMPs, indicative of a role
in signaling. Indeed, exo70B2 mutant plants displayed enhanced
susceptibility to pathogens (Stegmann et al., 2012). Together, these
data suggest a mechanism by which Exo70B2 levels are regulated
by quick changes in PUB22 turnover in response to PAMPs and
identify a first component of vesicle trafficking required for reg-
ulation of plant PTI signaling. In view of these data, it has been
proposed that Exo70B2 may contribute to recycling of plasma
membrane proteins involved in PAMP-triggered signaling, includ-
ing NADPH oxidases, ion channels or RLKs such as FLS2. Exo70B2
degradation by PUB22 would thus attenuate the recycling path-
way redirecting positive signaling components into the vacuolar
degradation pathway and downregulating signaling (Stegmann
et al., 2012). As previously discussed, PUB12/PUB13-mediated
ubiquitination of FLS2 is expected to modulate its intracellular
trafficking (Lu et al., 2011). Since degradation of integral mem-
brane proteins is mediated by the vacuole, signal attenuation
is probably simultaneously regulated at various levels of vesicle
trafficking.

In Chinese wild grapevine (Vitis pseudoreticulata), EIRP1 is
an active E3 Ub-ligase whose RING domain is necessary for its
activity and also mediates the interaction with the WRKY nuclear
transcription factor (TF) VpWRKY11 (Yu et al., 2013). Similar
to EIRP1, expression of VpWRKY11 was rapidly induced fol-
lowing fungal infection. VpWRKY11 activated the expression
of AOS (Allene Oxide Synthase) and LOX2 (Lipoxygenase2), two
JA-responsive genes that function as negative regulators of basal
resistance in Arabidopsis (Journot-Catalino et al., 2006). Addition-
ally, in agreement with the observation that co-expression with
EIRP1 results in proteasomal degradation of VpWRKY11, AOS
and LOX2 expression was, respectively, repressed and induced in
EIRP1-overexpressing and RNAi plants. Moreover, EIRP1 over-
expression in Arabidopsis conferred enhanced resistance to fungal
and bacterial pathogens, which correlated with reduced expres-
sion of WRKY11, AOS, and LOX2 (Yu et al., 2013). Together, these
data identify a RING-type Ub-ligase that plays a positive role in
activation of resistance by targeting a TF that acts as a negative
regulator of plant defenses.

In contrast, the Arabidopsis RING-type Ub-ligase MIEL1
acts as a negative regulator of plant resistance (Marino et al.,
2013). Indeed, MIEL1 interacts with the MYB TF MYB30,
which activates plant defense responses by up-regulating the
expression of genes involved in the production of very long
chain fatty acids (VLCFAs; Raffaele et al., 2008). The MYB30-
MIEL1 nuclear interaction leads to MYB30 proteasomal degra-
dation, reduced expression of VLCFA-related MYB30 target
gene expression and, therefore, attenuation of plant immune
responses (Marino et al., 2013). MIEL1 expression is rapidly
repressed in inoculated cells, suggesting that (i) in the absence
of the pathogen, MIEL1 may negatively regulate plant defense
activation through degradation of MYB30 and that (ii) after

pathogen inoculation, repression of MIEL1 expression may release
MYB30 negative regulation, triggering defense (Marino et al.,
2013).

BOI1 is an additional nuclear RING-type Ub-ligase that inter-
acts with and ubiquitinates the MYB TF BOS1, which confers
resistance to several pathogens in Arabidopsis (Mengiste et al.,
2003; Luo et al., 2010). This finding suggests that BOS1 may be
a target of BOI1. However, no effect of BOI1 on BOS1 tran-
scriptional activity has been reported and both bos1 mutant and
BOI1 RNAi Arabidopsis plants (in which the BOS1 protein is
expected to accumulate) display enhanced susceptibility to fun-
gal infection (Luo et al., 2010). Therefore, whether BOI1 is able
to directly regulate BOS1 protein accumulation remains to be
determined.

MANIPULATION OF HOST E3 UB-LIGASE PROTEINS BY
MICROBIAL EFFECTORS
The important role played by E3 Ub-ligases during the establish-
ment of plant immune responses to pathogen attack is highlighted
by the discovery of microbial effector proteins that evolved the
ability to interfere with these host UPS components to promote
disease. For example, the AvrPiz-t effector from the rice blast fun-
gus Magnaporthe oryzae is translocated into rice cells, where it is
able to mediate suppression of PAMP-induced ROS production,
inducing susceptibility to M. oryzae (Park et al., 2012). AvrPiz-t
appears to inhibit the Ub-ligase activity of APIP6, a rice RING-type
Ub-ligase that is also able to ubiquitinate AvrPiz-t in vitro (Park
et al., 2012). Interestingly, AvrPiz-t and APIP6 are both degraded
when transiently coexpressed in N. benthamiana. Since APIP6
positively regulates flg22-induced ROS generation, induction of
defense-related gene expression, and rice resistance to M. oryzae,
targeting of APIP6 by AvrPiz-t results in suppression of rice PTI
responses (Park et al., 2012).

The effector AVR3a from the oomycete Phytophthora infes-
tans prevents development of cell death induced by P. infestans
elicitin INF1. The finding that AVR3a targets and stabilizes the
U-box-type Ub-ligase CMPG1 revealed the molecular mechanism
behind AVR3a negative regulation of ICD (INF1-triggered Cell
Death; Bos et al., 2010). CMPG1 Ub-ligase activity is required
for ICD as well as for cell death following elicitor perception
at the plasma membrane (Gonzalez-Lamothe et al., 2006; Gilroy
et al., 2011). Considering that AVR3a is essential for P. infes-
tans virulence, stabilization of CMPG1 by AVR3a suggests that
this effector is able to suppress ICD during the biotrophic phase
of infection by modifying CMPG1 activity, impeding normal
proteasomal degradation of both CMPG1 and its host targets
(Bos et al., 2010).

In addition to microbial effectors that are able to target host
E3 Ub-ligase proteins, examples of effectors that present E3
Ub-ligase-related domains have also been reported in a diver-
sity of pathogenic microbes including bacteria, fungi, oomycetes,
viruses and nematodes (Marino et al., 2012). The best charac-
terized example of microbial E3 ligases is the AvrPtoB effector
from Pseudomonas syringae that presents a C-terminal domain
with remarkable structural homology with RING- and U-box-type
Ub-ligases (Janjusevic et al., 2006). AvrPtoB is a modular effec-
tor able to suppress PTI signaling. Indeed, AvrPtoB N-terminal
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domain is able to interact with the PRRs FLS2 and the chitin recep-
tor CERK1, whereas its C-terminal Ub-ligase domain mediates
PRR proteasomal degradation (Gohre et al., 2008; Gimenez-
Ibanez et al., 2009). AvrPtoB is additionally able to target the
co-receptor protein BAK1 (Shan et al., 2008) and to interfere with
MAPK activation downstream of FLS2 (He et al., 2006), although
independently of AvrPtoB Ub-ligase activity. Remarkably, AvrPtoB
is also able to suppress ETI signaling. Indeed, AvrPtoB interacts
with and mediates proteasomal degradation of Fen, a tomato pro-
tein kinase that activates plant immunity in response to P. syringae
carrying Ub-ligase deficient forms of AvrPtoB, as well as cell death
responses when overexpressed in N. benthamiana (Rosebrock
et al., 2007).

CONCLUSIONS AND PERSPECTIVES
Evidence of the involvement of the UPS pathway in the regulation
of plant immunity is rapidly mounting. E3 Ub-ligase proteins are
the best characterized UPS components playing a role in immune
signaling at multiple levels. Nevertheless, based on induction of
their expression following elicitation, E1 and E2 enzymes have also
been suggested to contribute to plant disease resistance although
the molecular mechanisms by which they regulate this process
remain poorly characterized (Marino et al., 2012). Interestingly, a
recent report provides a first example of the direct involvement of
Ub-conjugating proteins in the regulation of plant immunity. In
tomato, Fen-interacting protein 3 (Fni3) is a homolog of the Ara-
bidopsis E2 enzyme Ubc13. Through interaction with its cofactor
S. lycoperiscum Uev (Suv), which is an inactive Ub-conjugating
enzyme variant, Fni3 catalyzes Lys-63-linked ubiquitination, a
non-proteolytic regulatory signal (Mural et al., 2013). Fni3 inter-
acts with Fen but does not affect Fen stability. Fni3 Ub-conjugating
activity and interaction with Fen are required for cell death trig-
gered by Fen overexpression in N. benthamiana and by several R
protein/effector pairs (Mural et al., 2013). Together these results
suggest that, in addition to conventional Lys-48-linked ubiquiti-
nation that mainly serves as a signal for proteasomal degradation
of substrate proteins, other ubiquitination forms are important
regulators of plant immune signaling. Consistent with this idea,
Lys-63-linked ubiquitination has also been shown to be a target
of manipulation by plant pathogens, as the PthA effector from
the bacterial pathogen Xanthomonas axonopodis pv. citri is able to
target Ubc13 and Uev in citrus (Domingues et al., 2010).

In conclusion, further characterization of additional UPS com-
ponents as well as of the distinct fates of ubiquitination targets
should contribute to dissecting the complex regulation of plant
immune signaling by the UPS.
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