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Wheat, like many other staple cereals, contains low levels of the essential micronutrients
iron and zinc. Up to two billion people worldwide suffer from iron and zinc deficiencies,
particularly in regions with predominantly cereal-based diets. Although wheat flour is
commonly fortified during processing, an attractive and more sustainable solution is
biofortification, which requires developing new varieties of wheat with inherently higher
iron and zinc content in their grains. Until now most studies aimed at increasing iron and
zinc content in wheat grains have focused on discovering natural variation in progenitor or
related species. However, recent developments in genomics and transformation have led
to a step change in targeted research on wheat at a molecular level. We discuss promising
approaches to improve iron and zinc content in wheat using knowledge gained in model
grasses. We explore how the latest resources developed in wheat, including sequenced
genomes and mutant populations, can be exploited for biofortification. We also highlight
the key research and practical challenges that remain in improving iron and zinc content in

wheat.
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INTRODUCTION

All living organisms require essential mineral micronutrients to
maintain metabolism and humans obtain these from their diet
(Welch and Graham, 2004). However staple grains such as wheat
often contain suboptimal quantities of micronutrients, especially
iron (Fe) and zinc (Zn), and most of this content is removed
by milling. In regions where the human diet consists mainly of
cereals this leads to deficiencies in micronutrients. The World
Health Organization estimates that approximately 25% of the
world’s population suffers from anemia (WHO, 2008), and that Fe-
deficiency anemia led to the loss of over 46,000 disability adjusted
life years (DALYs) in 2010 alone (Murray and Lopez, 2013). An
estimated 17.3% of people worldwide are at risk of inadequate
Zn intake (Wessells and Brown, 2012) and Zn-deficiency leads to
estimated annual deaths of 433,000 children under the age of five
(WHO, 2009).

There are many possible strategies to improve micronutrient
intake in the human diet including dietary diversification, mineral
supplementation and post-harvest food fortification. However,
these strategies depend on continued investment and infrastruc-
ture, and current levels of post-harvest fortification of Fe are often
inadequate (White and Broadley, 2009; Gomez-Galera et al., 2010;
Hurrell etal., 2010). Biofortification circumvents these problems
by improving the micronutrient content of the crops themselves
by increasing mineral levels and bioavailability in the edible
parts. Improving crop varieties by either conventional breeding

or transgenic methods has the advantage that once the initial
research and development is completed, the benefits from these
nutritionally-enhanced crops will be sustainable with little further
investment (Gomez-Galera etal., 2010).

Many studies have shown that there is a wide variation in
grain Fe and Zn concentrations in wild relatives of modern
wheat and the concentrations found can significantly exceed
those found in modern elite cultivars (Cakmak etal., 2000;
Monasterio and Graham, 2000). This natural variation can be uti-
lized to biofortify wheat for Fe and Zn, such as has been achieved
using the transcription factor NAM-BI (Uauy etal., 2006) which
was originally identified for increasing protein content in wild
emmer (Triticum turgidum ssp dicoccoides). In near isogenic lines
the presence of NAM-BI increased Fe and Zn grain concen-
trations by 18 and 12%, respectively, (Distelfeld etal., 2007).
This gene is being widely used in breeding programes across
several continents (Kumar etal., 2011; Randhawa etal., 2013;
Tabbita etal., 2013).

Recent technological developments present new opportunities
that can complement natural variation and genome-wide asso-
ciation studies, and lead to faster improvements in Fe and Zn
grain content. Therefore here we focus on how the dramatic
increase in wheat genomic sequence availability combined with
functional genomic approaches can be used to their fullest poten-
tial to engineer new varieties of wheat with improved Fe and Zn
content.
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ADVANCES IN WHEAT RESOURCES APPLICABLE TO
IMPROVING FE AND ZN GRAIN CONTENT

To date, molecular breeding in bread wheat has been hindered
by its large genome size (16 Gb: five times that of humans), its
polyploid nature (tetraploid pasta and hexaploid bread wheat),
and the high nucleotide similarity between these genomes (>95%
similar in genes). However, recent advances in technology will
greatly increase the rate of discovery and functional characteriza-
tion of wheat genes, and provide the tools with which to deploy
this knowledge into improved varieties. Some of these advances
are outlined below.

GENOME AND GENE SEQUENCE AVAILABILITY

In the last 5 years the amount of publicly available wheat genomic
sequence has massively expanded. The International Wheat
Genome Sequencing Consortium has coordinated the purification
of individual chromosome arms using flow sorting (Safar etal.,
2004) followed by shotgun sequencing and assembly into contigs
of an average size of 2.5 kb. These genome-specific contigs have
recently been released in EnsemblPlants allowing wheat researchers
to separate and distinguish the homoeologous genomes for the
first time. Physical maps of BAC libraries made from these puri-
fied chromosome arms are being constructed (Paux et al., 2008) to
generate a high quality reference. A complementary strategy, whole
genome shotgun (WGS) sequencing, has been used to generate a
5x coverage of the wheat genome, using orthologous sequences
from multiple grasses to guide assembly (Brenchley etal., 2012).
Draft sequences for the A and D genome progenitors, T. urartu
(Ling etal., 2013) and Aegilops tauschii (Jia etal., 2013), were
also created using a WGS approach followed by de novo assembly.
Combining the WGS sequencing with the physical map strategy is
leading to an unprecedented wealth of genomic information and
will ultimately lead to a reliable reference sequence for polyploid
wheat.

In parallel, the ability to access genic sequence through RNA-
seq and exome capture (Saintenac etal., 2011; Trick etal., 2012;
Winfield etal., 2012) is enabling the identification of single
nucleotide polymorphisms and the development of publicly avail-
able genome-specific markers for genetic mapping in polyploid
wheat (Wilkinson etal., 2012; Allen etal., 2013). Recently a com-
prehensive set of homoeolog-specific gene models for polyploid
wheat has been published (Krasileva etal., 2013). In short, wheat
researchers now have access to genome-specific contig assemblies
(albeit partial and fragmented), draft reference genomes, gene
models and large SNP datasets. Together, these tools should enable
more precise mapping and deployment of grain Fe and Zn traits
through marker assisted selection.

NOVEL EXPERIMENTS USING SEQUENCE DATA RESOURCES

The wealth of sequence data, together with the reduced cost of
sequencing, allows new ways of investigating gene function related
to grain Fe and Zn. For example, RNA-seq was applied to identify
differentially expressed genes in lines with reduced expression of
NAM genes (Cantu etal., 2011). Many classes of genes including
transporters, hormone regulated genes and transcription factors
were identified. This study generates leads for investigations into
the early stages of senescence and nutrient remobilisation that

relate directly to micronutrient content in wheat grains. The dif-
ferentially expressed NAM-regulated genes can now be further
pursued through the reverse genetic resources available in wheat
(see below). The refinement of methods to analyze RNA-seq data
(Duan etal., 2012) together with homoeolog-specific gene models
will provide increased resolution to transcriptome studies as reads
can be assigned more accurately to specific genomes (Krasileva
etal., 2013).

REVERSE GENETIC MUTANT RESOURCES

The major advances and cost reduction in sequencing technology
has also created the opportunity to characterize existing chem-
ically mutagenised populations (Uauy etal., 2009; Sestili etal.,
2010) for rapid discovery of mutants in specific genes. The newly
developed gene models (Krasileva etal., 2013) are being com-
bined with exome capture approaches to enrich for protein-coding
genes in both tetraploid and hexaploid mutant populations. Over
3,000 individuals will be sequenced and mutations identified and
organized for online access (Uauy and Dubcovsky, personal com-
munication). Therefore in the very near future, researchers will be
able to order mutants in their gene of interest through a simple
in silico search as is standard in many model species. The avail-
ability of such resources will allow faster characterization of gene
function in wheat and will provide valuable alleles for breeding.

TRANSGENIC METHOD IMPROVEMENTS

Producing transgenic wheat has previously been a major bot-
tleneck in investigating gene function. The efficiency of wheat
transformation still lags behind the efficiency of barley trans-
formation but it is constantly improving and a wide range of
promoters is available to target transgene expression to par-
ticular tissues or developmental stages (Harwood, 2012). In
addition, high-throughput Agrobacterium-mediated transforma-
tion of wheat is now possible through a patented technology
(Purelntro; WO 95/06722) from Japan Tobacco which has been
licensed to several institutions and delivers transformation effi-
ciencies above 30%. However challenges still remain. These
relate primarily to costs and the ability to produce genotype-
independent transformation protocols, since most reports utilize
Bobwhite or Fielder which are not suitable for commercialisation
of transgenic wheat (Li etal., 2012). The ability to transform any
cultivar of wheat, at a reasonable price, would allow transforma-
tion into elite lines which would speed up breeding programes
and also allow research to be carried out in a more appropriate
background.

TRANSFERRING MODEL CROP KNOWLEDGE INTO WHEAT
THE PATHWAYS FROM THE ROOTS TO THE GRAIN AND THE
IMPORTANCE OF BIOAVAILABILITY

Much work has been carried out to understand the distinct routes
Fe and Zn take to reach the grain in diploid crop species such as
rice, maize, and barley. Conservation of these pathways between
species allows predictions about Fe and Zn transport in wheat
where less is known. Recent reviews have covered the pathways
in model crops extensively (Palmgren etal., 2008; Curie etal.,
2009; Conte and Walker, 2011; Waters and Sankaran, 2011; White
and Broadley, 2011; Borg etal., 2012; Kobayashi and Nishizawa,
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2012; Lee etal., 2012; Sperotto etal., 2012; Schroeder etal.,
2013) so here we will briefly outline the putative pathways in
wheat and then discuss key steps to target for crop improvement
(Figure 1).

The uptake of Fe and Zn from the soil occurs via two pro-
cesses in plants: direct uptake of Fe?* and Zn?* by ZRT-, IRT-like
proteins (ZIPs) or via secretion of phytosiderophores (PSs) which
chelate Fe cations and are subsequent taken up by yellow stripe
like (YSL) transporters (Sperotto etal., 2012). The chelation strat-
egy is generally used for Fe uptake in monocots such as wheat.
In many steps of Fe and Zn transport the same families of pro-
teins are involved, however the two metals are treated separately
by plants often by the involvement of different members of multi-
gene families. Metal chelators such as nicotianamine (NA) are
important for radial movement of Fe and Zn through the root
(Rellan-Alvarez etal., 2010; Deinlein etal., 2012) and the trans-
port of Zn into the vacuole affects overall Zn transport through
the roots into the shoot (Morel et al., 2009; Haydon et al., 2012). Fe
and Zn are loaded into the xylem where Zn can move as a cation
or in a complex with organic acids such as citrate (Lu etal., 2013),
and Pe is chelated by citrate (Rellin-Alvarez etal., 2010). Transfer
from xylem to phloem can occur in the root or basal part of the
shoot or during remobilisation from the leaves during grain fill-
ing and is facilitated by ZIP and YSL family proteins. In wheat all
nutrients enter the grain from the phloem because the xylem is dis-
continuous (Zee and O’Brien, 1970). In the phloem Fe and Zn are
transported as complexes with NA or small proteins. Transporters
from the maternal tissue into the endosperm cavity and into the
aleurone and embryo have been proposed; several are members of
the ZIP, YSL, and metal tolerance protein (MTP) families (Borg
etal., 2009; Tauris et al., 2009).

In wheat grain most Fe and Zn is located in the aleurone layer
which is lost during milling. This problem is further compounded
by the fact that Fe in these tissues is deposited mainly in protein
storage vacuoles (PSVs; Regvar etal., 2011) where it is bound to
phytate, which makes it poorly bioavailable to humans (Borg et al.,
2009). Ferritin, which forms large Fe-rich nanoparticles, is gener-
ally regarded as a more bioavailable storage form and is present
in the widely consumed endosperm amyloplasts (Balmer etal.,
2006). Thus it is important to not only consider the total content
of Fe and Zn in grain, but also the tissue localization and speci-
ation (as chelates, protein particles or other), which affects their
bioavailability.

Many of the steps described above have been modified by
transgenic approaches in diploid crop species. We discuss below
some promising studies and how this knowledge can be used
to improve Fe and Zn grain content and bioavailability in
wheat.

TRANSGENIC APPROACHES IN RICE

Several studies have over-expressed genes involved in the pathway
for Fe and Zn transport in rice with promising results showing
increased bioavailability of Fe and no negative impact on yield.
Over-expression of NA synthase (NAS) led to 2-3 fold increases
in Fe and Zn content in paddy grown grain and importantly
feeding this grain to anemic mice led to the recovery of nor-
mal hemoglobin and haematocrit levels within 2 weeks, whereas

wild-type grain did not (Lee etal., 2009). Multiplexing genes
involved at several steps has enabled even larger increases in Fe
content, although bioavailability was not tested. Expressing NAS,
ferritin and phytase resulted in a 6-fold increase in Fe in pol-
ished rice grains (Wirth etal., 2009). The authors suggest that the
combination of these three transgenes did not significantly affect
overall Fe homeostasis, shown by expression analysis of 28 endoge-
nous rice genes in Fe-deficient and sufficient conditions (Wang
etal., 2013). This suggests that a mechanism combining both
increased translocation (NAS) and expanded sink strength (fer-
ritin) could be suitable to enhance rice (and wheat) endosperm Fe
content.

APPLYING TRANSGENIC APPROACHES TO WHEAT

At present, studies in wheat are restricted to the endosperm-
specific expression of wheat or soybean ferritin which led to
increases in grain iron content of 1.5 to 1.9-fold and 1.1 to 1.6-
fold respectively (Borg etal., 2012; Sui etal., 2012) and increasing
phytase activity (Holm etal., 2002). These studies give proof of
concept that grain Fe and Zn can be modified in wheat through
transgenic approaches.

Using knowledge from model species, it is possible now to
identify more rapidly and with higher confidence candidate genes
that might play a role in Fe and Zn transport. Access to relatively
complete genomic sequence for polyploid wheat will allow more
comprehensive phylogenetic studies for putative wheat homologs
of large gene families. For example we have used the sequences
of the rice natural resistance-associated macrophage proteins
(NRAMPs) to identify wheat homologs (Table 1). Wheat candi-
date genes with putative Fe and Zn transporter function inferred
from phylogeny, can be taken forward and characterized in yeast
mutants, with a view eventually to expressing these in transgenic
wheat plants to increase vacuolar export and ultimately nutrient
content in the grain.

Work in rice has shown that multiplexing genes can further
increase gains and this strategy could also be suitable for wheat.
An analogous approach which would act to regulate several steps
of the Fe and Zn uptake pathways would be to engineer transcrip-
tional regulators to enhance movement and uptake into grains.
For example the NAM-BI transcription factor provides an entry
point to increase Fe, Zn, and protein content: with greater under-
standing of its targets, and which transport steps are key control
points, we could engineer expression patterns, downstream tar-
gets, or binding specificities to improve nutrient content in the
grain. The lack of genomic resources in wheat prompted initial
studies on NAM-BI to focus on rice, but these attempts failed since
the orthologous rice NAM gene affects anther dehiscence rather
than mineral remobilisation (Distelfeld etal., 2012). The advent
of new technologies and genomic resources now allow these ques-
tions to be addressed directly in wheat. In addition to RNA-seq
(Cantu etal., 2011), we have developed transgenic lines with
epitope-tagged NAM proteins to perform chromatin immuno-
precipitation followed by sequencing (ChIP-seq) to identify direct
targets of NAM (Borrill and Uauy, unpublished data). The
availability of gene models and genomic sequence (including
promoter regions) now makes this a feasible undertaking in
wheat.

www.frontiersin.org

February 2014 | Volume 5 | Article 53 | 3


http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Nutrition/archive

Borrill etal.

Increasing wheat grain micronutrients

Maternal tissue  Endosperm

Aleurone Endosperm

cavity

@y

‘—n-*

__/

\

AV %

()
/p 1)
Fer
e 04

J

Phloem

Rhizosphere

Epidermis Cortex Endodermis  Pericycle Xylem Phloem
AV V4 AV
g AN N A

FIGURE 1 | Simplified proposed pathway for Fe and Zn uptake and
translocation to the grain in wheat. Putative classes of transport proteins are
shown in white text and are based on evidence from other species. Question
marks show unidentified transporters. Free Zn2+ and phytosiderophore (PS)
-bound Fe and Zn are absorbed from the soil into root epidermal cells. Fe and Zn
move via the apoplast and symplast to the pericycle, but may be sequestered
en-route in vacuoles. Fe and Zn are loaded into the xylem and transferred into
the phloem in the root, basal shoot or leaf tissues (not shown). Fe and Zn are
remobilised from leaf cell plastids (P) and vacuoles (V) and loaded into the

phloem for transport to the ear. Fe and Zn are exported from the maternal tissue
into the endosperm cavity. After uptake into the aleurone layer most Fe and Zn
are sequestered in protein storage vacuoles (PSVs) bound to phytate (Phy). A
small proportion of Fe and Zn may enter the endosperm and be stored bound to
ferritin (Fer) inamyloplasts (A). ZIP = ZRT-, IRT-like protein, YSL = yellow stripe
like transporter, MFS = major facilitator superfamily transporter, MTP = metal
tolerance protein, HMA = heavy metal ATPase, FPN = ferroportin,

NRAMP = natural resistance-associated macrophage protein, VIT = vacuolar
iron transporter, NA = nicotianamine, Cit = citrate, SP = small proteins.
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CHALLENGES IN TRANSFERRING KNOWLEDGE TO WHEAT

As illustrated by NAM in rice and wheat it is important to note
that the precise mechanisms of transport and its regulation differ
between species even within monocots, so not all knowledge can
be directly translated. It has been proposed that Zn transport to
the grain in wheat is constrained by two major bottlenecks; the
root—shoot barrier and grain filling (Palmgren etal., 2008). How-
ever in rice these bottlenecks are reduced (Stomph etal., 2009) as
shown by the storage of excess Zn in shoots as well as roots (Jiang
etal., 2008), and the ability of rice to load Zn from the xylem
into the grain without transfer to the phloem (Zee, 1971), which
constitutes a limiting step in wheat. Fe transport in rice and other
monocots also differs, for example rice uses both secretion of PSs
and direct uptake of Fe from the soil (Bughio etal., 2002; Inoue
etal., 2009; Nozoye etal., 2011), whereas barley and maize only
absorb Fe via PSs (Romheld and Marschner, 1986; Zaharieva and
Romheld, 2000; Murata et al., 2006; Walker and Connolly, 2008).
These challenges are compounded by the fact that several funda-
mental questions remain unanswered even in model species. The

specificity of many transporters is not fully characterized and the
control of flux through pathways requires further investigation.
Additionally, the relative contribution of sink/source strength and
the possible effects of manipulating individual metals on total
grain metal composition are not well understood.

CONCLUSIONS AND FUTURE DIRECTIONS
Our ability to carry out basic research in wheat will be extremely
important to build upon and move beyond research in model
species. This will be greatly advanced by recent developments in
genomic resources, mutant catalogs and transgenic methods. Once
genes to improve nutrient content have been identified, they will
need to be transferred into agriculturally relevant wheat varieties
and assessed for agronomical traits such as yield and disease resis-
tance which are the main drivers for adoption of novel varieties by
farmers.

Changes to agricultural conditions in the future will also impact
upon the deployment of biofortified wheat varieties. Rising atmo-
spheric carbon dioxide (CO;) concentrations may lead to reduced

Table 1 | New genomic resources enable identification of NRAMP homologs in wheat.

Rice NRAMP (RAP locus ID) Wheat homolog

Genome Wheat sequence?

OsNRAMP1 (0s07g0258400) TaNRAMP1

OsNRAMP2 (0s03g0208500) TaNRAMP2
OsNRAMP3 (0s06g0676000) TaNRAMP3
OsNRAMP4 (0s02g0131800) TaNRAMP4
OsNRAMP5 (0s07g0257200) TaNRAMP5
OsNRAMPE (0s01g0503400) TaNRAMP6
OsNRAMP7 (0s129g0581600)

TaNRAMP7

— TaNRAMPS

7AL_4537662 (URGI)°
7BL_6744498 (Ensembl)
7DL_3317468 (Ensembl)
4AS_5952279 (Ensembl)
4BL_7000373 (Ensembl)
4DL_14450878 (URGI)
7AL_4392690 (Ensembl)
7BL_6748183 (Ensembl)
7DL_3360602 (Ensembl)
6AS_4346871 (Ensembl)
6BS_2318478 (Ensembl)®
Absent

4AS_5926812 (Ensembl)
Across multiple contigs
4DL_14404139 (URGI)
Across multiple contigs
Across multiple contigs
Across multiple contigs
5AS_1501999 (Ensembl)®
5BS_2288821 (Ensembl)
5DS_2767814 (Ensembl)
4AL_7173573 (URGI)
4BS_3944622 (Ensembl)
4DS_2292562 (Ensembl)

g w » O ® » O W » U W » U wWw » U W » O W >» O ® >

@International ~wheat genome  sequencing  consortium

chromosome-arm

survey  sequences are available at EnsemblPlants  (Ensembl;

http://plants.ensembl.org/index.html) and at Unité de Recherche Génomique Info (URGI, http://www.wheatgenome.org/Tools-and-Resources)

b partial sequence
Cpremature termination codon
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grain micronutrient content, especially Fe, as has been shown by
free air CO; enrichment studies (Hogy et al., 2009; Fernando et al.,
2012). Additionally lower levels of fertilizer may be used in the
future due to budgetary and legal constraints. This may present
a challenge to improve Fe and Zn grain concentrations because
lower application of nitrogen fertilizer correlates to lower Fe and
Zn grain concentrations (Cakmak etal., 2010). In addition, the
drive for higher yields is usually accompanied by a dilution effect
of minerals due to the additional grain starch accumulation. This
scenario suggests that scientists and breeders will need to work
ever more closely to achieve not just maintenance, but the required
increased grain Fe and Zn contents.

Despite these challenges we believe that wheat researchers now
have access to the tools and resources required to make significant
improvements to Fe and Zn content in wheat grain and to bring
these improved varieties to the field. These new varieties could
make an important contribution to improving the health of mil-
lions of people worldwide to avoid Fe and Zn malnutrition which
still affects over 25% of the global population.
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